
Implementation of an Automated Fire Support Planner

Byron R. Harder, Imre Balogh, and Chris Darken
Naval Postgraduate School, MOVES Institute,
1 University Cir., Monterey, CA 93943, USA

Abstract

Although the employment of fire support is a staple of mod-
ern military doctrine, today’s constructive combat simula-
tions depend on meticulous human input to generate any ap-
propriate fire support plans. This status quo can be improved
through AI techniques. We implement models of tactical risk,
reduction of risk, and suppression effects in a representative
combat simulation, as well as a greedy fire support planning
algorithm that leverages these concepts. The algorithm is the-
oretically non-optimal, but testing shows that the resulting
fire support plans are effective at improving simulated combat
results and have some realistic emergent properties. The prac-
tical running time of the planner is less than 20 seconds for
a company-sized unit, including navigation graph setup. The
planner’s best-first approach scales naturally in more time-
constrained environments.

Introduction
Although the employment of fire support is a staple of mod-
ern military doctrine, today’s constructive combat simula-
tions depend on meticulous human input to generate any ap-
propriate fire support plans. For the scenario designer (level
designer), this involves the direct encoding of fire support
unit locations, waypoints, target selection, and firing times.
These static plans have several inherent problems: they are
time-consuming to generate, brittle to changes in the sup-
ported maneuver plan or unexpected events in the simula-
tion, and they depend entirely on the tactical skill and system
proficiency of the designer. Reactive fire support, in contrast,
often fails to make the most efficient use of resources.

Although combat involves a wide variety of situations
and missions, we limit our scope here to fire support plan-
ning in support of deliberate attack operations, where the
attacker has reasonable knowledge (military intelligence) of
enemy defensive positions and capabilities. Good informa-
tion about the enemy should allow the attacker to devise an
effective plan, but actually generating such a plan involves
some work. We assume that a maneuver plan, the set of
movement instructions for units whose purpose is to engage
and assault enemy positions at close range, is provided to us
as input. Our goal is to automatically generate a fire support

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

plan, a set of movement and firing orders for the remain-
ing available units that improves the achievement of mission
objectives. These units can include those designed for fire
support, such as machine gun squads and artillery batteries,
as well as maneuver-type units such as rifle squads that are
not fully tasked by the maneuver plan.

Our fire support plans rely on the doctrinal concept of sup-
pression. Suppression is the temporary reduction of a unit’s
combat power when it is subject to heavy fire. The idea is
that the noise, dust, fragmentation, overpressure, and result-
ing sense of danger from nearby munition impacts will cause
the targets to tuck into their protective positions, button up
viewports, and so on, losing some of their focus on target-
ing. Suppression is distinguished from attrition by the fact
that it does not need to cause any casualties. Maneuver-
ing forces depend on suppression, provided by supporting
units, to reduce the effects of enemy fire when they need
to cross exposed terrain. Prepared fighting positions can be
very effective at reducing the destructive effects of support
weapons—a likely reason to conduct an assault in the first
place—so suppression is often the best an attacker can get
from fire support. In many games and simulations, suppres-
sion is not expressly modeled, but left to the hide-or-fight
decision process of human players. Our interest is in more
strategic “constructive” applications where small unit ac-
tions are computer-controlled, so we have modeled suppres-
sion effects directly. Our work may be of interest to devel-
opers of real time strategy (RTS) or other combat-themed
games with suppression effects.

Related Work
This paper decribes an implementation of theoretical work
on automated fire support planning (Harder and Darken
2016), which provides a mathematical description of the
problem and offers an abstract greedy algorithm to address
it. Although it provides a basis, it does not include enough
detail to realize a functioning solution and does not have an
evaluation component. Here, we address the missing details
and test the theory.

The case for modeling suppression is originally made by
Hughes (1995), who points out that real-world casualties
are often much less than predicted by mathematical com-
bat models. He then extends the Lanchester (1916) model
to include a continuous suppression effect and shows that

Proceedings, The Twelfth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-16)

51

firepower effectiveness, not force size, becomes the squared
term. Our suppression model is more discrete and spatially-
dependent than this, but the supporting arguments are fun-
damental for the direction of our research.

