
Demonstration-Based Training of Non-Player Character Tactical Behaviors

John Drake
University of Pennsylvania

drake@seas.upenn.edu

Alla Safonova
University of Pennsylvania

alla@seas.upenn.edu

Maxim Likhachev
Carnegie Mellon University

maxim@cs.cmu.edu

Abstract

State of the art methods for generating non-player charac-
ter (NPC) tactical behaviors typically depend on hard-coding
actions or minimizing a given objective function. In many
games however, it is hard to foresee how the NPC should be-
have to appear intelligent or to accommodate human player
preferences for NPC tactics. In this paper we consider
an alternative approach, by training NPC tactical behavior
via demonstrations. We propose a heuristic search-based
planning method based on previously-developed Experience
Graphs, which facilitates the use of behavior demonstration
data to plan goal-oriented NPC behavior. Our method pro-
vides a principled solution to the problem which tolerates
some amount of differences in between the training demon-
stration and the actual problem and yet still grants guarantees
on the quality of the solution output.

1 Introduction
Planning NPC tactical behavior is a complex problem, with
current solutions typically depending on hard-coded com-
ponents or minimization of some given objective function
(Millington and Funge 2009). Moreover, there do not ex-
ist ways to train NPC tactical behavior by demonstration.
Heuristic graph search techniques such as A* search (Hart,
Nilsson, and Raphael 1968) can be used for planning NPC
tactics, however they can be computationally expensive and
do not by default incorporate player preference on how
NPCs should behave. The previously-developed Experience
Graph (E-graph) (Phillips et al. 2012) method allows the use
of experience or demonstration data in a graph search. How-
ever, it is formulated in a way that requires demonstrations
to be part of the graph used by the search. As we explain in
the paper (See section 4 on Technique), this breaks down in
the context of games.

In this paper we propose an alternative Training Graph
(T-graph) heuristic formulation. Our method can utilize
demonstration data that does not lie directly on the search
graph and is not accessible from the search graph. It toler-
ates changes to the environment and initial conditions of the
problem. Our method also permits the usage of demonstra-
tion data with low sample density or downsampled demon-
stration data. Our method encourages more complete use

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of demonstration data than the E-graph method does. Fi-
nally, our heuristic can be combined with other determinis-
tic AI behavior control methods. These features together en-
able demonstration-based behavior planning to be used un-
der various scenarios and configurations. We demonstrate
our method on several test scenarios, including one in the
video game The Elder Scrolls V: Skyrim (Skyrim) .

2 Previous Work
NPC behavior planning is typically accomplished via hard-
coded methods (such as behavior trees (Isla 2005) or finite
state machines (Coman and Muñoz-Avila 2013)) or by min-
imizing some given objective function, as in planning ap-
proaches (such as (Macindoe, Kaelbling, and Lozano-Perez
2012)).

Some methods have incorporated demonstration data into
planning. In robotics, inverse optimal control (Finn, Levine,
and Abbeel 2016) has been used to learn a cost function from
demonstration for a planning problem. Our method uses a
known cost function and instead uses demonstrations to bias
the search. In other words, we use training data directly to
guide the search rather than learning a cost function from it.
A 2009 research survey (Argall et al. 2009) collects some
other related methods for robot control.

Our technique is based on another method from robotics,
Experience Graphs (E-graphs) (Phillips et al. 2013), which
in turn is an extension of A* heuristic graph search (Hart,
Nilsson, and Raphael 1968). A* uses a heuristic estimate of
the transition cost between nodes to constrain the amount of
the search graph which needs to be examined before finding
a solution to the problem. The E-graph algorithm extends
A* search to be able to use the results of previous searches
and/or demonstration data. It does it in a way that provides
provable bounds on the sub-optimality of the solution. The
standard formulation of E-graph search, however, assumes
that the E-graph is reachable from the search graph and
traversable along its length. Our method uses demonstra-
tion data just like the E-graph method, but does not require
that the demonstration graph is reachable from the search
graph. Our method also encourages more complete usage of
demonstration data than the E-graph method does, which is
important for tactical behaviors.

A recent work on tactical behavior planning by N. Sturte-
vant (Sturtevant 2013) proposed a method which takes into

Proceedings, The Twelfth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-16)

30



Figure 1: Example dungeon and lever as goal.

account relationships between NPCs while planning paths.
The proposed method focuses on path planning alone and
decomposes NPC interaction into parameters which, in sum
with distance traveled, make up the cost function of the
search. Our method plans for behavior actions beyond navi-
gation and provides an avenue for player preference to affect
tactical planning. Our method could be combined with cost
formulations such as this.

