
Building Helpful Virtual Agents Using Plan Recognition and Planning

Christopher Geib, Janith Weerasinghe
Sergey Matskevich, Pavan Kantharaju

Department of Computer Science
Drexel University

Philadelphia, PA 19104, USA
cgeib@drexel.edu

Bart Craenen
School of Computing Science

Newcastle University
Newcastle NE1 7RU, England, UK

bart.craenen@newcastle.ac.uk

Ronald P. A. Petrick
Department of Computer Science

Heriot-Watt University
Edinburgh EH14 4AS, Scotland, UK

r.p.petrick@hw.ac.uk

Abstract

This paper presents a new model of cooperative behavior
based on the interaction of plan recognition and automated
planning. Based on observations of the actions of an “initia-
tor” agent, a “supporter” agent uses plan recognition to hy-
pothesize the plans and goals of the initiator. The supporter
agent then proposes and plans for a set of subgoals it will
achieve to help the initiator. The approach is demonstrated in
an open-source, virtual robot platform.

Introduction
Current non-player characters (NPC) in games and online
settings are unable to meaningfully help a user beyond
scripted interactions. To create more believable and engag-
ing interactions, we want non-player characters that are able
to act as real team-mates and partners to achieve our specific
goals. Imagine, an NPC that from watching your actions can
infer when it should help you by attacking the same enemy
that you are attacking or provide cover for you by attacking a
different enemy. In short, we want to create non-player char-
acters that move beyond a small set of scripted helpful be-
haviors. This paper describes an approach to reasoning about
help and an architecture that will allow non-player agents to
engage in helpful activity.

However, providing help is a complex cognitive task, it
requires recognizing the goals of others, recognizing when
your acting can achieve open subgoals of someone else’s
plan, and even communicating your intentions to act in order
to help. In the worst case, identifying opportunities to help,
and generating an appropriate response, requires reasoning
over the entire joint space of actions for all agents. Thus, the
computational cost of reasoning about fully general cooper-
ative action is impractical for all but the simplest domains.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To avoid this cost, we will restrict the actions that our
method will consider. We explicitly rule out consideration of
“joint actions”, that is actions that require two agents to per-
form them like moving heavy objects. However, this is not as
significant a restriction as it might initially seem. Consider
two agents setting a table for dinner, where the first agent
sets the plates and glasses, and the second agent sets the
knives, forks, and spoons. Each agent’s subgoals and actions
are disjoint but together they contribute to a shared goal.

To establish terminology, this paper considers scenarios,
where one agent, the supporter, must decide how to act to
help a second agent, the initiator, achieve its goals. While
this paper assumes the supporter is a non-player character
in an interactive setting, no assumption is made about the
initiator which may either be a human or synthetic agent.
Further, we assume there is only one supporter agent, and
we leave the question of negotiation for multiple supporters
for future work.

To produce helpful behavior we propose combining plan
recognition with automated planning, using a lightweight
negotiation process to ensure the set of supporter goals is
acceptable to both agents. Critically all three modules work
with a single representation of actions and plans used in
(Geib 2009; Geib and Goldman 2011). Geib’s original work
focuses exclusively on plan recognition. In this work, we
will make use of his plan recognizer, but we will refer to it as
LEXrec, and introduce a planner we will call LEXgen to high-
light that they are based on the same action representation.
As we will discuss, having a single representation removes
the need to translate the representations used by different
reasoning components. To the best of our knowledge, this is
the first system to use the same representation for planning,
plan recognition and negotiation of cooperative activities.

In this setting, the supporter will infer the plans of the
initiator, specifically identifying open future subgoals that
contribute to the initiator’s plan. The supporter then nego-

Proceedings, The Twelfth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-16)

162

tiates with the initiator to find a subgoal it could helpfully
achieve. This involves a search in two spaces, first to confirm
the initiator’s goal, and second to identify an open subgoal
within the inferred plan that could be performed by the sup-
porter. Once negotiation is complete, the agreed upon goals
are passed to the planner to build a sequence of actions for
the supporter to execute that will help the initiator.

