
Learning From Stories: Using Crowdsourced
Narratives to Train Virtual Agents

Brent Harrison and Mark O. Riedl
School of Interactive Computing, Georgia Institute of Technology

Atlanta, Georgia, USA
{brent.harrison, riedl}@cc.gatech.edu

Abstract

In this work we introduce Quixote, a system that makes
programming virtual agents more accessible to non-
programmers by enabling these agents to be trained
using the sociocultural knowledge present in stories.
Quixote uses a corpus of exemplar stories to automat-
ically engineer a reward function that is used to train
virtual agents to exhibit desired behaviors using rein-
forcement learning. We show the effectiveness of our
system with a case study conducted in a virtual envi-
ronment called Robbery World that simulates a bank
robbery scenario. In this case study, we use a corpus of
stories crowdsourced from Amazon Mechanical Turk to
guide learning. We evaluate Quixote under a variety of
different conditions to determine the overall effective-
ness of the system in Robbery World.

Introduction
Video games are a medium in which virtual agents must co-
ordinate their behavior with people in many different ways.
These agents can serve as enemies that the player must inter-
act with to overcome, or they can serve as companions meant
to instruct or aid the player in some way. They can also serve
as background characters meant to make a game feel more
immersive through believable interactions. Despite their im-
portance, creating these agents can prove difficult without
a non-trivial amount of programming knowledge. Even us-
ing a self-contained machine learning tool to train agents
requires some amount of programming/computer science
knowledge, which makes it difficult for non-programmers
to perform this task. In this work, we make agent training
more accessible to non-programmers by enabling them to
train virtual agents through natural communication.

Methods such as apprenticeship learning (Abbeel and Ng
2004) or learning from demonstration (LfD) (Argall et al.
2009) seek to make agent and robot training more acces-
sible to non-programmers by allowing people to provide a
corpus of exemplar demonstrations of optimal behavior to
aid in learning. This improves on upon traditional learning-
based approaches as providing these demonstrations typi-
cally does not require extensive programming knowledge.
These demonstrations, however, typically come in the form

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of complete trajectories in the environment that the agent or
robot will be acting in, thus making it a requirement that au-
thors have prior knowledge of the agent’s environment and
how it works.

In this work we introduce the idea of using a natural
source of human communication to train machine learning
algorithms: stories. Our system, which we call Quixote, uses
stories told by humans to train virtual agents to exhibit spe-
cific behaviors. This task is similar to that of LfD algorithms
except that our technique learns from stories told about a
task rather than from explicit demonstrations of said task.
The primary difference between stories and demonstrations,
as well as the primary challenge in dealing with stories,
is that stories are more unconstrained than demonstrations
since authors have no prior knowledge about specifics of the
environment. Also, many different stories could all correctly
describe the same task, or authors could skip steps that they
feel are obvious or do not need mentioning. Further, story-
telling is non-Markovian in that some events that occur are
influenced by events that happened far in the past. This can
make it especially difficult to utilize story information for
training since most agent environments are assumed to be
Markovian.

Quixote addresses many of these issues by first cleaning
an initial story corpus using the technique outlined by Li et
al. (2013). This allows for Quixote to reconcile the exemplar
stories with each other and fill in any gaps that may exist,
which makes learning a more manageable task. From there,
Quixote uses this new corpus to define the space of accept-
able behaviors that is then turned into a reward function that
can be used to train reinforcement learning agents.

To explore the effectiveness of our system, we present a
case study in which we use crowdsourced narratives to train
a reinforcement learning agent in Robbery World, a virtual
environment that is meant to simulate a bank robbery sce-
nario. In this case study, we show how a reinforcement learn-
ing agent learning agent would perform in Robbery World
without story guidance and then compare this behavior to
the behavior produced by Quixote under various conditions.