3 Motivating Example
We consider here the following common scenario in a game.
The player encounters a friendly NPC who winds up join-
ing the player on a mission. The mission is short and has
a clearly specified goal, e.g. to pull a lever at the end of a
small dungeon. The player and his companion begin at the
door to the dungeon. There may be forks in the passageways
between the door and the lever, creating different route op-
tions. There may be different actions to take before reaching
the lever, for example to kill particular enemies along the
way or to leave them alone. The player and NPC can also
choose to move stealthily or run through quickly.

The player begins to navigate the dungeon to get to the
lever at the end (Figure 1). His companion NPC acts accord-
ing to its programming. It often happens that this is insuffi-
cient. For example, the NPC may only know to charge ahead
despite the fact that the level demands a stealthy approach.
There may be a very strong enemy NPC in one part of the
level which could be bypassed via another route. There may
be a navigational trap, such as a spear pit. It is not possi-
ble to foresee every such situation while designing the AI
code for the NPC. The player may wish to instruct the NPC
how to behave, and indeed many games incorporate com-
mands which can be given to friendly NPCs, but it is often
not possible to issue compound commands for complex tac-
tics and not possible to foresee command schemes to handle

every scenario. The game developer might also wish to au-
thor NPC behavior by demonstration, perhaps to augment
other behavior control code for complex scenarios that leave
the NPC incapable of solving them.

We have used Skyrim as a testing ground for our work.
Since we do not have access to full models of how the
game’s existing NPCs behave, we have simplified the
game’s wolf and bear AI models so that they can be bet-
ter modeled in our system. We depopulated game ar-
eas and repopulated them with our custom wolf and bear
agents for testing. We extracted game navmesh data, in-
cluding Skyrim’s unidirectional drop down edges, from
these game areas for use in our system’s navigation rou-
tines. We have used the game’s Creation Kit editing
software and modified the Skyrim Script Extender (SKSE,
http://skse.silverlock.org/) for integration with our behavior
planner and demonstration recorder. Demonstration data is
recorded by sampling all relevant state information of the
game world (health values, agent positions, etc.) at a regular
interval and saving this information to a log file. The player
presses a key (handled with SKSE and Papyrus scripting) to
start and stop each log file. These logs are then used by our
algorithm as demonstration data.

4 Technique

Graph Search

NPC tactic planning can be accomplished as a graph search
problem. Our search graph is composed of nodes represent-
ing search states and edges representing possible transitions
between search states. Graph search states are composed
of world state information and the state of the NPC being
planned for. World state information is composed of the
state of every NPC (including enemies), and other miscel-
laneous world parameters. NPC state information encodes
values for position, health, stamina, navigation information,
gait (sneaking, walking, running), etc. for the NPC. Graph
edges have an associated cost defined as the amount of time
it takes to complete that state transition. A transition that
results in companion NPC death has infinite cost.

We use heuristic graph search to find a feasible path from
the start state to the goal. We tested our planner on different
partially-specified goal states, including one that is satisfied
when the NPC is within two meters of a destination location
and one that is satisfied when a target enemy NPC is dead.
Heuristic graph search algorithms use a heuristic which fo-
cuses search efforts to dramatically speed up the search pro-
cess. A heuristic estimates the distance between two states.
A graph search heuristic can estimate the distance between
a state and the goal, even if the goal is partially-specified.

A graph heuristic used throughout this paper, hS(a, b) be-
tween search states a and b (visualized in a test environment
in Figure 2), is defined as Euclidean distance between the
planned NPC positions in a and b divided by the maximum
possible travel speed for the NPC. It therefore estimates the
time-to-goal, which makes it consistent with the cost func-
tion.

31



Figure 2: Left: Test environment with forked navmesh, start
position S, goal G, and killer bear B hiding in den.
Right: Standard graph heuristic hS , based on Euclidean
distance. The values decrease (darken) near the goal in a
smooth manner.

Figure 3: Left: Test environment with training path (white
lines) visualized.
Right: E-graph heuristic used without E-graph being con-
nected to the search graph. The white lines represent the
E-graph. Heuristic values decrease both toward the E-graph
nodes and overall toward the goal, but each node forms a
local minima, which significantly delays search progress.

