
Per-Map Algorithm Selection in
Real-Time Heuristic Search

Vadim Bulitko
Department of Computing Science

University of Alberta
Edmonton, Alberta, T6G 2E8, Canada

bulitko@ualberta.ca

Abstract

Real-time heuristic search is suitable for time-sensitive
pathfinding and planning tasks when an AI-controlled non-
playable character must interleave its planning and plan ex-
ecution. Since its inception in the early 90s, numerous real-
time heuristic search algorithms have been proposed. Many
of the algorithms also have control parameters leaving a prac-
titioner with a bewildering array of choices. Recent work
treated the task of algorithm and parameter selection as a
search problem in itself. Such automatically found algo-
rithms outperformed previously known manually designed
algorithms on the standard video-game pathfinding bench-
marks. In this paper we follow up by selecting an algorithm
and parameters automatically per map. Our sampling-based
approach is efficient on the standard video-game pathfinding
benchmarks. We also apply the approach to per-problem al-
gorithm selection and while it is effective there as well, it is
not practical. We offer suggestions on making it so.

1 Introduction and Related Work
Heuristic search is a core area of Artificial Intelligence. In it
an autonomous agent finds a path on the search graph con-
necting the start and the goal states. The agent is guided by
a heuristic function (i.e., an estimate of the remaining path
cost) and lower-cost paths are preferred. The classic A* al-
gorithm (Hart, Nilsson, and Raphael 1968) and its more re-
cent versions (Sturtevant and Buro 2005) have been used ex-
tensively for video-game pathfinding (Sturtevant 2007) and
planning (Orkin 2006).

Real-time heuristic search is a form of agent-centered
search (Koenig 2001) in which the amount of planning per
agent’s move is upper bounded independently of the number
of states in the search space (Korf 1990). The upper bound
is usually too low for the agent to compute a complete solu-
tion to the problem, forcing the agent to interleave planning
and plan execution. As a result, suboptimal/wrong actions
can be taken by the agent. To facilitate ever finding the goal
state, the agent learns about the search space by updating its
heuristic. Thus most real heuristic search algorithms inter-
leave three processes: local planning, heuristic learning and
move selection.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In over the two decades since LRTA*, researchers have
explored different methods for looking ahead during the
planning stage of each cycle (Koenig and Sun 2009); dif-
ferent heuristic learning rules (Bulitko 2004; Hernández and
Meseguer 2005; Bulitko and Lee 2006; Rayner et al. 2007;
Koenig and Sun 2009; Rivera, Baier, and Hernández 2015)
and different move selection mechanisms (Ishida 1992;
Shue and Zamani 1993a; 1993b; Shue, Li, and Zamani 2001;
Hernández and Baier 2012). Finally, information in addition
to the heuristic has been learned during (Bulitko et al. 2007;
Sturtevant, Bulitko, and Björnsson 2010; Sturtevant and Bu-
litko 2011; Sharon, Sturtevant, and Felner 2013) and be-
fore (Bulitko et al. 2008; Bulitko, Björnsson, and Lawrence
2010; Botea 2011; Lawrence and Bulitko 2013) the search.

The proliferation of real-time search techniques proposed
by the researchers can be overwhelming to a practitioner,
especially due to substantial interaction between the tech-
niques. Indeed, each technique is usually evaluated in its
own empirical testbed and, at best, compared to a handful of
others that the particular researcher happened to have imple-
mented in the testbed. Broad comparisons are rare (Bulitko
and Lee 2006). The interaction of the techniques is also dif-
ficult to predict theoretically as seemingly minor changes to
the algorithms can have significant effects on their behav-
ior (Sturtevant and Bulitko 2014; 2016).

Recent work by Bulitko (2016a) and Bulitko (2016b) cast
the problem of selecting the best combination of real-time
heuristic search techniques as a search problem in itself.
This approach removes some of the expectations and biases
of human researchers by conducting a search in the space of
real-time heuristic search algorithms. This also allows one to
compare a broad set of algorithms in a single experimental
testbed such as the MovingAI video-game pathfinding prob-
lem set which is gradually becoming the de facto standard
in the field (Sturtevant 2012).