Related Work
Recently there has been an increased focus on interactive
machine learning, which seeks to augment machine learn-

Proceedings, The Twelfth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-16)

183



Figure 1: The Quixote system workflow.

ing algorithms with the ability to learn from human feedback
or demonstrations directly. The type of interactive machine
learning that is most closely related to our own work is In-
verse Reinforcement Learning (IRL). IRL attempts to learn
the reward function that best describes a corpus of policy ex-
amples (Ng and Russell 2000) or policy trajectories (Abbeel
and Ng 2004). Early work in this area required either com-
plete policy examples or complete trajectories in order to
learn. This requirement was relaxed through the introduc-
tion of techniques such as Bayesian IRL (Ramachandran and
Amir 2007) and maximum entropy IRL (Ziebart et al. 2008).
There has also been work on relaxing the assumption that all
example policies or trajectories are correct (Grollman and
Billard 2011). Researchers have also sought to derive behav-
iors from natural language commands (Lignos et al. 2015;
MacGlashan et al. 2015).

The problem that we solve with Quixote is fundamentally
different than the problem posed in IRL. While we are at-
tempting to derive reward functions based on a corpus of ex-
amples, we make different assumptions about what these ex-
amples represent, which leads to a different understanding of
how to approach the problem. In this work, we assume that
our example stories define a space of believable behaviors.
Rather than design a reward function that can reproduce all
of these examples, we are trying to create a reward function
that produces behaviors that fall within this space.

There is also a branch of research that explores how hu-
man feedback about agent learning can be integrated into
agent training. These systems use human reward signals to
shape agent behavior (Knox and Stone 2009; Judah et al.
2010; Loftin et al. 2014). Our work differs from this work
in that we do not seek to dynamically shape agent behavior.
Quixote aims to derive what correct behavior is by looking
at examples of desired behavior.

Reinforcement Learning Background
The Quixote system uses a set of exemplar stories to con-
struct reward functions that can be used to train rein-
forcement learning agents. Reinforcement learning (Sutton
and Barto 1998) is a technique that is used to solve a
Markov decision process (MDP). A MDP is a tuple M =<
S,A, T,R, γ > where S is the set of possible world states,
A is the set of possible actions, T is a transition function T :
S × A → P (S), R is the reward function R : S × A → R,
and γ is a discount factor 0 ≤ γ ≤ 1.

Reinforcement learning first learns a policy π : S → A,
which defines which actions should be taken in each state.
In this work, we use Q-learning (Watkins and Dayan 1992),
which uses a Q-valueQ(s, a) to estimate the expected future
discounted rewards for taking action a in state s. Reinforce-

ment learning allows the agent to fill in any gaps that may
exist in the stories due to authors not having prior knowl-
edge about the agent’s environment. Thus, the agent is able
to take several actions, should it need to, in between plot
points. Reinforcement learning also allows the agent to de-
viate from the stories it has been told if doing so will allow
it to more efficiently reach a goal state.

The Quixote System
Quixote learns to coordinate agent behaviors in order to en-
act a scenario in uncertain environments which are possibly
inhabited by a human. A high level flowchart of the Quixote
system can be seen in Figure 1. The Quixote system works
by first taking in a set of exemplar natural language stories
describing the same task and pre-processing them to filter
out noise and determine the possible ways that the task can
be completed. The resulting cleaned story corpus is then
converted into a trajectory tree which encodes every possi-
ble story believed, with confidence, to exist. This tree is then
used to engineer a reward function which is used to train a
reinforcement learning agent to exhibit the desired behav-
iors. In this section, we will describe each of these steps in
greater detail.

Pre-processing
Initial input into the Quixote system is a set of exemplar
stories written in natural language about a given task. Since
human authors created these stories, it is likely that this ini-
tial corpus contains some amount of noise. For example, this
set of exemplars may contain different stories that still cor-
rectly describe the same scenario, or some authors may skip
events in the story or use different language to convey the
same event. Some of these stories can also contain errors
or events that do not relate to the scenario being described,
or they could contain actions that do not exist in the virtual
world that the agents will inhabit. This is why Quixote can-
not use this initial corpus to train agents directly.

To mitigate these problems, Quixote first pre-processes
the initial story corpus by automatically cleaning the dataset,
and then determining which story events correspond to la-
bels of the actions that agents can take in the virtual world
using natural language processing techniques.

Automatic Story Corpus Cleaning As mentioned previ-
ously, the stories contained in the initial training corpus are
likely to be noisy and variable. Multiple different stories
could all correctly describe the same event, plot events could
be skipped all together, and the stories could contain errors.
Thus, the first part of the preprocessing step involves using

184



the approach proposed by Li et al. (2013) to generate a clean
set of stories.

