
Experiments on Learning Action Probability
Models from Replay Data in RTS Games

Santiago Ontañón
Computer Science Department

Drexel University
santi@cs.drexel.edu

Abstract

Recent work has shown that incorporating action prob-
ability models (models that given a game state can pre-
dict the probability with which an expert will play each
move) into MCTS can lead to significant performance
improvements in a variety of adversarial games, includ-
ing RTS games. This paper presents a collection of ex-
periments aimed at understanding the relation between
the amount of training data, the predictive performance
of the action models, the effect of these models in the
branching factor of the game and the resulting perfor-
mance gains in MCTS. Experiments are carried out in
the context of the µRTS simulator, showing that more
accurate predictive models do not necessarily result in
better MCTS performance.

Introduction
Informed Monte Carlo Tree Search algorithms are based on
incorporating action probability models into Monte Carlo
Tree Search (MCTS) in order to bias exploration of the tree.
Recent work has shown that these approaches can lead to
significant performance improvements in a variety of games.
For example, Silver et al. (Silver et al. 2016) showed im-
provements in game-play performance in the game of Go,
defeating one of the world’s top players. In our recent work
(Ontañón 2016; Uriarte and Ontañón 2016), we have shown
that significant gains can also be achieved in real-time strat-
egy games such as StarCraft and µRTS with models learned
using Bayesian Networks.

The goal of this paper is to gain a better understanding
of the relation between the action probability models and
the game-play performance achieved by MCTS in real-time
strategy (RTS) games. Specifically, this paper is a follow-up
to our work on using Bayesian models to learn action prob-
ability models for RTS games (Ontañón 2016). While in our
previous work, we showed the feasibility of using Bayesian
models to learn action probability models that make MCTS
perform significantly better, in this paper we present ex-
periments varying the conditions under which the Bayesian
models are learned, to understand the different aspects that
affect the performance of informed MCTS. All the experi-
ments are carried out in the context of the µRTS simulator.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Results show that, as expected, models trained from better
experts are stronger, more training data results in stronger
models, and that using richer feature sets results in more
accurate models. However, surprisingly, our results indi-
cate that more accurate models do not necessarily result
in stronger MCTS performance. Our hypothesis is that
when an action probability model concentrates the proba-
bility mass of the prediction in only very few actions, this
narrows down the search space of MCTS too much, result-
ing in weaker gameplay. We also hypothesize that ε-greedy
(which is the basis of the bandit policy used in our exper-
iments) is particularly affected by this, and perhaps other
bandit policies would be less affected.

The remainder of this paper is organized as follows. We
first provide some background on RTS games, followed by
a brief description of the Bayesian action probability model
used in our experiments. After that, we present a series
of five experiments to understand the performance of these
models and of informed MCTS in different circumstances.

Background
Real-time Strategy (RTS) games are complex adversarial do-
mains, typically simulating battles between a large number
of military units, that pose a significant challenge to both
human and artificial intelligence (Buro 2003). Designing AI
techniques for RTS games is challenging because (1) they
have huge decision spaces: the branching factor of a typical
RTS game, StarCraft, has been estimated to be on the or-
der of 1050 or higher (Ontanón et al. 2013); and (2) they are
real-time, which means that these games typically execute
at 10 to 50 decision cycles per second, leaving players with
just a fraction of a second to decide the next action, players
can issue actions simultaneously, and actions are durative.

The reason for which the branching factor in some RTS
games is so large is that players control many units, and
players can issue multiple actions at the same time (one
per unit). We will refer to those actions as unit-actions. A
player-action is the set of unit-actions that one player issues
simultaneously in a given game cycle. Thus players issue
only one player-action at any given time (which will con-
sist of zero or more unit-actions). To illustrate this, consider
the situation from the µRTS game shown in Figure 1. Two
players, max (shown in blue) and min (shown in red) con-
trol 9 units each. Consider the bottom-most circular unit

Artificial Intelligence in Adversarial Games: Papers from the AIIDE Workshop
AAAI Technical Report WS-16-21

9

"max"
player
units

"min"
player
units

Figure 1: A screenshot of µRTS. Square units are “bases”
(light grey, that can produce workers), “barracks” (dark
grey, that can produce military units), and “resources mines”
(green, from where workers can extract resources to pro-
duce more units), the circular units are “workers” (small,
dark grey) and military units (large, yellow or light blue).

in Figure 1 (a worker). This unit can execute 8 actions:
stand still, move left or up, harvest the resource mine to the
right, or build a barracks or a base in any of the two adja-
cent cells. In total, player max can issue 1,008,288 different
player-actions, and player min can issue 1,680,550 different
player-actions. Thus, even in relatively simple scenarios, the
branching factor is very large.