Notice that centralized planning for both agents is not
used to enforce collaborative behavior. Neither is a “unidi-
rectional control” relationship assumed to exist between the
initiator and the supporter such that the supporter can only
do what it is told to do by the initiator. For example, after
observing the initiator place spoons on the table, the sup-
porter might infer that the initiator is setting the table, and
the plates still need to be set. However, if during negotia-
tion the initiator denies the hypothesized goal (e.g., instead
of setting the table, they are counting forks) or the proposed
subgoal (e.g., only bowls need to be set), the supporter must
find an alternative goal/subgoal pair to help the initiator.

The chief contribution of this paper is the exposition of
help as a phenomena that results from the interaction of plan
recognition and planning. Our approach is demonstrated in
an open-source, virtual robot built using the Unity Game En-
gine. Thus this paper has two contributions: first, formaliz-
ing the reasoning required for producing helpful behavior,
and second, a platform to explore negotiation of helpful ac-
tions by a virtual agent.

This paper is organized as follows. First, we review re-
lated work. Next, we highlight the main components in our
approach: the plan recognizer, the planner, the negotiator,
their shared representation and integration. We then present
the results of our approach tested in three experimental do-
mains. Finally, we discuss the limitations of our approach
and highlight future directions.

Related Work
Help has been described as a primary property of a plan, or
implicit in multiagent actions. For example, (Pollack 1990;
Lochbaum, Grosz, and Sidner 1990) explicitly reason about
coordination and helping in the form of shared plans and
mutual beliefs. However, to establish such plans or beliefs
requires developing shared knowledge between the agents.
This is difficult to achieve in real-world settings. Another
formulation of help relies on action representations for mul-
tiagent joint actions (i.e., actions that require two or more
agents for their execution) (Brafman and Domshlak 2008;
Boutilier and Brafman 2001). However, such representations
do not address the case where helping is not a consequence
of such multiagent joint actions.

There also exists significant prior work on multiagent
planning (Brafman and Domshlak 2008; Brenner 2003;
Crosby, Jonsson, and Rovatsos 2014). Such work under-
stands joint action as the decentralized solving of constraint
optimisation problems (Modi et al. 2003). However, this
work has never directly addressed the problem of when one
agent can help another agent, rather than simply working on
a separate goal or plan.

Natural language dialogue as a means of coordinating ac-
tions between a robot and a human has been proposed as

a partial solution to understanding help (Fong, Thorpe, and
Baur 2003). The combination of natural language and goal
inference has been explored for the task of selecting actions
to contribute to an ongoing task, or for correcting the action
of a human already engaged in the task (Foster et al. 2008;
Giuliani et al. 2010). However, this work presupposes the
shared knowledge of an existing task. Finally, hybrid archi-
tectures have been used to integrate diverse components with
different representational requirements, particularly when
robotic agents must cooperate with a human (Hawes et al.
2007; Kennedy et al. 2007; Zender et al. 2007). Here we
propose a shared representation for all the components elim-
inating the problem.

Approach
As we have suggested, our approach to understanding help-
ful behavior relies on plan recognition, planning, and negoti-
ation using a shared action representation. Next we describe
the shared action representation and each of these compo-
nents.

Representing Actions and Plans
This work builds on the work of (Geib 2009) on plan recog-
nition and the idea that an action can be thought of as a func-
tion from states of the world to states of the world. Taking
this idea seriously, we will use a functional grammar for-
malism called Combinatory Categorial Grammars (CCGs)
(Steedman 2000) to define the actions and possible plans in
a domain.

First, consider a simple action, ai, that an agent can exe-
cute. Suppose that, regardless of the initial state of the world,
when ai is executed, it causes a transition to a state sA. Thus
ai is a function that, regardless of the initial state, results in
a transition to sA. We can define an atomic CCG category
A, as a zero arity function that results in a transition from
an state to sA and we could define the action as having this
functional category

ai := A.
However, very few actions result in a known transition in

every context, therefore we introduce complex CCG cate-
gories. Imagine a second action, aj , such that from state, sB,
results in a transition to sA. We can capture such a function
in a complex category defined using the backslash operator

aj := A\{B}.