This technique first involves clustering natural language
sentences according to semantic similarity. These clusters
are referred to as events. If any sentences do not cluster into
a event then they are discarded. This way the technique helps
to reduce the noise caused by errors or variable language in
the corpus of exemplars. Second, this technique learns how
events can be ordered as well as different ways in which
the story can be told. Thus, noise as a result of misordering
events is filtered out. To avoid confusion between the initial,
human-authored story corpus and this cleaned story corpus,
we will refer to the clean story corpus as a plot corpus and
members of this corpus as plots for the remainder of this
paper. Whereas stories in the original corpus are made up of
sentences, plots consist of plot events which are, themselves,
clusters of sentences.

Action Correspondence One of the primary contributions
of Quixote is the ability to train virtual agents with little prior
knowledge of the specifics of their environment. Since au-
thors do not possess this prior knowledge, it is likely that
some of the plot events contained in the story corpus will
not exist in the agent’s environment and vice-versa. In this
step, Quixote attempts to identify correspondence between
known plot events and some subset of the actions available
to the agent. To do this, Quixote calculates the similarity be-
tween each event cluster and a natural language action label
describing each action available in the environment.

In order to calculate similarity, each plot event sentence
and each action label are translated into vectors. These sen-
tence vectors are created by first converting each word in
each sentence or action label into a word2vec word vec-
tor (Mikolov et al. 2013) and then calculating their sum.
Then Quixote measures similarity by calculating the follow-
ing:

sim(E,A) =
1

nE

∑
e∈E

cos(e,A), (1)

where E is an event cluster, A is an action label vector,
nE is the number of sentences contained in a plot event E,
e is an individual event sentence vector, and cos(e, a) is the
cosine similarity between an event sentence vector e and an
the action label vector A. In other words, we calculate simi-
larity between a plot event and an action label by calculating
the similarity between each sentence in a plot event and an
action label and then take the average of those values.

To determine correspondence, Quixote uses a similarity
threshold. Any actions that are above the similarity threshold
for a given plot event are said to correspond with the plot
event in question.

The final step of this process is to remove from every plot
all plot events that do not correspond to an environment ac-
tion. For each story in the training corpus, plot events that
do not correspond to any environment actions are removed.

Trajectory Tree Creation
After pre-processing, the Quixote system uses the resulting
plot corpus to derive a trajectory tree. This is done to enable

Figure 2: A set of input plots and the resulting trajectory
tree.

the agent to track its progress through a plot. Without this,
the agent becomes susceptible to repeatable actions. In sto-
ries it is not uncommon for authors to talk about events that
are normally repeatable (such as entering or exiting build-
ings). If the agent cannot monitor its progress through the
story and it is rewarded for such actions, then it is possible
that it will repeat such actions infinitely (in order to maxi-
mize reward).

A trajectory tree is a structure that encodes each plot in
the plot corpus. A traversal of the tree from root to leaf is a
unique plot that exists in the plot corpus. An example of a
plot and its resultant trajectory tree is shown in Figure 2.

Reward Assignment
Using this trajectory tree, we assign rewards to actions or
states that exist inside the agent’s environment. To do this,
we incorporate the tree as part of the agent’s world state di-
rectly. Thus, as the agent explores its environment it also
keeps track of what plot events it has completed and what
plot events it needs to complete in the future. Rewards are
assigned to those actions that advance the plot as determined
by the trajectory tree. When the agent receives a reward, it
also advances in the trajectory tree.

Recall that during pre-processing we identified environ-
ment actions that corresponded with plot events. Also re-
call that it is possible that several environment actions may
correspond to the same plot event. To account for this, the
agent will receive a reward whenever it performs any action
that corresponds with plot event that will advance the plot.
Each action’s reward, however, is weighted by its similarity
to each plot event.

Reinforcement Learning
Once the reward function has been specified, we use rein-
forcement learning to find the optimal policy for a given
environment. By using reinforcement learning, the agent is
able to fill in any gaps that may still exist in the plot cor-
pus. These gaps can exist because plot events are removed if
they do not correspond to an action in the RL environment.
Gaps can also exist because it may take several intermediate
actions to complete a plot event in the MDP. For example,
a plot event for going inside a store may require intermedi-
ate actions involving the agent navigating to the store first.