Searching for real-time search algorithms quickly found
novel combinations of the search techniques that signifi-
cantly outperformed previously known human-designed al-
gorithms. However, it also hit a performance ceiling where
different ways of exploring the algorithm space all found al-
gorithms with similar performance. It was then suggested
that further progress can be made by selecting algorithms
for each problem individually (Bulitko 2016b). The contri-
bution of this paper is a simple selection algorithm approach

Proceedings, The Twelfth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-16)

143

which we first evaluate on a per-map basis and then move
onto the per-problem case. It is found effective in both cases
although practical only in the per-map case.

The rest of the paper is organized as follows. We for-
mulate the real-time heuristic search problem in Section 2.
We then present the parameterized search algorithm in Sec-
tion 3. The MovingAI empirical testbed is described in Sec-
tion 4. We discuss the space of algorithms in Section 5 and
present and evaluate our per-map algorithm selection ap-
proach in Section 6.1. We then apply it to per-problem se-
lection in Section 6.2. Current limitations and future work
are found in Section 7 followed by conclusions.

2 Problem Formulation
We re-use the problem formulation of Bulitko (2016a) and
Bulitko (2016b) and reproduce it below for the reader’s con-
venience. A search problem is a tuple (S,E, c, s0, sg, h)
where S is a finite set of states and E ⊂ S × S is a set
of edges between them. S and E jointly define the search
graph. The search graph is stationary, undirected and con-
nected (and thus safely explorable). No state has an edge
leading to itself. Each edge (sa, sb) ∈ E is weighted by
the cost c(sa, sb) = c(sb, sa) > 0. The agent begins in the
start state s0 and changes its current state by traversing edges
(i.e., taking actions). The cumulative cost of all edges it tra-
verses prior to reaching the goal state sg is the solution cost.
The suboptimality is the ratio of the solution cost produced
by an agent to the cost of the shortest possible path, h∗(s0).
Lower values are desired; 1 indicates optimality.

The agent has access to a heuristic h which is an esti-
mate of the remaining cost to the goal. We do not assume
the heuristic to be admissible or consistent. The agent is free
to update it in any way as long as h(sg) = 0. The heuristic
at time t is denoted by ht; the initial heuristic h0 = h is
included in the problem description.

The objective is to find a real-time heuristic search algo-
rithm with the lowest expected suboptimality. The expecta-
tion is empirically approximated by sample suboptimality:
running an algorithm on a set of benchmark problems and
averaging suboptimality of the solutions. Per-problem sub-
optimality is capped at αmax ≥ 1 plus possibly an edge cost.

3 Parameterized Real-time Heuristic Search
We use the parameterized real-time heuristic search algo-
rithm of Bulitko (2016b) which operates as follows (Algo-
rithm 1). As long as the goal state is not reached (line 3) the
agent parameterized by control parametersw,wc, b, lop, da,
expendable and denoted by w · lopb(wc · c + h)+da+E
goes through these steps.∗

If the depression avoidance (Hernández and Baier 2012)
block is included (da = true) then line 5 temporarily
sets the agent’s neighborhood to only the states where the
amount of learning |ht(s)− h0(s)| is minimal.

Next, in line 6, the learning rule covers heuristic weight-
ing (Rivera, Baier, and Hernández 2015; Bulitko 2016b),
∗The search is terminated as soon as the agent’s path becomes

longer than αmax · h∗(s0) which is then assumed to be the cost of
the agent’s solution.

Algorithm 1: Parameterized Real-time Heuristic Search

input : search problem (S,E, c, s0, sg, h), control
parameters w, wc, b, lop, da, expendable

output: solution (s0, s1, . . . , sg)
1 t← 0
2 ht ← h
3 while st 6= sg do
4 if da then
5 N(st)← Nmin learning(st)

6 ht+1(st)←

max

ht(st), w · lop
s∈Nf

b
(st)

(wc · c(st, s) + ht(s))

7 if expendable & ht+1(st) > ht(st) & E(st) then
8 remove st from the search graph

9 st+1 ← arg min
s∈N(st)

(c(st, s) + ht(s))

10 t← t+ 1

11 T ← t

learning operator and lateral learning (Bulitko 2016a), us-
ing the control parameters w, wc, lop and b. The learn-
ing operator lop can be the traditional min or the more re-
cently used max, avg,median. The lateral learning defines
the agent’s neighborhood Nf

b as the b fraction of the neigh-
borhood N(st) with the lowest f values:

Nf
b (s) =

(
s1, . . . , sbb|N(st)|c

)
(1)

where
(
s1, . . . , sbb|N(st)|c, . . . , s|N(st)|

)
is the immediate

neighborhood sorted in the ascending order by their f = c+
h. For instance, s1 has the lowest f(s1) = c(st, s

1) + h(s1)
value in the set {f(s) | s ∈ N(st)} whereas s|N(st)| has
the highest f value in that set. Clearly, for b = 1 we get the
full neighborhood: Nf

1 (st) = N(st). For b = 0 we define
Nf

0 (st) as the single neighbor with the lowest f :
{
s1
}

.
If the expendable state detection (Sharon, Sturtevant, and

Felner 2013) block is included (expendable = true)
then in line 8 the current state is removed from the graph
if there was learning in it and it is indeed locally expendable
(i.e., a state whose immediate neighbors can be all reached
from each other within the immediate neighborhood; de-
noted by the predicate E). Then the agent moves to the next
state in line 9. †

4 Empirical Testbed
We use the same empirical testbed as Bulitko (2016a) and
Bulitko (2016b). The search problems came from the Mov-
ing AI benchmark set (Sturtevant 2012). The search graph
is an 8-connected two-dimensional grid. The cardinal moves

†If at any time the neighborhood becomes empty and the agent
has no moves to pick from then the agent quits without producing
a solution. Such unsolved problems contribute αmax · h∗(s0) plus
the cost of the least expensive move (minsa,sb∈S c(sa, sb)) to the
agent’s statistics on the solution cost.

144

had the cost of 1, diagonal moves cost
√
2. The initial heuris-

tic was the octile distance: the cost of the shortest path in the
absence of obstacles. We treated the water terrain type as an
obstacle and excluded all problems which thereby became
unsolvable (e.g., the start state is in an obstacle cell). This re-
sulted in 493298 problems situated on 342 maps. The maps
were from the video games StarCraft, WarCraft III, Baldur’s
Gate II (maps scaled up to 512×512) and Dragon Age: Ori-
gins (Figure 1).

5 Space of Algorithms
We use the same control parameter ranges as Bu-
litko (2016b): w ∈ [1, 10], wc ∈ [1, 10],da ∈
{true, false},expendable ∈ {true, false}, lop ∈
{min, avg,median,max}, b ∈ [0, 1] which define a six-
dimensional space of real-time heuristic search algorithms.
This formulation combines algorithms and algorithm param-
eters in a single space of (parameterized) algorithms.

To explore the algorithm space we first scaled up the result
of Bulitko (2016b) by running 55700 algorithms on 5000
random problems each.‡ Each batch of the 5000 problems
was selected at random without replacement from the bench-
mark set of 493298 problems and used for 100 algorithms
whose six control parameters were picked uniformly ran-
domly from the ranges listed above. Then another batch of
5000 problems was used for the next 100 algorithms and so
on, 557 times. Sample suboptimality of each algorithm is
shown in a histogram in Figure 2 with αmax = 103.

The average of the sample suboptimalities (50.6) is an
estimate of the expected performance of an algorithm ran-
domly sampled from the algorithm space. As before (Bu-
litko 2016b), it is better than RTA* (Korf 1990) (186.7)
but worse than daLRTA*+E (Hernández and Baier 2012;
Sharon, Sturtevant, and Felner 2013) (30.5). Also, as be-
fore, 73.4% of algorithms in the experiment had better sam-
ple suboptimality than the expectation for a randomly drawn
algorithm (due to the long tail of the distribution). RTA*
is once again in the bottom 5.6%; daLRTA*+E is outper-
formed by 54.9% of all sampled algorithms.

To put the numbers in perspective, searching through the
algorithm space, Bulitko (2016b) found several algorithms
with the suboptimality of around 20, such as median(7 · c+
h) +E, mean suboptimality of 19.3. This is about 1.5 times
better than the best tried human-designed algorithms which
struggled to reach 30 such as daLRTA*+E, mean subopti-
mality of 31.8 or 7-daLRTA* with the mean suboptimality
of 30.6. These suboptimality values are for αmax = 105,
averaged over the entire MovingAI benchmark set which is
why they differ slightly from the sample suboptimality on
the 5000 problems, αmax = 103 reported above.