We will define an RTS game as a tuple G =
(P, S,A, Lu, Lp, T,W, sinit), where:

• P = {max,min} is the set of players.

• S is the set of possible states. We will write units(p, s)
as the set of units that belong to player p in state s.

• A is the finite set of unit-actions that units can execute.

• Lu(u, a, s) → {true, false}, is a function that re-
turns whether unit u can execute unit-action a in state
s. For simplicity, we will write Lu(u, s) = {a ∈
A|Lu(u, a, s) = true}, and ready(p, s) = {u ∈
units(p, s)|Lu(u, s) 6= ∅}.
• Lp(p, α, s) → {true, false}, is a function that returns

whether player p can execute player-action α in state s.
Given the set of ready units ready(p, s) = {u1, ..., un}, a
player-action α is defined as α = {(u1, a1), ..., (un, an)},
such that Lu(ui, ai, p) = true for 1 ≤ i ≤ n. Thus, the
ready function determines the set of units that can exe-
cute unit-actions, Lu determines which actions can each
of those units execute, which determines the set of pos-
sible player-actions, and Lp determines which of those
possible player-actions is legal.

• T (st, αmin, αmax) → S is the deterministic transition
function, that given a state st ∈ S at time t, and the
player-actions of each player (αmin and αmax), returns
the state that will be reached at time t + 1 (i.e., T is the
forward model of the game).

• W : S → {maxwins,minwins, draw, ongoing} is a
function that determines the winner of the game, if the
game is still ongoing, or if it is a draw.

• sinit ∈ S is the initial state.

Action Probability Models in MCTS
An action probability model captures the conditional prob-
ability distribution P (A|S) of the action A a player would
perform given a game state S. AlphaGO’s policy network is
an example of such action probability model. In the context
of RTS games, we could define action probability models
in different ways. For example, we could define unit-action
probability models (that capture the probability distribution
of the actions individual units perform) (Ontañón 2016),
squad-action probability models (that capture the distribu-
tion of actions that groups of units perform) (Uriarte and
Ontañón 2016), or player-action probability models (that
capture the distribution of player actions). In this paper we
will focus on unit-action probability models.

This section introduces a model validated in our previous
work to be useful both for unit-action models and for squad-
action models (Ontañón 2016; Uriarte and Ontañón 2016).
This model is based on the idea of the Naive Bayes classifier
(Rish 2001), and thus, has negligible training time.

Action-Type Interdependence Model (AIM)
Given a game state s, a player p, and a unit u ∈ ready(p, s),
we would like to model the probability P (a|s, u) with which
an expert would select each of the actions a ∈ Lu(u, s).

In order to model such probability distribution, we as-
sume that the game state s (from the perspective of u)
is represented by means of a feature vector x(u, s) =
{x1(u, s), ..., xn(u, s)} of length n, and that the distribution
is estimated from a training set I = {(s, u, a), ...}, where
each training instance has a game state s, a unit u, and the
unit-action a that was chosen by an expert. In the experi-
ments below, we report results with different feature sets.

While the Naive Bayes classifier often works very well
for classification purposes, it is well known that the proba-
bility distribution it estimates is not well “calibrated” (Ben-
nett 2000), i.e., values tend to be very extremely close to
either 0 or 1. To correct for this, we introduce a calibration
parameter κ > 0 into the model formulation.

In order to reduce the number of parameters to estimate
from data, we assume the existence of a function type(a),
which assigns a type to an action a from a predefined set
of action types (e.g., move, attack, etc.). So, even if ac-
tions such as “move up” and “move down” are different ac-
tions, they both have the same type, “move”. Let us define
legaltypesu(u, s) = {type(a)|a ∈ Lu(u, s)} as the set of
action types that unit u can perform in state s. The AIM
model is defined as follows:

P (a|u, s) = 1

Z
(P (a) L(type(a), T) F (a, u, s))

c

where Z is just a normalization constant to make all the
probabilities add up to 1, c = 1

1+κ(n+|T |) , and κ is a cal-
ibration parameter, whose effect is to make the probability

10

values less extreme. T = legaltypesu(u, s), and F (a, s) is
the product of the factors contributed by the features in x(s):

F (a, u, s) =
∏

i=1...n

P (xi(u, s)|a)

Finally, L(type(a), T) captures the probability that a certain
unit-action type is legal, given the type of the unit-action that
was selected:

L(t, T) =
∏
t′∈T

P (t′ is legal|t was selected)

Here, P (t′ is legal|t was selected) is the probability that an
action of type t′ was legal in a game state where an ac-
tion of type t was selected. P (t′ is legal|t was selected),
P (xi(u, s)|a) and P (a) are all estimated from the training
set1, and κ is determined via simple grid search using the
training set, testing values between 0.0 to 1.0 at intervals of
0.05, and keeping the value that maximizes the likelihood of
the training data given the model.