185



Reinforcement learning allows the agent to learn for itself
the most efficient sequence of actions to move from one plot
event to another.

The trajectory tree also allows the agent to to model non-
Markovian behavior that may exist in the plots. Conceptu-
ally, encoding the trajectory into the world state breaks up
the learning problem into subtasks based on how the tree
branches. The subtask that the agent learns is how to opti-
mally get from its current plot event to one of its children in
the trajectory tree. The agent only needs to determine at any
time what is the optimal policy to get to the next plot event.
For example, consider the trajectory tree shown in Figure 2.
If the agent has just completed plot event a, then its current
task is to find the optimal sequence of actions that enable it
to complete either plot event c or plot event d. Here, the rein-
forcement learning agent is iteratively solving simple MDPs
rather than solving a single complex MDP. This allows the
agent to learn non-Markovian behaviors (since they will be
encoded in the trajectory tree) and avoid infinite rewards due
to rewarding repeatable actions (since performing the action
will transition the agent into a “different” MDP with differ-
ent rewards).

Rolling the trajectory tree into the world state does, how-
ever, affect the size of the MDP. Since the trajectory tree de-
termines how the MDP task is divided into subtasks, the size
of the MDP grows linearly with the number of nodes in the
trajectory tree. While learning, the reinforcement learning
agent must, essentially, explore each branch of the trajectory
tree, which will increase training time. This is acceptable as
Quixote is meant to be run as an offline process and should
only need to be run once per environment.

Case Study
To show the effectiveness of the Quixote system, we per-
form a case study in a virtual environment called Robbery
World. This case study explores how well Quixote is able
to train the virtual characters in Robbery World to act out a
bank robbery using crowdsourced narratives written in nat-
ural language as a guide. We will first examine how rein-
forcement learning performs using common reward func-
tions without any narrative guidance. Then we will exam-
ine performance using a Quixote-engineered reward func-
tion using perfect, hand-authored correspondence. These ex-
periments define the upper and lower bounds in terms of
performance that we can expect from Quixote in Robbery
World. We will then explore part of this spectrum by show-
ing how Quixote performs using natural language similarity
thresholds of 0.6, 0.7, and 0.8.

In these experiments, we are concerned with whether or
not a policy will result in behavior that is consistent with the
plot corpus. We say that a policy is consistent with the plot
corpus when the optimal sequence of actions produced by
the policy corresponds to a plot used for training.

Robbery World Domain
The Robbery World domain is a virtual world meant to sim-
ulate a bank robbery. It contains the following three char-
acters: John the bank robber, Sally the bank teller, and the

police. Each character can be at one of two possible loca-
tions: inside the bank or outside the bank. The police are an
exception to this in that they do not begin in either location.
Once the police arrive outside the bank, however, they are
restricted to moving between those two locations like the
rest of the characters. John begins the scenario outside the
bank while Sally begins the scenario inside the bank.

Each character in Robbery World has an inventory that
can contain objects that exist in Robbery World. The items
in Robbery World are: a cash register, a bag, a note, a gun, a
revolver, and money. The cash register and the bag are spe-
cial in that they can contain the money in their inventories.
Also, the cash register cannot be contained in any character’s
inventory. It is a static fixture of the world.

There are also many different actions that the characters in
Robbery World can take. At a high level, the general actions
in Robbery World consist of:

• Movement: a character moving from one location to an-
other

• Give/take item: a character giving or taking an item from
another character

• Show gun/revolver: a character shows the gun/revolver to
another character

• Pull out gun/revolver: a character pulls out the
gun/revolver

• Shooting: a character shooting another character

• Opening the cash register: a character opening the cash
register

• Stashing money: a character placing the money in the cash
register or the bag

In addition to these general actions, some of the characters
can perform special actions based on their role in Robbery
World. These special actions are: Sally presses the alarm,
Sally calls the police, The police arrive outside the bank,
and The police arrest a character.

In total, there are 97 unique actions that can be performed
in Robbery World, but only one action can be performed at
a time. The Robbery World scenario ends when either John
leaves the bank with the money in his inventory, John leaves
the bank with the bag containing the money in his inventory,
John is arrested, or John is killed.