E-graph Heuristic
First we explain Experience Graphs, which our work builds
on. The E-graph algorithm introduces a method to guide a
graph search to use trajectory data encoded in an E-graph
to help the search avoid local minima. The E-graph can be
created from the solutions of prior planning problems in the
same domain, or it can be created by demonstration (Phillips
et al. 2013). If necessary, new edges are added to the search
graph to connect it to the E-graph. The E-graph heuristic hE
is used to bias the search toward reuse of the E-graph edges
while searching for a solution.

E-graph E is a directed graph with nodes EN encoding
search state information. Successor function succ(a) = b
records valid transitions between states a and b as observed
in the experience with an associated cost function cE(a, b)
which records the observed costs of these transitions. The
standard experience graph heuristic hE(a, b) between nodes
a, b on the search graph can be computed in a general way
as follows. Note that node b is typically the goal state in
a search problem, and then you can understand hE(a) as
shorthand for hE(a, goal). Let hG be some heuristic on the
search graph, such as hS described above.

Figure 4: T-graph heuristic values decrease both toward the
T-graph and along it toward the goal in a smooth manner.
White lines represent the T-graph.

1. The E-graph is augmented with virtual edges from ev-
ery E-graph node s to every other E-graph node s′ at
their known E-graph cost cE(s, s′) if the transition al-
ready existed in the E-graph (if s′ ∈ succ(s)) or at cost
εEhG(s, s′) otherwise.

2. The E-graph is further augmented with virtual edges from
every E-graph node s to b at cost εEhG(s, b).

3. Dijkstra’s algorithm is run on the augmented graph from
b as the source. The Dijkstra output distances are used as
hE(s, b) for all nodes s ∈ EN .

4. The smallest of the direct path εEhG(a, b) and every sum
εEhG(a, s) + hE(s, b) among all s ∈ EN is selected as
hE(a, b).
This standard implementation of the E-graph heuristic

guides the graph search in a way that assumes the E-graph
is traversable and directly reachable from the search graph.
The search is guided toward E-graph nodes, so if the E-graph
density is sparse compared to the search graph’s discretiza-
tion, the search may be guided backwards (away from the
goal and backward along the E-graph) to reach an E-graph
node before making progress toward the goal (these are the
local minima visible in Figure 3). Also, due to the use of
Dijkstra’s algorithm in the existing E-graph heuristic formu-
lation, the search may leave the E-graph long before reach-
ing its end. This can prevent the E-graph demonstration data
from leading the solution path first toward the goal and then
away from it, though that kind of behavior is important to
some tactical maneuvers.

T-graph Heuristic
We modify the computation of the heuristic so that it encour-
ages the search to expand states that follow the demonstra-
tion without requiring the state to be exactly on the demon-
stration. In other words, we need to make the heuristic de-
crease between the start and the demonstration graph, then
decrease along the length of the demonstration graph and,
finally also decrease between the end of the demonstration
graph and the goal. Training graph (T-graph) T is repre-
sented the same way as an E-graph. Let TN indicate the

32



set of nodes making up T . Let succ(s) return the set of
successor neighbors of T-graph node s. Let pred(s) return
the set of T-graph nodes s′ such that succ(s′) = s. For all
s ∈ TN and s′ ∈ succ(s), let cT (s, s′) describe the cost of
transitioning from s to s′. Let TN

term ⊂ TN represent the
set of terminal nodes s in TN such that succ(s) = ∅. Let
TN
init ⊂ TN represent the set of initial nodes s in TN such

that pred(s) = ∅. A shortest path graph heuristic hP (a, b) is
defined as the shortest path length from a to b on the search
graph divided by the maximum possible travel speed.

We compute our training heuristic hT (a, b) (visualized for
a test environment in Figure 4) as follows:

1. Let εT be a heuristic inflation factor like εE in the E-graph
method.

2. For each terminal node s ∈ TN
term, assign hT (s, b) =

hP (s, b).

3. Working backwards from each terminal node s, where
s′ ∈ pred(s), assign hT (s′, b) = hT (s, b) + cT (s′, s).
Repeat this until every T-graph node s′ is assigned a
hT (s′, b) value. This step replaces the Dijkstra calcula-
tion in the E-graph method.