This defines aj as function that has a single argument, B,
that must occur temporally before it in order to produce the
result, A. We could also imagine a third action, ak, that re-
sults in transition to state sA but only if an action taken after
it achieves sB (e.g. consider unlocking a door resulting in the
door being open, but only if the door is pulled open after it
is unlocked.) We can capture this action’s complex category
with the forward slash operator

ak := A/{B}.

The direction of the slash operators indicates where the cat-
egory’s argument must occur (temporally before or after) for
the function to produce its result.

163

grasp :=(Hold/{Lift})\{Reach}

Figure 1: A category definition for the action grasp

set-forks :=SetTable/{SetKnvs, SetSpns, SetPlts, SetGlsss} |
(CleanFrks/{PutAwayFrks})/{WashFrks}.

set-knives :=SetKnvs. set-spoons := SetSpns.
set-plates :=SetPlts. store-forks := PutAwayFrks.

...
reach :=Reach. lift := Lift.
grasp :=(Hold/{Lift})\{Reach}

Figure 2: Portion of a CCG action Lexicon.

Note that since the slash operators are defined over cate-
gories, we can now recursively define actions as functions
of arbitrary arity that have arguments in both directions.
For example we could define the action grasp as having a
functional category that results in Hold but only if before it
Reach is achieved and after it Lift is achieved. See Figure 1.
Effectively we have defined a Curried function(Curry 1977)
of arity two that has an argument both before and after it.
Note, in the implemented system both actions and categories
can have typed parameters that allow them to specify objects
they act on. However for simplicity of exposition, we will
use a propositional representation.

Following (Geib 2009), we will call a set of associations
of actions to categories an action lexicon. Further, follow-
ing (Baldridge 2002) we allow arguments within a set of
braces to be unordered with respect to each other. Thus in
Figure 2, actions with the categories SetKnvs, SetSpns, Set-
Plts, and SetGlsss all need to occur after the action set-forks
to achieve SetTable, but are unordered with respect to each
other. Note that in this paper, our running example of help-
ful behavior will be based on setting the table. Thus Figure 2
captures a portion of the lexicon for this domain. Further we
note that the action set-forks has more than one possible cat-
egory assigned to it in the lexicon. One in which the result
category is SetTable and one in which it is CleanFrks.

Plan Recognition with CCGs
We distinguish work in activity recognition (also called goal
recognition) (Liao, Fox, and Kautz 2005; Hoogs and Per-
era 2008; Blaylock and Allen 2003) and plan recognition.
Activity recognition creates a single unstructured label rep-
resenting the overarching goal of the observed actions. For
example, activity recognition would label a partial sequence
of pick and place actions of forks, knives, spoons, and plates
as an instance of setting the table. This kind of single la-
bel is insufficient for our purposes. To reason about help, we
must know which steps in the plan are already completed,
and which steps the supporter can still contribute to.

Plan recognition identifies not only the goal being pur-

sued by the agent but also the subgoals of the plan that have
already been accomplished, and those predicted to be fu-
ture steps in the plan. Thus, a plan recognition algorithm
produces the complete unexecuted frontier of a hierarchi-
cal plan for the goal(Kautz 1991; Blaylock and Allen 2003;
Geib 2009). For example, after observing picking and plac-
ing forks followed by knives, a plan recognition engine
would identify that the goal was to set the table, the cur-
rent subgoal was to set the knives, and that in the future, the
agent would be setting spoons, plates, and glasses.

(Geib 2009) views the plan recognition problem as an in-
stance of parsing observed actions based on a probabilistic
CCG lexicon that specifies the set of plans to be recognized.
Parsing is performed by using rightward and leftward func-
tion application and rightward function combination over
pairs of categories until only a single result remains or no
other operations area possible. For example, consider the
derivation in Figure 3 that parses the observation sequence:
[reach, grasp, lift] using the lexicon in Figure 2.

reach grasp lift
Reach ((Hold)/{Lift})\{Reach} Lift

<
(Hold)/{Lift}

>
Hold

Figure 3: Parsing Observations with CCG categories using
function application

As each observation is encountered, it is assigned one of
its categories from the lexicon. Rightward and leftward ap-
plication are then used in this case to combine the categories.
Parsing can then be seen as a search over the possible assign-
ments of categories to actions, function applications, and
compositions. More details of this approach can be found
in (Geib 2009; Geib and Goldman 2011).