Robbery World is notable in that there are many char-
acters present in the environment that each have their own
set of actions they can take, making the environment quite
complex. In addition, this domain highlights the difference
between how a human might expect a robbery would take
place and what an agent would do in this environment.

Reinforcement Learning Parameters
We used Q-learning in conjunction with ε-greedy explo-
ration for training in each experiment. For this study we
define ε to be 0.8 and then slowly decay it over 500, 000
learning episodes for all similarity thresholds. We chose this
number of learning episodes because it proved a sufficient
number of episodes for convergence across all experiments.
In addition, we use parameters γ = 0.9 and α = 0.5.

186



Learning With No Story Guidance
In this first experiment we examine how RL performs in
Robbery World without story guidance. This experiment
uses the following reward functions: 1) the agent will get
rewarded for reaching a terminal state, and 2) the agent will
get rewarded if John leaves the bank with the money.

The optimal sequence of actions for the first reward func-
tion involves the police immediately arriving and then ar-
resting John before he gets the money. Assuming perfect
correspondence between actions and plot events, this pol-
icy is inconsistent because the optimal sequence of actions
results in John skipping to the end of the trajectory tree with-
out performing any of the preceding plot events.

The second reward function results in John entering the
bank, opening the cash register, taking the money, and then
exiting the bank. This policy, however, is also inconsistent
with the plot corpus because each story in the corpus in-
volves John interacting with either Sally or the police. Since
John did not learn to interact with any of the other characters
in the scenario, this policy is inconsistent.

Learning From Stories
In the remaining experiments we examine how Quixote per-
forms under varying assumptions about the quality of action
correspondence. The first experiment performed assumes
that the system was able to perfectly identify correspon-
dence between environment actions and plot events. This
was achieved by manually selecting which environment ac-
tions correspond to each plot point. The remaining exper-
iments examine how varying natural language correspon-
dence thresholds affect learned behaviors.

Constructing an Exemplar Corpus For the following ex-
periments we need to obtain an initial corpus of exemplar
stories written in natural language. Here, we use the exem-
plar corpus collected by Li et al. (2013). This corpus was
constructed by requesting crowd workers on Amazon Me-
chanical Turk (AMT) provide stories of how they thought
a bank robbery would take place. Crowd workers were in-
structed to tell the story in natural language, but to limit
themselves to simple sentences containing a single verb and
no pronouns. Workers were also given two characters to use:
John the bank robber and Sally the teller.

In total, this corpus contains 60 stories written in natural
language. An example story is given below:

John entered the bank. John approached Sally, the
bank teller. John showed Sally his gun. John demanded
the money. Sally got the money. Sally gave the money
to John. John left the bank. Sally called the police. The
police arrived. The police caught John. John was ar-
rested. John was convicted of robbery.

Pre-processing After cleaning, the plot corpus contained
approximately 350, 000 plots, the majority of which were
small variations of other plots in which the ordering of
events is changed. We then determine correspondence be-
tween the events in this corpus and the actions available in
Robbery World either manually or by using natural language

Table 1: Comparison of the size of the plot corpus in terms
of number of plots for each threshold and the size of the
resulting trajectory tree in terms of nodes in the tree.

Threshold Corpus Size Trajectory Tree Size
0.6 2936 6047
0.7 52 117
0.8 3 11

Figure 3: Comparison of the optimal sequence of actions
taken and the plot events completed with perfect action cor-
respondence. Dashed lines are drawn between correspond-
ing events and actions.

processing with correspondence thresholds of 0.8, 0.7, and
0.6.

Table 1 shows the effect these thresholds had on the num-
ber of plots in the resulting plot corpus. As the table shows,
higher thresholds resulted in smaller corpora. This is not
surprising as the higher thresholds require that a stronger
similarity exists between the sentences contained in the plot
event clusters and the environment action labels. After deter-
mining action correspondence, Quixote constructed the plot
corpus and used it to generate the trajectory tree.

Recall that when we integrate the trajectory tree into the
world sate, the size of the problem increases with the number
of nodes in the trajectory tree. This is especially concerning
when one considers the large size of the corpus after initial

Figure 4: Comparison of the optimal sequence of actions
taken and the plot events completed for a threshold of 0.8.

187



Figure 5: Comparison of the optimal sequence of actions
taken and the plot events completed for a threshold of 0.7.