Tactical pathfinding is foundational for the techniques de-
scribed below. Path planning while avoiding enemy visibil-
ity is described in the work of Rowe and Lewis (1989). Ad-
ditional techniques, such as accounting for target acquisition
time and observer mobility, are explained by van der Sterren
(2002). Cooperative pathfinding (Silver 2005) is a closely
related problem, useful for keeping units well-dispersed.
Some air attack planning research has used probabilistic risk
over a proposed flight plan (Secarea and Krikorian 1990;
Gu et al. 2012). More recently, the MECH framework is used
to reason about risk to a route based on parameters such as
visibility (Wang et al. 2015). Our work differs from these
approaches by allowing the risk calculation to be modified
by suppression effects.

Recently, RTS AI research has pursued combat outcome
prediction (Churchill and Buro 2013; Stanescu, Barriga, and
Buro 2015; Uriarte and Ontaon 2015). Our efforts are re-
lated, but Blizzard Entertainment’s StarCraft game, the cho-
sen platform for much of that research, does not have a
generic suppression model like the one we describe below.

We build upon a method for planning a single suppression
task (Straatman, van der Sterren, and Beij 2005), extending
to a collection of fire support providers and allowing move-
ment to new positions. Our approach aims to be more holis-
tic by reasoning about the reduction of risk to the friendly
force’s mission.

A Representative Combat Simulation
We have chosen to implement a new, relatively simple com-
bat simulation system in which to prototype our planner.
In general, production military simulations have large code
bases, and most do not allow source code access—at least
not to the wide research community. Our system is built
on a modern game engine (Unity3D). We note that behav-
ioral development in a game engine prior to implementation
in a simulation system is itself the focus of a separate re-
search effort (Miller 2016). In an effort to keep our work
relevant to military modeling and simulation, our combat
model is structurally similar to that of a production system
in use by the U.S. Army and Marine Corps, called COM-
BAT XXI (CXXI) (Balogh and Harless 2003). We call our
system WOMBAT XXI (WXXI).

Entity is our term for a modeled individual person (or ve-
hicle). Like many modern combat simulations, WXXI main-
tains a separate object for each entity. Similar to CXXI, it
includes a hierarchical unit organizational structure for both
the friendly (attacker) and enemy (defender) side, and it has
formation objects (collection classes) for moving entities
from one or more units together as a single aggregate group.
We have included a software class for operational tasks,
which provide instructions to units at scheduled times, and
embedded this in a hierarchical task network (HTN) similar
to that described by van der Sterren (2013). Although the
fire support planner does not use the full power of HTNs,

Figure 1: A graph node and entity

working in that structure helps in integrating with a maneu-
ver planner. We view this effort as complimentary to such a
tool. For the experimentation phase of our research, we run
WXXI scenarios in batch mode rather than realtime. Results
are invariant to the graphical frame rate because we have im-
plemented a discrete event simulation system through which
all substantive combat events must pass.

Our entities sense and engage targets individually. We in-
clude a mode that forces them to target members of a specific
enemy unit, which is necessary for executing a fire support
mission reliably. Entities have severely restricted weapon
ranges while moving, as in the real world. They may be
standing, prone, or dug in, which provides hit protection of
0.0, 0.9, and 0.999 respectively. This protection is ignored at
extremely close range (configured to 10m). All enemy de-
fenders are dug in, so the attackers have quite a challenge in
surviving an assault, even with the 3:1 odds we have set up
(according to common military wisdom for an attack). We
have also implemented an aggressive movement mode for
the assault phase, which helps attackers reach close enough
range to dislodge the defenders. The intent of this model is
to accentuate the tradeoffs between attacking and defending:
tactical maneuverability versus efficiency of combat power.

Our terrain is based on real world elevation data with
coarse polygons at a resolution similar to that of the mili-
tary simulation systems we have in mind (triangles are 31m
on the short edges). The planning algorithm is agnostic to
the terrain resolution.

Modeling Risk and Suppression
A fundamental component of the planning system is the
annotated mobility graph, our specialized navigation mesh.
Our scenario maps tend to have undulating terrain, which af-
fects line of sight determination. Each node of the graph is a
volume bounded below by a triangle of the terrain skin and
above by an equivalent triangle shifted up by the height of
an entity (Fig. 1). The latter is called the upper triangle. Be-
fore any planning is done, we annotate each node with refer-
ences to the defending entities that can see into its volume.
Defenders are assumed to remain in place—a fundamental
assumption for the deliberate attack, and a reasonable one
(we claim) since the 0.999 protection bonus is lost by any
entity that moves from its dug-in position.