Moreover, as reported in our previous work (Ontañón
2016), learning a different model for each different unit type
in the game (workers, bases, barracks, etc. in µRTS), re-
sulted in better estimation of the probabilities. For the ex-
periments reported in this paper, we train a model per unit
type using the subset of the training data referring to such
unit type. If this subset is empty, then we use the whole
training set (i.e., if we have no training data to model the
way a specific unit is controlled, we just train a model with
the whole training set for such unit, hoping it will reflect
what the expert would have done).

Extending Unit-Action to Player-Action
Distributions
When a player-action for player p needs to be generated in
a game state s according to a unit-action probability model
that generates a probability distribution P , we use the fol-
lowing procedure:

1. Push all the units ready(p, s), to a queue Q in a random
order. Initialize an empty player-action α = ∅.

2. If Q is empty, return α.

3. Otherwise, remove the first unit u from Q. Let l = {a ∈
Lu(u, s)|Lp(p, α ∪ (u, a), s)}, i.e., the set of legal unit-
actions for u that when added to the player-action α still
keep α being legal.

4. If l = ∅, restart the process from 1.

5. Otherwise, sample one action a from l according to P ,
add it to α as: α = α ∪ (u, a), and go back to 2.

The previous process samples a player-action using the
unit-action distribution P , while respecting unit-action le-
gality (Lu) and player-action legality (Lp).

1All probability estimations from the training set were esti-
mated using Laplace estimation. For example, when estimating
P (a), we add 1 to the numerator, and |A| to the denominator, re-
sulting in P (a) = number of times a is selected+1

size of the training set+|A|

Informed Monte Carlo Tree Search
We incorporated the models described above into Monte
Carlo Tree Search (MCTS), a family of planning algorithms
based on sampling the decision space rather than exploring
it systematically (Browne et al. 2012). MCTS employs two
different policies to guide the search: (1) a tree policy deter-
mines which nodes in the tree to explore (i.e., given a node
in the tree, which of its children to consider next), and, (2)
each time a new node is added to the tree, a simulation (a
playout or rollout) of how the game would unfold from that
state until the end of the game (or until a predefined maxi-
mum playout length) is executed by using a default policy to
generate actions for both players.

Thus, the action probability models learned above can be
used in MCTS in two ways: to define tree policies or default
policies. While an action probability model can be used di-
rectly as a default policy, in order to be used as a tree policy,
it needs to be incorporated into a multi-armed bandit policy.

Informed ε-Greedy sampling. As any MAB policy, in-
formed ε-greedy sampling will be called many iterations in
a row. At each iteration t, an action at ∈ A is selected, and
a reward rt is observed.

Given 0 ≥ ε ≥ 1, a finite set of actions A to choose
from, and a probability distribution P , where P (a) is the a
priori probability that a is the action an expert would choose,
informed ε-greedy sampling works as follows:

• Let us call rt(a) to the current estimation (at iteration t)
of the expected reward of a (i.e., the average of all the
rewards obtained in the subset of iterations from 0 to t−1
where a was selected). By convention, when an action
has not been selected before t we will have rt(a) = 0.

• At each iteration t, action at is chosen as follows:

– With probability ε, choose at according to the proba-
bility distribution P .

– With probability 1 − ε, choose the best action so far:
at = argmaxa∈Art(a) (ties resolved randomly).

In order to test the proposed models in the context of
RTS games, we use a modification of the NaiveMCTS algo-
rithm (Ontanón 2013). NaiveMCTS is a MCTS algorithm
designed to handle RTS games: it supports durative and si-
multaneous actions and uses a bandit strategy called naive
sampling, which handles the combinatorial number of ac-
tions in RTS games. Naive sampling internally uses a col-
lection of ε-greedy sampling strategies. For the experiments
in this paper, the modification of NaiveMCTS consisted in
replacing these ε-greedy sampling strategies by informed ε-
greedy. We call the resulting algorithm INMCTS.

Let us now present a series of experiments to evaluate sev-
eral key aspects concerning the application of action proba-
bility models to MCTS algorithms.