6 Adaptive Algorithm Selection
The various searches Bulitko (2016b) conducted through
the algorithm space failed to find a single algorithm with

‡The choice of the specific parameters is due to a combination
of observed performance and running time constraints.

the sample suboptimality substantially below 20, so he sug-
gested selecting algorithms on a per-problem basis but did
not propose a specific way of doing so.

To evaluate the potential of adaptive algorithm selection
we searched through the set of the 55700 algorithms run
on 5000 problems each described above. The best of the
55700 algorithms, 2.654 ·median0.153(2.486 · c+h)+da+E,
achieved sample suboptimality of 17.84 on its 5000 prob-
lems.§ However, selecting the best algorithm from the set on
a per-problem basis yielded the mean suboptimality of 8.41,
about a two-fold improvement.

Given the potential, we will now present a sampling-based
method for adaptive algorithm selection, first on a per-map
basis and then on a per-problem basis.

6.1 Per-map Algorithm Selection
Suppose a game AI programmer received a set of new game
maps from the level-design department. Which algorithms
would be best on these maps? A straightforward but compu-
tationally expensive way of answering the question would
be to run a large number of randomly selected algorithms on
the new maps and measure their sample suboptimality. Be-
low we propose to trade some of the computational cost for
suboptimality of the selected algorithms.

The method is trivially simple: the game developer should
simply run as many algorithms on the new maps as he/she
has the time for and then select the algorithm with the
best sample suboptimality. To evaluate the efficiency of
this approach empirically, we randomly drew 1500 algo-
rithms from the algorithm space. We then ran each of them
on 4500 problems randomly chosen (without replacement)
from the 493298 problems in our MovingAI benchmark set,
αmax = 103. Aggregating per-problem suboptimality on the
4500 problems into per-map suboptimality on the 329 maps,
we obtained a suboptimality matrix of 1500 rows (one per
algorithm) by 329 columns (one per map). Note that the
problem-per-map distribution in the MovingAI set is non-
uniform: some maps have more problems on them than oth-
ers. As a result, algorithm suboptimality averaged over maps
may differ from that averaged over problems. For instance,
suppose an algorithm had suboptimality of 10, 20, 30 on
problems a, b, c. Suppose a, b belong to map 1 and c belongs
to map 2. Aggregating the values we record suboptimality
of (10 + 20)/2 = 15 for map 1 and 30 for map 2. Thus, the
non-weighted per-map average (15 + 30)/2 = 22.5 differs
from the per-problem average of (10+20+30)/3 = 20. To
compensate for that we weighted map averages by problem-
to-map counts: 2

3 · 15 +
1
3 · 30 = 20.

We then ran 100 trials as follows. On each trial we ran-
domly split the 329 maps/columns into 219 (old/training
maps) and 110 (new/test maps). We then evaluated three
ways of selecting the algorithm for the new maps.

Prior. Suppose the AI programmer does not examine the
new maps at all but instead uses the best algorithm he/she
previously had for the old maps. To simulate this, we se-

§The low value is due to the specific sample set of 5000 prob-
lems and αmax = 103. Evaluating the algorithm on all MovingAI
problems with αmax = 105 gives the mean suboptimality of 19.8.

145

Figure 1: Sample maps from StarCraft, WarCraft III, Baldur’s Gate II and Dragon Age: Origins.

0 100 200 300 400 500
Sample suboptimality

0

10

20

30

40

50

Pe
rc

en
ta

ge
 o

f a
lg

or
ith

m
s

all algorithms
random
RTA*
daLRTA*+E

Figure 2: The space of algorithms.

lected a single algorithm with the lowest suboptimality on
the old maps and ran it on the new maps.

Sample. Here the AI programmer does run some of
the algorithms on some of the new maps. Then for each
new map, he chooses the best among the algorithms run
on that map. We simulated this by randomly remov-
ing {0, 10, . . . , 80, 85, 90, 95, 96, 97, 98, 98.5, 99} percent
of suboptimality values from the new maps¶. We then se-
lected the lowest suboptimality algorithm for each new map,
using the remaining suboptimality values.