Although we use entity-level visibility to annotate the mo-
bility graph, we reason at the small unit level (groups of 2-40
entities organized by the scenario designer) for most of the
planning work. Whenever a defending entity has visibility
into a graph node, we mark that node with a reference to
that entity’s unit. We also mark the defending units that can
be targeted from each node. A unit is considered potentially

52

targetable from a node if all of its members can be targeted
from the corners and geometric centroid (average of the cor-
ners) of the node’s upper triangle.

The navigation penalty of each node n is proportional to
the expected losses to a group of friendly entities located
inside it for the maximum time to traverse it. We make this
calculation using ground truth: the same probability of hit
and kill functions that the simulation will use to adjudicate
combat results. Let E and F (for enemy and friendly) be the
sets of defending and attacking units, and let τf,z represent
the maximum time for a unit f ∈ F to traverse the maximum
length edge (line segment) z of n. We define ψ : {E × F ×
N} → R as the primitive risk value function (N is the node
set of the mobility graph), modeled as

ψ(e, f, n) = L(e, n)|e|ρepHK(e, f, d(e,~c(n)))τf,z. (1)

L(e, n) = 1 if e is in the visibility annotation of n (and 0
otherwise), |e| is the member count of e, ρe is e’s rate of
fire per member, and pHK gives the probability of hit and
kill for a member of e firing at a member of f at the dis-
tance to ~c(n), the centroid of n’s upper triangle. In short, ψ
gives the expected number of kills e will inflict on f in τf,z
seconds under the assumption that e is at full strength and
never runs out of targets. The traversal (g) cost for a par-
tial path π = (n1, ..., nk) in the tactical pathfinding search
(see van der Sterren 2002) is a linear combination of distance
and Σki=1ψ(e, f, ni); the balance between the edge and node
cost is set to heavily favor concealment over speed. Once a
node path is found, we apply postprocessing1 to get more
direct routes without changing the node sequence. We then
compute the location and time at which the unit’s formation
leader will transition between nodes or cross a discontinu-
ity in pHK , such as maximum weapon range, for any rel-
evant defending unit. The route can now be described as a
sequence of line segments mapped to time intervals.

We use a four-tiered data structure to represent the tactical
risk of a planned operational task. Starting from the highest
tier, a risk set is simply a set of risk intervals. A risk interval
r = (e, f, ta, tb, s) represents the risk presented by defend-
ing unit e to attacking unit f during time interval [ta, tb],
and contains a nonempty indexed set of risk subregions
s = {s1, s2, ...} = {(t1, t2, z1), (t2, t3, z2), ...} such that
{t1, t2, t3, ...} exactly partitions time interval [ta, tb]. Each
component zi = {zi,1, zi,2, ...} = {[ti,1, ti,2], [ti,2, ti,3], ...}
is an indexed set of risk segments further partitioning its sub-
region’s time interval [ti, ti+1]. When a risk interval is first
created, its time interval [ta, tb] corresponds to an unbroken
period of time that e can target f based on the annotations
of nodes in a route sequence. A new risk interval has just
one subregion, whose segment endpoints (and times) are de-
termined by the node and weapon range crossing points de-
scribed above. Each operational task in the maneuver plan is
assigned a risk interval set containing all risk intervals for its
routes and static positions. This set can contain risk intervals
from several different defending units, which may overlap in

1We use radius and funnel modifiers; see http://arongranberg.
com/astar/docs/modifiers.php

time. The risk set for the entire plan is the union of all risk
intervals of its component tasks.

We produce a numerical score for each risk interval in a
manner similar to the primitive risk function for pathfinding
edges (pathfinding computations are discarded because path
modifiers make changes to the route). The base risk value
Ψ(zi,j) of a segment is the integral of the instantaneous risk
over its time interval [ti,j , ti,j+1] of duration τ . Assuming
the probability of kill per shot for a pair (e, f) is a function
only of target range at any time t, denoted d(e, f, t), we need
to compute the formula

Ψ(zi,j) = |e|ρe
∫ τ

0

pHK(e, f, d(e, f, t))dt. (2)

Since we subdivided segments at every discontinuity, we do
not need a selector function such as L(e, n) from Eq. 1. We
instead derive a function Ψe,f,i(z), 1 < i < k, for each of
the k continuous intervals of pHK . Alternatively, we could
use an estimator function like ψ, but Ψ prevents error accrual
when we have to further subdivide a segment (see below)
and partition its risk value.