Given a set of observed actions, and a CCG action lex-
icon, LEXrec performs probabilistic plan recognition using
this parsing algorithm. It does this by weighted model count-
ing. Given a set of observations, it generates the complete set
of possible parses for the observed actions consistent with
the grammar, along with a probability for each. These cat-
egory structures represent the hypothesized plans being ex-
ecuted by the agent. From them we can extract an ordered
set of subgoals that must still be executed for the result cat-
egory to be achieved, associated with the probability of the
hypothesis.

Note that LEXrec supports the possibility that a given
agent can be pursuing multiple, partially ordered plans.
Therefore, we will represent each hypothesized parse as a
pair:

(P, [C+
i]),

where P is the probability of the hypothesis, and the Ci rep-
resents the categories capturing any hypothesized plans. For
example, three possible hypotheses from the table setting ex-
ample (after observing the setting of forks) could be:

(.95, [{SetTable/{SetKnvs, SetSpns, SetPlts, SetGlsss}}]),
(.045, [{(CleanFrks/{PutAwayFrks})/{WashFrks}}]),
(.005, [{CountingFrks}]).

164

The first pair captures the hypothesis that with 95% prob-
ability the agent is following a plan to set the table, and still
has the subgoals to set the knives, spoons, and plates. The
second pair captures the hypothesis that with 4.5% prob-
ability the agent is cleaning the forks and still needs to
wash them and put them away (in that order). The third pair
captures the hypothesis that with only 0.5% probability the
agent is simply counting the forks and is done with its plan.
Thus, each hypothesis provides us with access to the proba-
bility of the plans being executed, the goals they are intended
to achieve, and the subgoals in the plan that have yet to be
achieved. This is the information that we need in order to
identify where the supporter can help the initiator. We will
discuss this next.

Subgoal Identification and Negotiation

Negotiating collaboration is a two step process. First a sup-
porter must confirm the objective of the initiator’s high-
level plan. Without this, the supporter could waste signifi-
cant amounts of time suggesting subgoals it could achieve,
but do not contribute to the initiator’s goal and plan. Us-
ing the hypothesis structures from LEXrec this is straightfor-
ward.

When a single plan is being pursued by the initiator, sort-
ing the hypotheses by their probabilities ranks the goals of
the plans being pursued by their likelihood. The negotiator
can extract the result of the complex category in the hypoth-
esis and query the initiator to verify if it is their actual goal.
Having identified the initiator’s goal, the supporter can then
attempt to identify an open future subgoal within the hy-
pothesized plan. For example, in the fork setting scenario,
the most likely hypothesis is

(.95, [{SetTable/{SetKnvs, SetSpns, SetPlts, SetGlsss}}]).

After confirming that SetTable is the initiator’s goal, the
supporter can suggest that it take on the subgoals of SetKnvs,
SetSpns, SetPlts, and SetGlsss, or a subset thereof. A maxi-
mally helpful agent will volunteer to do all of these subgoals.
However, the negotiation process could result in a number of
other outcomes, in which the supporter performs some sub-
set of the subgoals, or none of them at all.

It is worth noting, in this process the actual plan inferred
by the supporter is never shared with the initiator. This
means that there can be significant differences between the
initiator’s beliefs about the role of the subgoal the supporter
is going to execute in the joint plan and the supporter’s be-
liefs about this. However, as long as both agents have agreed
on the initiator’s goal and the subgoal to be performed by the
supporter we can say that the supporter is at least attempting
to help the initiator achieve their goal.

The process of negotiating collaboration is then a directed
search. First we search to identify the goal of the initiator’s
plan, and then to find appropriate subgoals from the set of
known unaccomplished subgoals of the plan the supporter
has inferred for the goal. Conducting this search is the role
of the negotiator component in our system.

1 Hold. .
2 ((Hold/{Lift})\{Reach}) : grasp

−1<

3 Reach ((Hold/{Lift})\{Reach}) : grasp
. . . .

4 reach. append-L
5 (Hold/{Lift}) : reach, grasp

−1<
6 Hold : reach, grasp Lift.
7 lift. append-R
8 Hold : reach, grasp, lift

Figure 4: Building a plan to achieve the category Hold. As
each argument is removed from the category an action that
achieves it is added to the front or the back of the plan.