Training Data
We generated training data following the same procedure as
(Ontañón 2016): we selected six bots built-in into µRTS:
(LSI (Shleyfman, Komenda, and Domshlak 2014), NaiveM-
CTS (Ontanón 2013)), WorkerRush, LightRush, HeavyRush,

11

and RangedRush), and played a round-robin tournament (all
36 combinations of each of the 6 bots playing as player 1
and as player 2) in 8 different maps2, resulting in a total of
288 = 36 × 8 games. The configuration used for NaiveM-
CTS and LSI was the default one as implemented in µRTS,
where playouts are limited to be at most 100 game frames
long, after which an evaluation function is applied.

We repeated this round-robin tournament four times giv-
ing NaiveMCTS and LSI a computation budget of 500, 1000,
2000, 5000, and 10000 playouts per game frame respec-
tively, resulting in five sets of game logs used as training
data for the experiments reported in the rest of this paper.

We experimented with three different ways of calculating
the feature vector x(u, s) used to represent each game state:

• fs1: no features at all, x(u, s) = ∅.
• fs2: x(u, s) composed of eight features: the number of

resources available to the player, the cardinal direction
(north, east, south, west) toward where most friendly units
are, the cardinal direction toward where most enemy units
are, whether we have a barracks or not, and four features
indicating the type of the unit in the cell two positions
north, east, south or west.

• fs3: x(u, s) composed of 46 features, which include the
eight above, but also: hit points, attack range and re-
sources of the unit, the content of all the cells in a radius
of 3 cells, plus a few additional combined features3.

Unless otherwise specified, by default we use set fs2.

Experiment 1: Source of the Training Data
In this first experiment, we evaluate the performance that can
be expected from the proposed model given different sets of
training data (generated by different bots). Table 1 shows:

• Exp. LL: the accuracy of the model in predicting the
actions of the bot (evaluated using a 10 fold cross val-
idation), and measured as the expected log-likelihood
of the actual action the bot performed. A value of 0
would mean perfect predictions, and lower values rep-
resent worse predictions. As the table shows, the Work-
erRush, LightRush, HeavyRush, and RangedRush which
implement hard-coded strategies can be predicted more
accurately than LSI and NaiveMCTS. Moreover, LSI and
NaiveMCTS become more predictable the larger their
computational budget, which is also expected.

• Gameplay Strength (Original): the gameplay strength of
the original bot (average score where winning counts as
1 point, and ties count 0.5 points). This is evaluated by
making each AI play against each of the six AIs used for
generating the training data, plus the two random bots in
all eight maps (repeating each match 10 times). As we

2Specifically, we used the maps OneBaseWorker8x8, TwoBas-
esWorkers8x8, ThreeBasesWorkers8x8, FourBasesWorkers8x8,
OneBaseWorker12x12, TwoBasesWorkers12x12, ThreeBasesWork-
ers12x12, and FourBasesWorkers12x12 included with µRTS.

3Source code with the specific features available
at: http://www.cs.drexel.edu/∼santi/AIIDE-RTSWS-2016-
microRTS-source-code.zip

Table 1: Accuracy and gameplay strength of the AIM mod-
els compared to the bots on which they were trained.

Gameplay Strength
Bot Exp. LL Original AIM
Random - 0.077 -
RandomBiased - 0.197 -
WorkerRush -0.892 0.764 0.518
LightRush -0.441 0.602 0.211
HeavyRush -0.345 0.440 0.161
RangedRush -0.318 0.446 0.139
LSI (500) -1.229 0.788 0.187
LSI (1000) -1.211 0.839 0.218
LSI (2000) -1.193 0.886 0.213
LSI (5000) -1.175 0.921 0.247
LSI (10000) -1.146 0.921 0.284
NaiveMCTS (500) -1.206 0.837 0.197
NaiveMCTS (1000) -1.193 0.879 0.205
NaiveMCTS (2000) -1.181 0.902 0.227
NaiveMCTS (5000) -1.169 0.938 0.247
NaiveMCTS (10000) -1.140 0.935 0.292

can see, LSI and NaiveMCTS achieve the highest perfor-
mance, specially when given a larger computation budget,
but performance seems to plateau when given a budget of
5000 or more playouts. For comparison, we include the
gameplay strength of the two stochastic bots that come
built-in into µRTS (Random and RandomBiased).

• Gameplay Strength (AIM): the gameplay strength when
we take the AIM model and use it to directly play
the game (sampling actions stochastically following the
model’s probability distribution, without using MCTS).
We see that the model learned from WorkerRush achieves
the highest performance (probably because this is a very
aggressive and deterministic bot, which not too hard to
predict). Training from LSI and NaiveMCTS, we see that
the model performs better when training from bots with
larger computation budgets. This is probably since the
bots converge to a more stable strategy, easier to predict.