We overload the symbol Ψ(•) to describe the base risk
values of risk subregions, risk intervals, and risk sets. Each
is simply the sum of the base risk values of its components.

Lanchester equations are known to give the expected
value of a stochastic death process with certain properties
(Billard 1979). One interpretation of our approach is that
we are using spatial Lanchester-like equations to generate
expected values for planning. Our equations are one-sided
because they do not include risk from the enemy’s point of
view. It is common to use the two-sided approach to pre-
dict when enemy units will be destroyed (for example, see
Stanescu, Barriga, and Buro (2015)), but our defenders are
all but invulnerable until assaulted.

Often, a single enemy unit will have multiple potential
targets during a time interval. In the current version, we deal
with this by using the defending unit’s full combat power
for all possible targets’ Ψ calculations. Although this is not
correct in the sense that a unit cannot apply its full com-
bat power to more than one simultaneous target during the
simulation, it is the computationally simplest approach, and
does well enough as a first approximation. The result of this
choice is that enemy units with many potential targets are
heavily weighted for targeting, a reasonable tactic.

Our suppression model is a three-state system. The simu-
lation maintains for each entity a suppression weight value
that increases each time it is fired on but not killed. Suppres-
sion is also applied to entities near the intended target by an
amount that decreases with distance. The weight per shot is
stochastic and decreases with target range. The suppression
weight of each shot only lasts for a fixed amount of “cool-
off” time. When an entity’s suppression weight total reaches
certain threshold values, it transitions from the unsuppressed
state to a partially, and then fully suppressed state, where
its rate of fire and probability of hit are penalized (similar
to Hughes (1995)). We do not claim this to be a validated
psychological model, but it approximates the doctrinal def-
inition of suppression (Department of Defense 2015). The
three-state model is analogous to that of CXXI.

53

Consider a risk interval r = (e, f1, ta, tb, s). We define a
fire support task as w = (f2,~c, e, t1, t2, t3), where attacking
unit f2 moves to position ~c during [t1, t2] and fires on e dur-
ing [t2, t3]. If [ta, tb] and [t2, t3] overlap, then the effective-
ness of e is reduced by suppression during the overlapping
interval. In Lanchester terminology, the efficiency coeffi-
cient of e should be lowered during this time. As a first step,
we subdivide the subregions (and segments) of r at times t2
and t3 where they fall within the open interval (ta, tb), re-
computing base risk values for broken segments. Let si be
the subregion of r bounded by [t2, t3]. We use a residual risk
function Φ(si,W) to compute the remaining risk of si after
the tasks ofW have been applied. For the current system, we
use the simplest possible Φ: a constant coefficient β for each
affecting task. In other words, Φ(si, {w}) = βΨ(si). If k
tasks inW are relevant to si, we have Φ(si,W) = βkΨ(si).
As with Ψ, we overload Φ(•,W) for risk intervals and risk
sets as the sum of residual risk of their components.

The score of a fire support task w is the total reduction
of risk over all affected risk intervals in the partial plan W ,
termed ∆w(W). However, it is entirely possible for a fire
support task to result in a net increase in the total risk of
W (a negative ∆ score) because it can introduce new risk
intervals that might not be outweighed by its benefits.

Our risk values and suppression effects are numerical rep-
resentations of two different underlying phenomena. A risk
value, which represents expected losses during some opera-
tional task, is allowed to exceed the number of entities in
the unit. So-called overkill means that we expect to lose
the whole unit before it completes the task. When the risk
value is less than the number of entities, we expect some
portion of the unit to survive the task. Contrarily, we do not
allow suppression to bring the risk value down to 0 or less
(1 > β > 0). If we have an enemy unit threatening a route,
then there is always some risk that we will take casualties.

The Fire Support Planner
The fire support planner takes as input a partial planW0 con-
sisting of a fixed set of movement orders for some of the
friendly units—in other words, the maneuver plan. Included
with W0 is the set A of availability tasks, or time intervals
during which fire support units may be tasked. The planner’s
job is to minimize the tactical risk of the partial plan by re-
placing availability tasks with fire support tasks. Algorithm
1 outlines the procedure; for greater detail see Harder and
Darken (2016). P is the set of potential fire support tasks
that have not been chosen yet, and R is the risk interval set
of developing plan W . Initially, W = W0.