4. An estimation hTest(a, b, s, s
′) of the heuristic between a

and b is computed for every pair of T-graph nodes s ∈ TN

and s′ ∈ succ(s) by observing that hS(s, s′), hS(s, a),
and hS(a, s′) are available to compute a notion of how far
a is located between s and s′. This is used to choose a
value for hTest between hT (s, b) and hT (s′, b) (or larger).
In our method, we decided to compute this as a projection
π and rejection ρ from an imaginary line between s and
s′ as follows:

(a) Let π = hS(a,s′)
2−hS(s,a)

2
+hS(s,s′)

2

2hS(s,s′)2

(b) Let α = π/hS(s, s′)

(c) Let ρ =

√
hS(s, a)

2 − (hS(s, s′)− π)2

(d) If α < 0, let hTest(a, b, s, s
′) = εThS(a, s′) + hT (s′, b)

(e) If α > 1, let hTest(a, b, s, s
′) = εThS(s, a) + hT (s, b)

(f) If 0 ≤ α ≤ 1, let
hTest(a, b, s, s

′) = εT ρ+ αcT (s, s′) + hT (s′, b)

5. An estimation hTest(a, b, s, b) of the heuristic between a
and b is computed for every pair of terminal node s ∈
TN
term and node b in the same way as step 4. This allows

the search to be drawn in a focused way from the training
data toward the goal. In our work, we use hP here instead
of hS as it tended to make this last section of the heuristic
computation conform to the navmesh better and therefore
produced better results.

6. An estimation hTest(a, b, a, s) of the heuristic between a
and b is computed for every pair of node a and initial node
s ∈ TN

init in the same way as step 5. This allows the search
to be drawn in a focused way from the start node toward
the training data.

7. The smallest of the direct path εThS(a, b) and every
hTest(a, b, s, s

′) estimate among all s ∈ TN ∪ {a}, s′ ∈
TN ∪ {b} is selected as hT (a, b).

On state expansions, for every state s and successor state
s′ (with transition cost t = cT (s, s′)), a deterministic world
simulation function w′ = sim(sw, t) is used to forward-
simulate world state sw over a duration of t, outputting up-
dated world state w′. Successor state s′ is then assigned w′
as its world state information. The simulation function eval-
uates models of behavior for all dynamic components of the
world. In this function, behavior models for all NPCs are
evaluated. The NPC being planned may be partially mod-
eled by sim, for example if despite the planner, parts of
this NPC’s behavior are to be controlled by another tech-
nique. In our implementation, planned parameters include
desired location (as a position) and willingness to fight (as
a Boolean value) and then deterministic scripted behavior
handles the details of navigation and combat in sim. As long
as accurate NPC behavior models are available to sim, sim
accurately predicts how all NPCs behave during the graph
search. Other dynamic components of the world relevant to
the planning problem can be modeled here, such as doors
which automatically open or close, physics on moving ob-
jects, or consideration for how some kinds of attack dam-
age (e.g. splash damage which could affect multiple targets)
should be resolved.

Theoretical Properties
Some general properties of ε-admissible heuristic graph
search are preserved in our method. The search is complete;
if a solution is possible on the search graph, the search will
return a solution. We do not modify the search graph in any
way and we use Weighted A* graph search, which is a com-
plete planner, so our search is also complete.

Our heuristic is εT -admissible. An admissible heuristic
between nodes a and b never overestimates the actual tran-
sition cost between a and b. An ε-admissible heuristic never
overestimates the transition cost by more than a factor of
ε. Our heuristic hT (a, b) is computed as the minimum of
several options, one of which is the direct connection (step
7 above) between nodes a and b, computed as εThS(a, b),
so ht(a, b) must always be less than or equal to εThS(a, b).
hS(a, b) is an admissible heuristic, so εThS(a, b) is an εT -
admissible heuristic, and since hT (a, b) ≤ εThS(a, b), it
must also be an εT -admissible heuristic.

A consistent heuristic obeys the triangle inequality as
specified here: h(a, c) ≤ c(a, b) + h(b, c). If you com-
pute the heuristic between nodes a and c, this value is less
than or equal to the cost to transition from a and to succes-
sor node b ∈ succ(a) plus the heuristic between b and c.
An ε-consistent heuristic obeys this inequality: h(a, c) ≤
εc(a, b) + h(b, c). Consistency (or ε-consistency) of our hT
heuristic depends on the formation of hTest in steps 4 and 5
above and this remains to be proven for our implementation.
However, we found that it functioned well and path costs
were always well within sub-optimality bound εT ε times the
cost of the optimal path.