Exhaustive. Here the programmer invests the time and
runs all of its algorithms on all new maps. Then he/she se-
lects the best algorithm for each new map. We simulated this
by selecting the lowest suboptimality algorithm for each new
map, using all new-map suboptimality values (i.e., putting
back the previously removed values).

In all three cases the performance measure is mean sub-
optimality of per-map selected algorithms on the test maps,
averaged over the 100 trials. The results are plotted in Fig-
ure 3. The error bars show the standard error of the mean.
As per the last row of Table 1, the sample method runs only
1% of the available algorithms and yet yields suboptimality
only 26% worse than the exhaustive search.

¶We made sure that each map did have suboptimality value for
at least one of the 1500 algorithms.

0 20 40 60 80 100 120
Test data present (%)

12

14

16

18

20

M
ea

n
su

bo
pt

im
al

ity

exhaustive
prior
sample

Figure 3: Algorithm selection per map.

Table 1: Algorithm selection per map: test suboptimality.

Test data present Exhaustive Prior Sample
5.0% 12.6±0.15 19.3±0.23 14.1±0.18

4.0% 12.6±0.15 19.3±0.23 14.3±0.17

3.0% 12.6±0.15 19.3±0.23 14.6±0.18

2.0% 12.6±0.15 19.3±0.23 15.0±0.19

1.5% 12.6±0.15 19.3±0.23 15.4±0.19

1.0% 12.6±0.15 19.3±0.23 15.9±0.21

6.2 Per-problem Algorithm Selection
We then applied the same three approaches to algorithm se-
lection on a per-problem basis. To do so we used the same
suboptimality matrix for 1500 algorithms and 4500 prob-
lems but did not aggregate suboptimality values over maps.
The results are found in Figure 4 and Table 2.

Several observations are in order. First, the exhaustive
method has a better suboptimality now (8 versus 12.6) be-
cause selecting an algorithm for each problem is more flex-
ible than doing so for each map. Second, while the sample
method still evaluates only 1% of the algorithms for only
28% worse suboptimality, it is not a practical method for
video games because pathfinding problems in video games
are usually specified during the game, as the player directs
their units. Thus, the AI does not have the luxury of running
several real-time search algorithms before actually solving it
in real time. A practical method for per-problem algorithm

146

0 20 40 60 80 100 120
Test data present (%)

6

8

10

12

14

16

18

20
M

ea
n

su
bo

pt
im

al
ity

exhaustive
prior
sample

Figure 4: Algorithm selection per problem.

Table 2: Algorithm selection per problem: test suboptimality.

Test data present Exhaustive Prior Sample
5.0% 8.0±0.02 19.2±0.09 8.9±0.03

4.0% 8.0±0.02 19.2±0.09 9.1±0.03

3.0% 8.0±0.02 19.2±0.09 9.3±0.03

2.0% 8.0±0.02 19.2±0.09 9.6±0.03

1.5% 8.0±0.02 19.2±0.09 10.0±0.03

1.0% 8.0±0.02 19.2±0.09 10.5±0.04

selection will use attributes of the problem to select a suit-
able algorithm, without running any algorithms prior to run-
ning the selected one. We discuss ways of doing so below.

7 Current Limitations and Future Work
While the method presented above is effective for per-map
algorithm selection, it may be improved by using subopti-
mality of the algorithms run on a new map to predict sub-
optimality of all other algorithms. Such predictions can then
be used to select an algorithm from among all algorithms
in the set, not just the ones run as we did in the paper. We
tried non-negative matrix factorization recently used for pre-
dicting player’s enjoyment of the story (Yu and Riedl 2014).
Specifically, we factored suboptimality values on the train
maps into a set of basis maps and used those to predict the
missing suboptimality values on the test maps. The results
indicates that the predictions were insufficiently accurate as
the algorithms selected using them did not outperformed
those of the “prior” method. We then applied the same ap-
proach in the per-problem setting and while it outperformed
the “prior” it was worse than “sample”. Future work will at-
tempt to improve the prediction accuracy.