We create a potential task for each fire support resource
against each risk interval that it can possibly affect, includ-
ing (if necessary) movement to a new firing position. We
only do the minimum pathfinding for each resource to en-
gage each enemy unit, so the positions found are dependent
on the starting position of the availability task. The planner
works not forward or backward in time, but best-first, always
picking the potential task w with the best score. The second-
to-last line of the algorithm lets units provide mutual support
by considering risk intervals of other fire supporters.

Algorithm 1 PlanFireSupport
for all a ∈ A and r ∈ R do

Find a position ~c for a’s unit f to engage r’s unit e
Add a potential task w = (f,~c, e, t1, t2, t3) to P

while Φ(R,W) > goalScore and A 6= ∅ do
Choose w ∈ P with the best score ∆w(W ∪ {w})
Add w to W
Remove from A the task a used to generate w
Remove from P all tasks generated from a
∀w′ ∈ P , recompute ∆w′(W)
Add unused portions a1, a2 of a to A
Generate new task sets P1, P2 from a1, a2
Generate new task set P3 for w’s new risk intervals
P ← P ∪ P1 ∪ P2 ∪ P3

We store mappings from fire support tasks to affected risk
intervals and from defending units to risk intervals. This im-
proves efficiency by only considering the risk intervals that
each task can affect. We also use the subregion data elements
to store and reuse the results of computations.

It would be wasteful to target defending units that have
been successfully assaulted, so we assume at the outset that
all assaults will succeed and delete risk subregions result-
ing from defenders after their planned assault time. This as-
sumption is not always valid, but it avoids useless targeting.

Since fire support units may move to new positions and
planning is best-first (not forward or backward), it is of-
ten the case that a potential task needs to (potentially) re-
place the route of the unit’s subsequent fire support task.
For example, if f is planning to move from an availability
task a at position ~c0 to another position ~c2, and the planner
considers replacing a with potential task w′ at ~c1, the orig-
inal route to ~c2 is now conditionally invalid. To calculate
∆w′(W ∪ {w′}), the planner must determine the new route,
compute its associated risk intervals (with values reduced by
W ∪{w′}), and ignore the risk intervals of the original route
~c0 → ~c2. We store this information with potential task w′.

A further complication would arise from assigning risk
intervals to availability tasks. The best approach is to ignore
the “risk” of these ephemeral tasks, since they will mostly be
replaced with fire support tasks. We would not want to plan
a fire support task against an availability task’s risk interval,
only to have it soon disappear. A similar issue for replaced
routes is less impactful because part of the new route is often
still supported by the existing tasks.

Experimental Analysis
We evaluate the efficiency and performance of the fire sup-
port planner using three terrain maps:

A: Cayucos Creek, CA: 2 km2, 8192 tris
B: Palo Alto, VA: 4 km2, 32,768 tris (Fig. 2)
C: Buckeye Peak, CO: 8 km2, 131,072 tris

Our combat unit types are:

• Observation post: 2 entities with rifles (range 550m)
• Fire team: 4 entities with rifles
• Rifle squad: 3 fire teams and one leader

54

Figure 2: Terrain B. Palo Alto, VA: 4 km2, 32,768 tris

• Machine gun (MG) squad: 7 entities with 2 machine guns
(range 1800m) and 5 rifles

• Infantry platoon (Plt): 3 rifle squads and 2 MG squads
• Infantry company (Co): 3 Plt (rifle squads only) and 3 MG