Figure 6: Comparison of the optimal sequence of actions
taken and the plot events completed for a threshold of 0.6.

story cleaning. Examining Table 1, however, shows that the
correspondence step has the ability to drastically reduce the
size of the resulting plot corpus and, thus, the size of the tra-
jectory tree. While this is not definitive proof, this does pro-
vide some evidence that this technique will scale better than
initial data cleaning would indicate that in practice, the com-
plexity of the environment has a mitigating effect on scale.

Determining Rewards Using the trajectory tree, Quixote
then defines a reward function to use to train a reinforcement
learning agent. For Robbery World, we give a base reward
value of 2 every time a character performs an action that
advances the plot state in the trajectory tree. This base value
is weighted by the similarity value between the action being
performed and the plot event being completed. Every other
action receives a reward value of −1.0. We use these values
because they produced acceptable results in practice.

Perfect Correspondence Results The resulting optimal
sequence of actions taken by the agent using a reward func-
tion generated by Quixote using perfect correspondence is
shown in Figure 3. This policy is consistent as the sequence
of plot events that the agent completes does exist in the plot
corpus used for training. This shows that if Quixote is able
to achieve perfect correspondence through either human au-
thoring or perfect natural language, it can teach agents to
exhibit behaviors consistent with what it used for teaching.

Varying Thresholds Results While our technique for de-
termining natural language correspondence works reason-
ably well, though imperfectly, in Robbery World, this ex-
periment aims to identify Quixote’s robustness to changes
in natural language performance. Lowering thresholds sim-
ulates degrading natural language correspondence perfor-
mance.

Figure 4 shows the path the agent took through the tra-
jectory tree as well as the optimal sequence of actions taken
for a correspondence threshold of 0.8. The most important
thing to note is that the learned policy for this threshold is
consistent. Also notice that the optimal sequence of actions
does not involve the police. This is a side-effect of the natu-
ral language correspondence process not finding any corre-
spondence between the police’s actions and the plot events
that contained the police.

Using a correspondence threshold of 0.7 results in a pol-
icy that is consistent with the plot corpus (shown in Fig-
ure 5).The agent exhibits similar behavior to the agent
trained using perfect correspondence (shown in Figure 3).
The main difference is that this threshold does not identify
correspondence with Sally taking the money from the cash
register or the police arriving. Note that the reinforcement
learning agent was still able to learn that these action are op-
timal even though no correspondence was identified earlier.

When the threshold is lowered to 0.6, seen in Figure 6,
performance degrades. It is important to note that the opti-
mal sequence of actions taken is technically consistent with
the training corpus as per our definition of consistent. The
path taken through the tree does correspond to a plot that ex-
ists in the training corpus. Inspection of the actions taken in
the environment, however, reveals some odd choices. For ex-
ample, many plot events are rewarded when John shows the
Gun to Sally. Although this behavior results in a consistent
policy, it would likely be considered unnatural by most peo-
ple. The problem here is that the threshold identified corre-
spondence between plot events and actions when, in reality,
none exists. For example, there is no action that reasonably
corresponds to the plot event John sees Sally, but the algo-
rithm is forced make a correspondence when one is above
the threshold.

Discussion One thing to take from these experiments is
that all policies produced by Quixote were consistent with
the plot corpora used for training. This provides evidence
that Quixote is having an effect on learned behaviors and is
biasing learning towards the plots in the plot corpus. These
studies also showed, however, the importance of properly
identifying correspondence between actions and plot events.
The performance of Quixote with a correspondence thresh-

188



old of 0.6 shows that poor natural language processing led to
erratic behavior that, while consistent, would likely appear
unnatural to human viewers.

Interactive Narrative
One avenue of future work involves using Quixote for cre-
ating interactive simulations in which the human is present
or actively controlling one of the characters. This is possible
because the policy learned by Quixote dictates the optimal
action to take across all characters. The policy learned by
Quixote should contain enough information for it to respond
to any action that the human player could make. This is es-
pecially important for games in which players will interact
with NPCs as this allows for the system to respond to the
different ways that players could interact with the system.