Automated Planning with CCGs
Once negotiation is complete and has produced a set of sub-
goals for helping the initiator, the supporter must generate a
concrete sequence of actions to execute in the world. To do
so, we use a new planner, LEXgen(Geib 2016), that uses a
CCG action lexicon to guide the search for a plan.

Like other planners, a LEXgen planning problem consists
of an initial state, a goal state, and a set of actions. The ini-
tial state is simply the planner’s model of the initial state of
the world. Goals are a statement of a set of conditions that
the planner is trying to achieve. LEXgen also has a set of
precondition-postcondition projection rules for each action
that define how the world changes if the action is executed.
However, unlike other planners, LEXgen also has a CCG ac-
tion lexicon.

As we have already seen, each entry in an action lexicon
defines a direct link from a basic executable action to a state
that can be achieved by the action in the form of atomic or
complex categories. The main insight behind LEXgen is that
the structure of the categories assigned to an action in the
lexicon provides information about how to build a plan to
achieve the state captured by the result of each category as-
signed to each action.

Consider a case where we want to build a plan to achieve
Hold. The definition found in Figure 1 tells us that we can
build a plan to achieve this by executing grasp, as long as
before it we achieve a Reach and after Lift. LEXgen uses this
information to build plans by following the structure of the
categories. For example, Figure 4 shows LEXgen building
the complete plan for Hold. Note that unlike other planners,
actions can be added both at the front and the end of the
current plan.

Having covered how an individual plan is built, LEXgen
works in our system by being passed a category to achieve
by the negotiator. LEXgenthen searches over the space of all
of the realizations of all of the categories that have the passed
category as its result. Once a complete plan is built, the ac-
tion projection rules are used to verify that the plan achieves
the desired goal. If it does, the search for a plan stops. If not,
the search backtracks to consider alternatives.

Effectively, the lexicon provides heuristic guidance for the
search for a plan. A complete discussion of LEXgen is be-
yond the scope of this paper. We refer the interested reader
to (Geib 2016) for more details, but for our use, it is critical

165

Figure 5: Information flow diagram for our framework.

that the same action lexicon used for plan recognition is used
to guide planning. This means that no translation of terms or
even format is required for the negotiator to pass categories
from the recognizer to the planner. This greatly simplifies
the system’s construction.

Integration and Operation
LEXrec, LEXgen, and the negotiator are implemented as C++
libraries that expose APIs through ZeroC’s Internet Commu-
nication Engine (ICE), a modern distributed computing plat-
form (Henning 2004). This modularity allows each of the
components to be used as standalone services by a client ap-
plication implementing the framework in a traditional client-
server architecture. It also will allow us to conduct future
studies where these components could be replaced by a dif-
ferent implementations.

Figure 5 illustrates the flow of control between the plan
recognition, negotiation, and automated planning compo-
nents in the framework. At system initialization, both the
plan recognizer and planner are provided with the same
domain-dependent knowledge in the form of the action lex-
icon. The system is then provided with a set of observa-
tions of the initiator’s actions. These are fed into LEXrec,
which produces a set of hypotheses structures that contain
the initiator’s high-level goal and plan. This structure is then
handed over to the negotiation process which mediates the
negotiation between the supporter and initiator. Negotiation
proceeds by applying directed search to the hypothesis struc-
ture to produce a set of goals for the planner. The agreed
upon goals for the supporter are then passed to LEXgen to
generate plans that are then executed by the virtual robot
implemented in the unity game engine and shown in Fig-
ure 6. Again notice that all three of the reasoning compo-
nents are using the same representation of plans and actions,
and therefore no translation is required between these com-
ponents.

Experimental Demonstration and Validation
We now present three scenarios based on the table-setting
domain, to demonstrate our framework. The initial state and
observations for the three scenarios remains the same: the
initiator picks up two forks and and puts them down in their
appropriate positions on the table. The scenarios differ in the

Figure 6: Virtual robot implemented in Unity game engine
in a simple work environment.

results of the negotiation process. The process ends when
the planner builds a plan for the supporter to perform, and
the virtual robot executes the actions.