squads
• Infantry battalion (Bn): 3 Co plus 3 more MG squads

Each experimental setup consists of an “Attacker vs De-
fender” combat unit type pairing and a map (see the Sce-
nario column of Table 1), based on a 3:1 attacker force size
advantage. Defenders include one observation post (three in
scenario #6). For each setup, we place the defending en-
tities by hand around an arbitrary terrain feature that the
attackers will attempt to seize. We assign maneuver tasks
to rifle squads by manually specifying attack positions and
objectives; our tools do the intermediate path-planning. We
choose positions that, together, resemble a higher-echelon
form of maneuver such as a frontal or flanking attack. Each
unit includes a switch to make it available to the fire sup-
port planner; we enable this for all attacking squads. MG
squads are available for the duration of the plan, and rifle
squads become available after their last maneuver tasks. The
fire support planner receives no direct human input; it adds
fire support tasks to the plan using its risk intervals, avail-
ability tasks, and the annotated mobility graph (inclusive of
defender positions). It runs to completion before the simu-
lation begins; we do not perform any replanning for this ex-
periment. We set the minimum suppression time to 60 (sim-
ulated) seconds; shorter tasks are ignored. We run each setup
10 times with the fire support planner enabled and 10 times
disabled. In the latter mode, MG squads are provided one
manually-determined firing position from which they simply
engage the closest available target. For the larger scenarios,
we run additional replications with limits on the number of
iterations through the planning loop (see below). In Table 1,
“best” means the number of iterations that had the highest
Φ(R,W) score.

The defenders’ locations, protection, rate of fire, and ac-
curacy is tuned such than an unsupported attack usually re-
sults in catastrophe. The fire support planner’s key to suc-
cess is suppressing the defenders’ fire enough to allow the
maneuver units to get in amongst them; at a range of 10m or
less, they fall quickly. The planner achieves this quite well
for a majority of the objective areas.

Mobility
Graph
Prep

FER

Forces Map Avg Time
(sec)

Avg Time
(sec)

Path-
finding Iterations Manual Auto-

mated Δ
1 Plt vs Squad A 0.85 0.22 44% 7 40.0% 66.7% +3.90
2 Plt vs Squad B 1.28 0.53 46% 6 36.7% 76.7% +0.72
3 Plt vs Squad C 3.57 0.56 85% 4 30.0% 87.5% +6.71

3.89 39% Best: 21 68.9% +1.29
5.10 41% Max: 31 74.4% +2.01

10.43 90% Best: 13 77.0% +2.21
11.16 87% Max: 18 75.0% +2.17
68.82 54% Fast: 12 36.3% +0.18

200.17 65% Best: 100 79.3% +2.04
362.51 53% Max: 236 83.3% +2.10

33.4% 76.0% +5.35

Scenario Fire Support Planning Mission
Accomplishment

4 Co vs Plt B 2.80 30.0%

All scenarios ("Best" number of iterations where applicable)

5 Co vs Plt C 7.45

6 Bn vs Co C 20.12 17.8%

46.0%

Table 1: Quantitative results

Quantitative Results

We profile the fire support planner for each experimental
setup in Unity3D’s Editor mode. Each replication is run on a
single 2.7 GHz Intel Xeon CPU core with 1866 MHz DDR3
memory. Table 1 shows the graph preparation (scanning plus
annotation) and fire support planning time separately since
the results of those steps can be reused in different situa-
tions. Pathfinding comprises 40-90% of the planning effort;
the rest involves generation, application, and updating of po-
tential fire support tasks. The planner completes in less than
0.6 seconds (not counting graph preparation) for the Plt. sce-
narios and 12 seconds for the largest Co. scenario. The most
intense scenario (#6) requires over 6 minutes for the most
exhaustive processing, but can achieve positive results with
about a minute of planning.

We measure the algorithm’s performance against the sim-
ple manually-generated plans by mission accomplishment:
the percentage of 50-100m radius objectives seized. Each
objective is considered seized only if there are no defend-
ers remaining within it at the end of the run. We also show
attrition results by the difference in fractional exchange ra-
tio (FER), a traditional operations analysis measure (Helm-
bold and Kahn 1986). FERY is given by XE/XF , where
XE (XF) is the fraction ofE’s (F ’s) combat power that was
destroyed during configuration Y . ∆ FER = FERA - FERM ,
where A is a configuration with the planner enabled and M
the manual configuration for the same scenario. The planner
outperforms the simple, manual plan for both metrics and
all planner configurations. All results are statistically signif-
icant at α = 0.05. A multi-factor ANOVA and parameter
estimate for the effects of force pairing, map, and manual
vs. automated planning confirms the same for both metrics
(P < 0.0001).