Analysis
Our hT heuristic calculation guides the graph search along
training demonstration data paths, even where they might

33



Figure 5: Left: E-graph heuristic with εE = 1.
Right: T-graph heuristic with εT = 1. Note that these both
degenerate to the simple graph heuristic hs seen in Figure 2.

move away from the goal. Like with the E-graph heuris-
tic computation, if εT = 1, the heuristic degenerates to
the graph heuristic hS (see Figure 5). Higher values of εT
encourage the search to use the demonstration data more
closely. Our formulation tolerates situations where the
demonstration data does not lie directly on the search graph.

Since our method tolerates sparse demonstration data
samples, it permits demonstration data to be sampled be-
low its full resolution for performance improvements at the
expense of training precision, if desired.

If the sim function has no effect on the heuristic func-
tions, then many parts of the hT computation can be pre-
computed and accessed from memory at runtime. For ex-
ample, if the goal of the problem is to kill an enemy NPC
and the sim function updates that NPC’s position over time,
that can alter the heuristic during the search and so parts of
hT cannot be precomputed.

5 Results
All of our results were generated on a machine with a
2.8GHz (up to 3.46 GHz) Intel i7-860 CPU, 12GB of dual-
channel PC3-10600 RAM, and Windows 7 64-bit OS. Our
code was compiled by MS Visual Studio 2013 and all runs
on a single thread.

For most experiments, we compared our method to stan-
dard A* search in a testbed environment separate from our
target game Skyrim.

We show planner execution time performance results in
Figure 6 for combined (ε and εT ) epsilon values of 1, 10,
and 100 for the Bear Bypass scenario shown in Figures 2
and 3. In this scenario, the start and goal locations are at
opposite ends of a straight passageway. Midway along the
passage is a bear den with a very dangerous killer bear in-
side. An alternative route bypasses the bear den. A* search
with a Euclidean heuristic expands directly toward the bear
den first, encountering a large local minima. T-graph search
expands around the alternative route as demonstrated, by-
passing the bear den and local minima entirely. We are pri-
marily concerned with examining T-graph output path shape
so these performance results are included only to illustrate
that computation times for the T-graph plans tended to be
similar to those for A*.

We also tested our method with a scenario from Skyrim.

Bear Bypass Computation Times

0.00

0.05

0.10

0.15

0.20

0.25

1 10 100

Combined Epsilon Bound

Ti
m

e 
(s

)

T-graphs
Time

A* Time

Figure 6: Bear Bypass planning time results for several com-
bined epsilon values.

Figure 7: Tests on navmesh taken from the Greywater Grotto
cave level in Skyrim.
Top: A* heuristic and path plan (ε = 200) to go from the
start position at the right to the goal at the top, behind the
bear, for a sneak attack.
Bottom: T-graph heuristic and path plan for the same sce-
nario with the same combined εT ε = 200 (ε = 2, εT = 100).
Path follows a training demonstration and was planned in
18% fewer expansions than A*.

See Figure 7 for a visualization of the graph heuristics and
planned paths from this test. To record the demonstration
data for this example, we run Skyrim through SKSE with our
mod file enabled and went to the Greywater Grotto location.
A keyboard button begins demonstration recording mode
and then the player walks through the level demonstrating
how he wants the NPC to behave, including choosing when
to engage in combat and when to move stealthily. Another
keyboard button resets the level and allows the NPC to be-
gin behaving according to the planned behavior. This time,
the player can go through the level with the NPC, knowing
it will behave according to the demonstration. The planner
could be called again at intervals to alter the plan based on
changing circumstances in the game.

The T-graph can be used to guide the search in arbitrary
ways according to player (or developer) preference. Figure

34



Figure 8: Top Left: T-graph heuristic for εT = 10. The
black lines mark the T-graph nodes.
Top Right: T-graph path for εT = 10 follows the demonstra-
tion even though it is far away.
Bottom Left: T-graph heuristic for εT = 5.
Bottom Right: T-graph path for εT = 5 no longer follows
the demonstration because at this εT value, the direct path
heuristic dominates in the region of the search graph near
the start and goal.