These scenarios are validated at two points: first, whether
LEXrec correctly interprets the observations, and second,
whether LEXgen produces the correct plans. The example
scenarios are designed so that we know how the negotia-
tion process will go and the correct results of the planning
process.

Note that total processing time required for each of these,
admittedly small-scale, scenarios, on contemporary hard-
ware, is below a second. For larger scenarios, and more am-
biguous domains, this is expected to increase. Prior work
with LEXrec(Geib 2009) shows that it scales very well even
with large domains. Our initial experience with LEXgen indi-
cates that it has state of the art runtimes and scaling. Finally,
the negotiator’s runtime is bounded by the interaction time
with the user. All of this gives us good reason to believe
that our system will scale to significantly larger problem do-
mains.

Scenario 1: The plan recognizer correctly identifies the ini-
tiator’s goal, and the initiator wants all of the outstanding
subgoals done by the supporter. The first hypothesis the ne-
gotiator considers is:

(0.95, [{SetTable/{SetKnvs, SetSpns, SetPlts, SetGlsss}}]).

In this case, there is no need for any significant search by
the negotiator. The negotiation takes the following form:

1. Supporter: Are you setting the table?
2. Initiator: Yes.
3. Supporter: Do you want me to set the knives?
4. Initiator: Yes.
5. Supporter: Do you want me to set the spoons?
6. Initiator: Yes.
7. Supporter: Do you want me to set the plates?
8. Initiator: Yes.

166

9. Supporter: Do you want me to set the glasses?
10. Initiator: Yes.
11. Supporter: I will now help you set the table.

Once completed, the SetKnvs, SetSpns, SetPlts, and Set-
Glsss categories are passed, without modification, into
LEXgen and the planner attempts to generate plans to achieve
the given categories. Since the hypothesis and the resulting
plan are both known beforehand, we can verify that the sys-
tem results match the desired outcome.

Scenario 2: Tests directed search to correctly identify the
initiator’s goal from hypotheses provided by LEXrec. In this
case, the search focuses on high-level goal identification,
with the initiator rejecting the hypothesis initially presented
by the supporter.

As in the last scenario, the most likely hypothesis is:

(0.95, [{SetTable/{SetKnvs, SetSpns, SetPlts, SetGlsss}}]).

However, when queried about the goal of SetTable, the ini-
tiator rejects this goal. The negotiator therefore considers
less likely hypothesis until the correct one is found. In this
case, considering the next most likely hypothesis:

(0.045, [({CleanFrks/{WashFrks})/{PutAwayFrks}}]),

correctly identifies the initiator’s goal to be that of cleaning
the forks, and negotiation proceeds as shown below:

1. Supporter: Are you setting the table?
2. Initiator: No.
3. Supporter: Are you cleaning the forks?
4. Initiator: Yes
5. Supporter: Do you want me to wash the forks?
6. Initiator: Yes.
7. Supporter: Do you want me to put the forks away?
8. Initiator: Yes.
9. Supporter: I will now help you clean the forks.

The subgoals are passed to LEXgen, the planner builds plans
for cleaning and putting away the forks, and the virtual robot
performs the plan.

Scenario 3: The initiator’s goal and plan is correctly iden-
tified, but one (or more) of the subgoals is rejected by the
initiator. In this case, the supporter, using directed search of
the hypothesis structure, negotiates with the initiator until it
finds subgoals it can perform or finds there are none. As in
the first scenario the initial hypothesis is:

(0.95, [{SetTable/{SetKnvs, SetSpns, SetPlts, SetGlsss}}]).

and negotiation now takes the following form:

1. Supporter: Are you setting the table?
2. Initiator: Yes.
3. Supporter: Do you want me to set the knives?
4. Initiator: Yes.
5. Supporter: Do you want me to set the spoons?
6. Initiator: No, I will do that myself.
7. Supporter: Do you want me to set the plates?
8. Initiator: No, I will do that myself.
9. Supporter: Do you want me to set the glasses?