Clearly, the planner’s running time does not scale linearly
with input size. Our analysis (not shown here) indicates a
polynomial upper boundO((|F |+|E|)5|N |3). However, the
best-first design of the planner is a nice feature for real-time
applications. If we cut off the planner before it exhausts all
potential tasks, we still get an executable plan with the most
important tasks—as well as ∆ scores can determine. We also
note that the planner can generate poorly-performing tasks,

55

Figure 3: Maneuver plan input to the fire support planner

and if left unchecked will add them when all useful tasks
have been exhausted. This may explain the dip in perfor-
mance for scenario #5 (“Max” iterations). Sometimes tasks
that look bad initially can do well in combination, but that
tends not to happen in later iterations. The planner could
be augmented with a single backtracking point to return the
best-scoring plan it produced during processing.

Qualitative Results
We illustrate some of the interesting properties of generated
plans with the help of an example. The maneuver plan shown
in Fig. 3 was input to the planner, resulting in the fire support
plan in Fig. 4 and 5 (we culled some of the actual output’s 21
tasks for readability). The numbers shown in Fig. 4 represent
the order in which they were added to the plan, not the order
of execution.

Suppressing enemy units while friendly units are exposed
is the critical fire support objective. By comparing the timing
and targets of assaults and fire support tasks of the example,
the reader can gain a sense of how this works—as well as
how difficult a task it is for a human in all but the simplest
scenarios.(The simulation environment includes detailed 3D
terrain, which is only crudely represented here.) If we do not
have enough assets to suppress everything, which targets are
most important and when? The computer can reason about
this much faster than a human could, although given enough
time we believe a human could find a better plan.

An advantage of a planning-based approach over a reac-
tive one is that we can improve coordination and mutual sup-
port. This is particularly important when a fire support unit
needs to change positions: it must depart early enough to
begin suppression before the threat manifests. Our approach
relieves a player or designer of this calculation. It does not,
however, make any changes to the maneuver plan.

In a typical human-planned assault, the suppressing unit
begins by firing on the defender that most threatens the ad-

Figure 4: Fire support plan generated by the planner

vance. When friendly forces get close to the initial targets,
the suppressing unit shifts to targets ahead of the advance
and finally lifts its fire—that is, stops shooting—when the
assault reaches the secondary targets. Since the risk inter-
vals for route segments close to the objective have greater
risk values (due to the defenders’ shorter targeting range to
the assaulting unit), the targets just ahead of the assaulting
unit tend to be chosen for suppression. Since we did not di-
rectly encode shifting and lifting logic, we view this result as
a correct emergent property (Ilachinsky (2004) makes an ar-
gument for emergence as partial validation). If some large,
nearby unit that is not on the objective presents a numeri-
cally greater risk, the planner will target that threat first—a
correct decision, but one that a human designer might miss.
In the example, we can see Unit F shifting from task 8 to 12
and Unit G shifting from task 6 to 7.

Another interesting property emerges when the maneu-
ver plan calls for objectives to be attacked in sequence. In
real world plans, it is common for the first assaulting unit to
support the second assault once it has secured the first ob-
jective. Our planner usually does exactly that. Since we only
find the minimum set of firing positions, the first unit will
use its own objective as a firing position if possible, such as
Unit B’s task 0. Unit A’s task 11 is similar, but the assigned
squad has to move to a new position to gain line of sight.

We are also pleased to note that the observation post does
not distract the planner from more important targets at crit-
ical times. With only 2 entities, it is only worth suppressing
just as C closes to its objective.

Conclusions and Future Work
We described our combat simulation environment and our
approach to modeling tactical risk and risk reduction by sup-
pression effects. We then presented an implementation of a
fire support planner module, along with some unique con-
siderations and insights that were revealed during the effort.

56

Figure 5: Schedule view of the fire support plan

These include a minimal position-finding approach, compu-
tational efficiency techniques, route replacement for best-
first planning with its impact on potential task scores, and
how to deal with the risk of an availability task. We de-
scribed our experimental setup, which scaled up in terrain
size and unit echelons, and we pointed out some interesting
and realistic behavior that emerged in the output plans. The
planner prototype was shown to run fast enough to support
use as a scenario development tool, and even as a run-time
dynamic function for some scenarios. Larger scenarios may
be supportable by limiting processing time, which is natu-
rally supported by the best-first planner design.