Selecting algorithm parameters per-problem has been ex-
plored in the field of real-time heuristic search, includ-
ing per-problem lookahead (Bulitko et al. 2008) and sub-
goal (Lawrence and Bulitko 2013) selection. The key is the
mapping from problem attributes to appropriate algorithm
parameters. In the past such mapping has been implemented
via k-nearest-neighbor (Bulitko, Björnsson, and Lawrence
2010) and artificial neural networks (Bulitko et al. 2008) as
well as simple databases (Lawrence and Bulitko 2013).

We attempted to select the best algorithm for a problem
by finding problems with similar start and goal states on the
same map and then combining the algorithms found to per-
form well on them. The results were worse than the those
of the “prior” method likely due to the poor octile-distance-
based similarity metric (e.g., close-by start states separated
by a wall would be considered similar). Future work will
investigate better similarity metrics.

We also represented a problem as a bitmap image of the
video-game map with the start and goal states shown on
it in color. We then trained deep convolutional networks
AlexNet and GoogleNet as included in MatConvNet frame-
work (Vedaldi and Lenc 2015) to predict the six parame-
ters of a suitable algorithm for it. The results were slightly
worse than those of the “prior” method. We are currently
investigating using convolutional deep networks to predict
algorithm suboptimality on a given problem, represented by
a bitmap image. To avoid supplying the six algorithm pa-
rameters to the network, we train a single network per a
cluster of similar algorithms. After training, a new prob-
lem is fed to each of the trained networks which predict
the performance of their cluster. A representative algorithm
for the cluster with the best predicted performance is then
selected for the problem. This is similar to predicting al-
gorithm performance using problem features and non-deep-
learning predictors (Huntley and Bulitko 2013) and can be
used both at problem and map levels.

Finally, future work will consider a broader space of
real-time heuristic search algorithms adding building blocks
such as deeper lookahead (Koenig and Sun 2009), time-
bounded search (Björnsson, Bulitko, and Sturtevant 2009;
Hernández, Baier, and Ası́n 2016) as well as non-pathfinding
search domains.

8 Conclusions
In this paper we followed the recent work on searching the
space of real-time heuristic search algorithms and took on
the challenge proposed therein: to automatically select an
algorithm on a per-problem basis. We presented a sampling-
based method of doing so and demonstrated its benefits for
selecting an algorithm per map. While the method is also ef-
fective in selecting an algorithm per problem, it is not prac-
tical. We then suggested possible practical methods as direc-
tions for future work.

Acknowledgments
Alexander Sampley performed the preliminary Deep Learn-
ing experiments. The funding was provided by NSERC. We
also appreciate suggestions from the anonymous reviewers.

References
Björnsson, Y.; Bulitko, V.; and Sturtevant, N. 2009. TBA*:
Time-bounded A*. In Proceedings of the International Joint
Conference on Artificial Intelligence, 431–436.
Botea, A. 2011. Ultra-fast optimal pathfinding without
runtime search. In Proceedings of the Conference on Ar-
tificial Intelligence and Interactive Digital Entertainment,
122–127.

147

Bulitko, V., and Lee, G. 2006. Learning in real time search:
A unifying framework. Journal of Artificial Intelligence Re-
search 25:119–157.
Bulitko, V.; Sturtevant, N.; Lu, J.; and Yau, T. 2007. Graph
abstraction in real-time heuristic search. Journal of Artificial
Intelligence Research 30:51–100.
Bulitko, V.; Luštrek, M.; Schaeffer, J.; Björnsson, Y.; and
Sigmundarson, S. 2008. Dynamic control in real-time
heuristic search. Journal of Artificial Intelligence Research
32:419–452.
Bulitko, V.; Björnsson, Y.; and Lawrence, R. 2010. Case-
based subgoaling in real-time heuristic search for video
game pathfinding. Journal of Artificial Intelligence Re-
search 39:269–300.
Bulitko, V. 2004. Learning for adaptive real-time search.
CoRR cs.AI/0407016.
Bulitko, V. 2016a. Evolving real-time heuristic search algo-
rithms. In Proceedings of the Fifteenth International Con-
ference on the Synthesis and Simulation of Living Systems,
in press.
Bulitko, V. 2016b. Searching for real-time search algo-
rithms. In Proceedings of the Symposium on Combinatorial
Search, (in press).
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics 4(2):100–
107.
Hernández, C., and Baier, J. A. 2012. Avoiding and es-
caping depressions in real-time heuristic search. Journal of
Artificial Intelligence Research 43:523–570.
Hernández, C., and Meseguer, P. 2005. LRTA*(k). In Pro-
ceedings of the International Joint Conference on Artificial
Intelligence, 1238–1243.
Hernández, C.; Baier, J. A.; and Ası́n, R. 2016. Time-
bounded best-first search for reversible and non-reversible
search graphs. Technical report, semanticscholar.org.
Huntley, D. A., and Bulitko, V. 2013. Search-space
characterization for real-time heuristic search. CoRR
abs/1308.3309.
Ishida, T. 1992. Moving target search with intelligence. In
Proceedings of the National Conference on Artificial Intelli-
gence, 525–532.
Koenig, S., and Sun, X. 2009. Comparing real-time and
incremental heuristic search for real-time situated agents.
Journal of Autonomous Agents and Multi-Agent Systems
18(3):313–341.
Koenig, S. 2001. Agent-centered search. Artificial Intelli-
gence Magazine 22(4):109–132.
Korf, R. 1990. Real-time heuristic search. Artificial Intelli-
gence 42(2–3):189–211.
Lawrence, R., and Bulitko, V. 2013. Database-driven
real-time heuristic search in video-game pathfinding. IEEE
Transactions on Computational Intelligence and AI in
Games 5(3):227–241.