10. Initiator: Yes.

11. Supporter: I will now help you set the table.

As is expected, only the goals for the knives and glasses are
passed to LEXgen for planning and execution. This demon-
strates that the initiator is not limited to letting the sup-
porter perform all the remaining subgoals in a hypothesis.
Our framework provides enough flexibility for the initiator
to decide how, they want to be helped, without the need for
elaborate reasoning on the part of the supporter.

Discussion
The three experimental scenarios demonstrate that our ap-
proach successfully generates cooperative plans. For each
scenario, LEXrec interprets the observations correctly, sup-
plying the correct hypothesis structure to the negotia-
tion process; and the negotiator subsequently presents
LEXgenwith the needed subgoals, with the planner produc-
ing the correct plans for execution on our virtual robot.

However, the framework also relied on certain assump-
tions concerning the knowledge of the initiator and sup-
porter. Note, the full structured plan that is inferred by the
supporter is never shared with the initiator. It is assumed that
if the goal of the plan is agreed on and the subgoal is agreed
on then the correspondence between the initiator’s version
of the plan and the supporters version of the plan are close
enough to each other to make the actions the supporter does
helpful to the initiator’s goal.

The frame work also assumes referential correspondence.
It is possible that different agents might use different terms
to refer to the same objects, actions, or goals. If there is suf-
ficient disagreement on such terms, negotiation will simply
break down in the face of failed communication. Likewise, a
high degree of overlap between the knowledge of the agents,
and a tighter correspondence in the names used to identify
domain concepts, should give rise to situations where co-
operation is more easily negotiated. This approach assumes
close correspondence between the initiator’s and the sup-
porter’s terminology used in negotiation.

This said, it is worth noting a final time that because all
three of the major reasoning components in our system are
using the same representation for actions there is no refer-
ential problem or need for translating between these compo-
nents. This significantly simplified our system building, and
will greatly reduce the effort to move the system from one
domain to another.

It is worth noting that this approach does not generate
plans with joint actions, that is actions where multiple agents
must coordinate to perform the same task (e.g., lifting a ta-
ble). Instead, it only generates independent action sequences
for the supporter once there is mutual agreement as to the
supporter’s subgoals. This is an area for future work. There
is also future work to be done in this framework on schedul-
ing of coordination. For example, if in the fork cleaning ex-
ample the initiator says they will wash the forks but allows
the supporter to put them away, it is important that the sup-
porter wait until the initiator has finished their task before
beginning.

In this work, we have focused on the importance of the
supporter being proactive in suggesting subgoals that could

167

help the initiator. We specifically avoided having the sup-
porter ask the initiator how it can help. If the initiator is a
human, and the supporter is an artificial agent, such an ap-
proach can force the human to respond to a large number
of requests (including clarifications) both as to what they
are doing and how the supporter could be of assistance. That
said, in cases where the initiator chooses to tell the supporter
what it wants done, this information can be passed directly
from the negotiator to the planner.

Conclusion
This paper presented a framework for combining plan recog-
nition and automated planning using the same action repre-
sentation to produce cooperative behaviour between a pair
of agents. Successful integration of the plan recognition
and planning components centered around appropriate sub-
goal identification by the plan recognizer, combined with a
lightweight negotiation process which generated goals to be
used by the planner for constructing appropriate action se-
quences. The generated plans were then demonstrated by
execution on a virtual robot platform. A set of experiments
demonstrated the potential of our approach, and helped mo-
tivate our ongoing and future work to extend these tech-
niques to more complex real-world situations.

Acknowledgements
The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
under grant no. 270273 (XPERIENCE, xperience.org) and
grant no. 610917 (STAMINA, stamina-robot.eu).