In future work, we plan to address known issues such as
“unsafe” directions of fire, non-ideal firing position choices,
and routes that stray beyond the forward line of troops. We
hope to deal with some of these issues with tradeoffs be-
tween pathfinding depth and size of the potential firing posi-
tion set. Above and beyond fire support planning, we intend
to automate more of the maneuver planning component. We
believe that tools such as these can fundamentally change
the way that combat simulations are used in support of anal-
ysis and training. When scenario designers can rely on au-
tomation to generate reasonable tactical plans, they can raise
the focus of their efforts by at least one level of abstraction.
Additionally, we hope to see an increase in collaboration
between the game AI and military simulation community,
whose developments are often complementary.

Acknowledgments
Travel for this effort was funded by the Office of Naval Re-
search, Code 30.

References
Balogh, I., and Harless, G. 2003. An overview of the COM-
BAT XXI simulation model: A model for the analysis of land
and amphibious warfare. In Proceedings of the 71st Military
Operations Research Society Symposium.
Billard, L. 1979. Stochastic lanchester-type combat models i.
Technical Report NPS55-79-022, Naval Postgraduate School.
Churchill, D., and Buro, M. 2013. Portfolio greedy search and
simulation for large-scale combat in StarCraft. In Proceedings of
the IEEE Conference on Computational Intelligence in Games.

Department of Defense. 2015. Joint Publication 1-02: Depart-
ment of Defense Dictionary of Military and Associated Terms.
Gu, X.; Chen, J.; Li, J.; and Liu, H. 2012. Genetic vector or-
dinal optimization algorithm based on RSM for UCAV attack
planning. In 2nd International Conference on Computer Sci-
ence and Network Technology, 1973–1977.
Harder, B. R., and Darken, C. 2016. Automated fire support
planning for combat simulations. In Proceedings of the Inter-
national Conference on Social Computing, Behavioral-Cultural
Modeling, & Prediction and Behavior Representation in Mod-
eling and Simulation. http://sbp-brims.org/2016/proceedings/
IN 7.pdf.
Helmbold, R. L., and Kahn, A. A. 1986. Combat History Analy-
sis Study Effort (CHASE): Progress Report for the Period August
1984-June 1985. National Technical Information Service.
Hughes, W. P. 1995. Two effects of firepower: Attrition and
suppression. Military Operations Research 1(3):27–35.
Ilachinsky, A. 2004. Artificial War: Multiagent-Based Simula-
tion of Combat. New Jersey: World Scientific Publishing Co.
Pte. Ltd.
Lanchester, F. W. 1916. Aircraft in warfare: The dawn of the
fourth arm. London: Constable and Company Limited.
Miller, D. 2016. Hierarchical task network prototyping in
Unity3D. Master’s thesis, Naval Postgraduate School.
Rowe, N. C., and Lewis, D. H. 1989. Vehicle path-planning in
three dimensions using optics analogs for optimizing visibility
and energy cost. In Proceedings of the NASA Conference on
Space Telerobotics.
Secarea, V. V., and Krikorian, H. F. 1990. Adaptive multiple
target attack planning in dynamically changing hostile environ-
ments. In Proceedings of the IEEE 1990 National Aerospace
and Electronics Conference.
Silver, D. 2005. Cooperative pathfinding. In Proceedings of
the First Artificial Intelligence and Interactive Digital Enter-
tainment Conference, 117–122.
Stanescu, M.; Barriga, N.; and Buro, M. 2015. Using Lanchester
attrition laws for combat prediction in StarCraft. In Proceedings
of the Eleventh AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, 86–92.
Straatman, R.; van der Sterren, W.; and Beij, A. 2005. Killzone’s
AI: dynamic procedural combat tactics. In Proceedings of the
2005 Game Developers Conference.
Uriarte, A., and Ontaon, S. 2015. Automatic learning of com-
bat models for RTS games. In Proceedings of the Eleventh AAAI
Conference on Artificial Intelligence and Interactive Digital En-
tertainment, 212–218.
van der Sterren, W. 2002. Tactical Path-Finding with A*.
Boston, MA: Course Technology. 294–306.
van der Sterren, W. 2013. Hierarchical Plan-Space Planning for
Multi-unit Combat Maneuvers. Game AI Pro: Collected Wis-
dom of Game AI Professionals. CRC Press. chapter 13, 169–
183.
Wang, X.; George, S.; Lin, J.; and Liu, J.-C. 2015. Quantify-
ing tactical risk: A framework for statistical classification using
MECH. In Proceedings of the 8th International Conference of
Social Computing, Behavioral-Cultural Modeling, and Predic-
tion, 446–451.

57