Orkin, J. 2006. Three states and a plan: the AI of FEAR. In
Game Developers Conference, 4.
Rayner, D. C.; Davison, K.; Bulitko, V.; Anderson, K.; and
Lu, J. 2007. Real-time heuristic search with a priority queue.
In Proceedings of the International Joint Conference on Ar-
tificial Intelligence, 2372–2377.
Rivera, N.; Baier, J. A.; and Hernández, C. 2015. Incor-
porating weights into real-time heuristic search. Artificial
Intelligence 225:1–23.
Sharon, G.; Sturtevant, N. R.; and Felner, A. 2013. Online
detection of dead states in real-time agent-centered search.
In Proceedings of the Symposium on Combinatorial Search,
167–174.
Shue, L.-Y., and Zamani, R. 1993a. An admissible heuris-
tic search algorithm. In Proceedings of the International
Symposium on Methodologies for Intelligent Systems, vol-
ume 689 of LNAI, 69–75.
Shue, L.-Y., and Zamani, R. 1993b. A heuristic search al-
gorithm with learning capability. In ACME Transactions,
233–236.
Shue, L.-Y.; Li, S.-T.; and Zamani, R. 2001. An intelligent
heuristic algorithm for project scheduling problems. In An-
nual Meeting of the Decision Sciences Institute.
Sturtevant, N. R., and Bulitko, V. 2011. Learning where you
are going and from whence you came: H- and G-cost learn-
ing in real-time heuristic search. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence, 365–
370.
Sturtevant, N. R., and Bulitko, V. 2014. Reaching the goal
in real-time heuristic search: Scrubbing behavior is unavoid-
able. In Proceedings of the Symposium on Combinatorial
Search, 166–174.
Sturtevant, N., and Bulitko, V. 2016. Scrubbing during
learning in real-time heuristic search. Journal of Artificial
Intelligence Research (in press).
Sturtevant, N., and Buro, M. 2005. Partial pathfinding us-
ing map abstraction and refinement. In Procedings of the
National Conference on Artificial Intelligence, 1392–1397.
Sturtevant, N. R.; Bulitko, V.; and Björnsson, Y. 2010. On
learning in agent-centered search. In Proceedings of the
Conference on Autonomous Agents and Multiagent Systems,
333–340.
Sturtevant, N. R. 2007. Memory-efficient abstractions for
pathfinding. In Proceedings of the Conference on Artificial
Intelligence and Interactive Digital Entertainment, 31–36.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144 – 148.
Vedaldi, A., and Lenc, K. 2015. MatConvNet – convolu-
tional neural networks for MATLAB. In Proceeding of the
ACM International Conference on Multimedia, 689–692.
Yu, H., and Riedl, M. O. 2014. Personalized interactive nar-
ratives via sequential recommendation of plot points. Com-
putational Intelligence and AI in Games, IEEE Transactions
on 6(2):174–187.

148