References
Baldridge, J. 2002. Lexically Specified Derivational Control
in Combinatory Categorial Grammar. Ph.D. Dissertation,
University of Edinburgh.
Blaylock, N., and Allen, J. 2003. Corpus-based statistical
goal recognition. In Proc. of IJCAI 2003, 1303–1308.
Boutilier, C., and Brafman, R. 2001. Partial-order planning
with concurrent interacting actions. JAIR 14:105–136.
Brafman, R., and Domshlak, C. 2008. From one to many:
Planning for loosely coupled multi-agent systems. In Proc.
of ICAPS 2008, 28–35.
Brenner, M. 2003. A Multiagent Planning Language. In
Proceedings of the Workshop on PDDL at ICAPS 2003.
Crosby, M.; Jonsson, A.; and Rovatsos, M. 2014. A single-
agent approach to multiagent planning. In Proc. of ECAI
2014, 237–242.
Curry, H. 1977. Foundations of Mathematical Logic. Dover
Publications Inc.
Fong, T.; Thorpe, C.; and Baur, C. 2003. Collaboration, di-
alogue, and human-robot interaction. In Robotics Research,
Volume 6 of Springer Tracts in Advanced Robotics. Springer.
255–266.
Foster, M. E.; Giuliani, M.; Müller, T.; Rickert, M.; Knoll,
A.; Erlhagen, W.; Bicho, E.; Hipólito, N.; and Louro, L.

2008. Combining goal inference and natural-language di-
alogue for human-robot joint action. In ECAI Workshop on
Combinations of Intelligent Methods and Applications.
Geib, C., and Goldman, R. 2011. Recognizing plans with
loops represented in a lexicalized grammar. In Proceedings
of the twenty fifth Conference on Artificial Intelligence, 958–
963. San Francisco, CA, USA: AAAI Press.
Geib, C. W. 2009. Delaying commitment in probabilistic
plan recognition using combinatory categorial grammars. In
Proc. of IJCAI 2009, 1702–1707.
Geib, C. W. 2016. Lexicalized reasoning about actions.
Advances in Cognitive Systems Volume 4:187–206.
Giuliani, M.; Foster, M. E.; Isard, A.; Matheson, C.; Ober-
lander, J.; and Knoll, A. 2010. Situated reference in a hybrid
human-robot interaction system. In Proc. of INLG, 67–75.
Hawes, N.; Sloman, A.; Wyatt, J.; Zillich, M.; Jacobsson, H.;
Kruijff, G.-J. M.; Brenner, M.; Berginc, G.; and Skočaj, D.
2007. Towards an integrated robot with multiple cognitive
functions. In Proc. of AAAI 2007, 1548–1553.
Henning, M. 2004. A new approach to object-oriented mid-
dleware. IEEE Internet Computing 8(1):66–75.
Hoogs, A., and Perera, A. A. 2008. Video activity recogni-
tion in the real world. In Proc. of AAAI 2008, 1551–1554.
Kautz, H. A. 1991. A formal theory of plan recognition and
its implementation. In Allen, J. F.; Kautz, H. A.; Pelavin,
R. N.; and Tenenberg, J. D., eds., Reasoning About Plans.
Morgan Kaufmann. 69–126.
Kennedy, W. G.; Bugajska, M. D.; Marge, M.; Adams, W.;
Fransen, B. R.; Perzanowski, D.; Schultz, A. C.; and Trafton,
J. G. 2007. Spatial representation and reasoning for human-
robot collaboration. In Proc. of AAAI 2007, 1554–1559.
Liao, L.; Fox, D.; and Kautz, H. A. 2005. Location-based
activity recognition using relational Markov networks. In
Proc. of IJCAI 2005, 773–778.
Lochbaum, K.; Grosz, B.; and Sidner, C. 1990. Models of
plans to support communication: An initial report. In Proc.
of AAAI 1990, 485–490.
Modi, P. J.; Shen, W.-M.; Tambe, M.; and Yokoo, M. 2003.
An asynchronous complete method for distributed constraint
optimization. In Proc. of AAMAS 2003, 161–176.
Pollack, M. 1990. Plans as complex mental attitudes. In
Cohen, P.; Morgan, J.; and Pollack, M., eds., Intentions in
Communication. MIT Press. 77–103.
Steedman, M. 2000. The Syntactic Process. MIT Press.
Zender, H.; Jensfelt, P.; Óscar Martı́nez Mozos; Kruijff, G.-
J. M.; and Burgard, W. 2007. An integrated robotic system
for spatial understanding and situated interaction in indoor
environments. In Proc. of AAAI 2007, 1584–1589.

168