Reinforcement learning has been successfully used to
train virtual characters (Zhao and Szafron 2009) and for
drama management before (Nelson and Mateas 2005;
Roberts et al. 2006); however complex design knowledge
must first be provided that encode the designers intuitions
about how characters should behave and scenarios should
unfold. The work presented in this paper allows the same
knowledge to be automatically acquired from natural lan-
guage interactions (in this case, from crowdsourced narra-
tive examples) and converted into a form suitable to train
virtual characters: a reward function.

Conclusions
In this work we introduce Quixote, a system for training be-
lievable agents based on stories. Our system works by us-
ing exemplar stories to define a space of acceptable behav-
ior and then using this space to derive reward functions that
encourage the agent to exhibit behaviors that fall within it.
We have presented a case study in which crowdsourced sto-
ries where used to generate behaviors that were consistent
with the behaviors contained within these training stories.
Using this technique, we allow humans to more naturally
communicate with interactive machine learning algorithms
which will, ideally, make it easier for non-programmers to
use these algorithms.

Acknowledegments
This material is based upon work supported by the U.S. De-
fense Advanced Research Projects Agency (DARPA) un-
der Grant #D11AP00270 and the Office of Naval Research
(ONR) under Grant #N00014-14-1-0003.

References
Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learning via
inverse reinforcement learning. In Proceedings of the twenty-
first international conference on Machine learning, 1. ACM.
Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and autonomous systems 57(5):469–483.
Grollman, D. H., and Billard, A. 2011. Donut as i do: Learn-
ing from failed demonstrations. In Robotics and Automa-
tion (ICRA), 2011 IEEE International Conference on, 3804–
3809. IEEE.

Judah, K.; Roy, S.; Fern, A.; and Dietterich, T. G. 2010.
Reinforcement learning via practice and critique advice. In
AAAI.
Knox, W. B., and Stone, P. 2009. Interactively shaping agents
via human reinforcement: The tamer framework. In Proceed-
ings of the fifth international conference on Knowledge cap-
ture, 9–16. ACM.
Li, B.; Lee-Urban, S.; Johnston, G.; and Riedl, M. 2013.
Story generation with crowdsourced plot graphs. In AAAI.
Lignos, C.; Raman, V.; Finucane, C.; Marcus, M.; and Kress-
Gazit, H. 2015. Provably correct reactive control from natu-
ral language. Autonomous Robots 38(1):89–105.
Loftin, R.; MacGlashan, J.; Peng, B.; Taylor, M. E.; Littman,
M. L.; Huang, J.; and Roberts, D. L. 2014. A strategy-aware
technique for learning behaviors from discrete human feed-
back. In Proc. of AAAI.
MacGlashan, J.; Babes-Vroman, M.; desJardins, M.;
Littman, M.; Muresan, S.; Squire, S.; Tellex, S.; Arumugam,
D.; and Yang, L. 2015. Grounding english commands to
reward functions. In Proceedings of Robotics: Science and
Systems.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in neural
information processing systems, 3111–3119.
Nelson, M. J., and Mateas, M. 2005. Search-based drama
management in the interactive fiction anchorhead. In AIIDE,
99–104.
Ng, A. Y., and Russell, S. 2000. Algorithms for inverse
reinforcement learning. In in Proc. 17th International Conf.
on Machine Learning.
Ramachandran, D., and Amir, E. 2007. Bayesian inverse
reinforcement learning. In Proceedings of the 20th interna-
tional joint conference on Artifical intelligence, 2586–2591.
Morgan Kaufmann Publishers Inc.
Roberts, D. L.; Nelson, M. J.; Isbell, C. L.; Mateas, M.; and
Littman, M. L. 2006. Targeting specific distributions of tra-
jectories in mdps. In Proceedings of the National Conference
on Artificial Intelligence, volume 21, 1213. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction, volume 1. MIT press Cambridge.
Watkins, C. J., and Dayan, P. 1992. Q-learning. Machine
learning 8(3-4):279–292.
Zhao, R., and Szafron, D. 2009. Learning character behav-
iors using agent modeling in games. In AIIDE.
Ziebart, B. D.; Maas, A.; Bagnell, J. A.; and Dey, A. K.
2008. Maximum entropy inverse reinforcement learning.
In Proceedings of the 23rd national conference on Artificial
intelligence-Volume 3, 1433–1438. AAAI Press.

189