8 shows a T-graph that both strays from the search graph and
begins and ends far from the start and goal of the search. The
demonstration path successfully biases a search at εT = 10,
but then fails to bias a search at εT = 5 because of its dis-
tance from the start and goal. εT controls how much influ-
ence training data has on the search and so irrelevant demon-
stration can be filtered out by lowering εT . If influence is
low enough, the graph heuristic hS dominates and search
progresses as in plain A*.

The T-graph method also operates gracefully when multi-
ple demonstrations are provided for the search, even if they
overlap or if irrelevant demonstration data is included. See
Figure 9. The output path includes planned actions that de-
scribe more than the shape of the navigation path. The ar-
rows point to places where the output path includes changes
to the NPC’s gait state (not just position). The demonstra-
tion path curves toward the bear in this area, so the algo-
rithm tested paths which went through this area and found
that they all ended with the bear killing the NPC. Thus, the
planner determined that in order to safely navigate this sec-
tion, the quieter sneaking gait would need to be used to elude
the bear.

6 Conclusions & Future Work
Our T-graph algorithm provides a new way to train AI tac-
tical behavior via demonstration. We use a heuristic graph
search framework and our special T-graph heuristic hT to
compute AI behavior solutions which follow demonstration
data and also seek to achieve the specified tactical goal. Our
system tolerates changes to the starting configuration, envi-
ronment, and goal specification. It also permits the use of
sparse demonstration data which does not lie directly on the
search graph and permits demonstration data to be down-
sampled. Through the sim function, other deterministic AI
behavior controls can be coupled with our system.

Figure 9: A scenario with a killer bear (B) to avoid and four
demonstration traces (black lines) as input. A T-graph solu-
tion path starts at S, goes left to the where two T-graph traces
intersect, then moves up toward the goal at G. The white
dots marked by arrows indicate places where the planned
path changes the NPC’s gait in and out of a slower sneaking
mode to avoid being detected by the bear while still follow-
ing the demonstration data closely, demonstrating that the
planner does more than simple path-planning.

Future work includes extending the system beyond tac-
tical tasks into the realm of long-term strategy. Another
important task for future work is further generalization of
how experience data is treated so that it can be applicable
in broader scenarios. One aspect of this is determining a
graceful method for dealing with discrete state parameters;
it is easy to compute a smooth heuristic for things like posi-
tions and distances, but not as easy for discrete parameters
like door states or line-of-sight information.

7 Acknowledgments
This work was supported by NSF Grant IIS-1409549.

The authors would like to thank Pasan Pow Julsaksrisakul
and Rikky Roy Koganti for their work developing the enemy
NPC models and other miscellaneous components used in
this project. The authors also thank Maximilian Kiefer for
his work crafting several scenarios used in testing and in the
figures of this paper.

References
Argall, B.; Chernova, S.; Veloso , M.; and Browning ,
B. 2009. A survey of robot learning from demonstration.
Robotics and Autonomous Systems 67:469–483.
Coman, A., and Muñoz-Avila, H. 2013. Automated gener-
ation of diverse npc-controlling fsms using nondeterminis-
tic planning techniques. In Proceedings of the Ninth AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment.
Finn, C.; Levine, S.; and Abbeel, P. 2016. Guided cost
learning: Deep inverse optimal control via policy optimiza-

35



tion. In Proceedings of the 33rd International Conference
on Machine Learning, volume 48.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths.
Systems Science and Cybernetics, IEEE Transactions on
4(2):100–107.
Isla, D. 2005. Handling complexity in the halo 2 ai. GDC.
Macindoe, O.; Kaelbling, L. P.; and Lozano-Perez, T. 2012.
Pomcop: Belief space planning for sidekicks in cooperative
games. In Proceedings, The Eighth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment.
Millington, I., and Funge, J. D. 2009. Artificial Intelligence
for Games 2nd Edition. Morgan Kaufmann.
Phillips, M.; Cohen, B.; Chitta, S.; and Likhachev, M. 2012.
E-graphs: Bootstrapping planning with experience graphs.
In Proceedings of Robotics: Science and Systems.
Phillips, M.; Hwang, V.; Chitta, S.; and Likhachev, M. 2013.
Learning to plan for constrained manipulation from demon-
strations. In Proceedings of Robotics: Science and Systems.
Sturtevant, N. R. 2013. Incorporating human relationships
into path planning. In Proceedings of the Ninth AAAI Con-
ference on Artificial Intelligence and Interactive Digital En-
tertainment.

36