Experiment 2: Feature Set
Table 2 shows the accuracy of the AIM models, as well as
their gameplay strength when using different feature sets.
As expected, when using more features, the resulting models
are more accurate (lower expected loglikelihood), and also
tend to achieve higher gameplay strength. Moreover, as we
will show in Experiment 5, when incorporating these models
into MCTS, the resulting performance of MCTS does not
increase accordingly, which was unexpected to us.

Experiment 3: Amount of Training Data
This section presents an experiment concerning the amount
of training data, in order to determine whether we gener-
ated enough training data for our models. Table 3 shows
that performance when training from a small amount of data
(10% of the training set) is already almost identical to that
achieved with 100% of the data (although performance does
improve slightly with more training data). Results indicate

12

Table 2: Accuracy and gameplay strength of AIM models
trained with different feature sets.

Expected Loglikelihood
Bot AIM (fs1) AIM (fs2) AIM (fs3)
WorkerRush -1.146 -0.892 -0.780
LSI (500) -1.245 -1.229 -1.217
LSI (10000) -1.198 -1.146 -1.115
NaiveMCTS (500) -1.225 -1.206 -1.195
NaiveMCTS (10000) -1.173 -1.140 -1.113

Gameplay Strength
Bot AIM (fs1) AIM (fs2) AIM (fs3)
WorkerRush 0.288 0.518 0.530
LSI (500) 0.110 0.187 0.245
LSI (10000) 0.207 0.284 0.298
NaiveMCTS (500) 0.116 0.197 0.250
NaiveMCTS (10000) 0.205 0.292 0.259
average 0.185 0.296 0.317

Table 3: Accuracy and gameplay strength of AIM models
trained with different amount of training data.

Expected Loglikelihood
Bot 10% 25% 50% 100%
WorkerRush -0.908 -0.891 -0.878 -0.892
LSI (500) -1.234 -1.230 -1.229 -1.229
LSI (10000) -1.150 -1.510 -1.149 -1.146
NMCTS (500) -1.215 -1.211 -1.205 -1.206
NMCTS (10000) -1.154 -1.146 -1.148 -1.140

Gameplay Strength
Bot 10% 25% 50% 100%
WorkerRush 0.547 0.553 0.568 0.518
LSI (500) 0.152 0.190 0.192 0.187
LSI (10000) 0.273 0.291 0.265 0.284
NMCTS (500) 0.102 0.138 0.188 0.197
NMCTS (10000) 0.294 0.209 0.216 0.292
average 0.274 0.277 0.286 0.296

that more training data might result in further small improve-
ments in the model accuracy.

Experiment 4: Effect on the Branching Factor
A common explanation for why the policy network used by
AlphaGO helps improve the performance of MCTS is that,
in practice, it reduces the branching factor by assigning low
probability values to a fraction of the possible actions. This
section presents an analysis of the reduction in the branching
factor that we get when using our proposed models. The left-
most column in Table 4 shows the average number of unit-
actions that a unit can perform in the game states reached
when different bots play. As we can see, even if the theo-
retical maximum number of unit-actions in µRTS is 69, in
average, a bot must select one among about 5 actions per
unit. The right-most column in the table shows the aver-
age number of units in a game state (per player) so that we
can have an idea of the number of possible player-actions
(approximately nm, where n is the average unit-actions per
unit, and m is the average number of units).

The three middle columns show the average number of
unit-actions that concentrate different percentages of the

Table 4: Branching factor (number of legal unit actions) in
the states in the training data (100%), and the number of
actions that result by sorting the actions by decreasing prob-
ability and keeping the ones that account for 99%, 90% or
50% of the probability mass.

Bot 100% 99% 90% 50% Avg. units
fs1 5.02 3.75 3.54 1.90
fs2 5.02 3.91 3.33 1.77 19.49
fs3 5.02 4.00 3.16 1.71

probability mass, as predicted by the AIM models using
different feature sets. For example, when using the feature
set fs2, in average, if we just consider the first 3.33 unit-
actions, we are already considering 90% of the probability
mass. This means that, in practice, using an AIM model
with feature set fs2, and an informed ε-greedy policy, we
only need to consider about 66% (3.335.02 ≈ 0.66) of the unit-
actions, and we would already be considering all of the most
likely actions according to the model. As we can see, us-
ing different feature subsets achieves different reductions in
branching factor, with feature set fs3 cutting more drasti-
cally (except for the 99% column, which does not follow
this trend for some reason we are still investigating).

In the final experiment below, we will evaluate the perfor-
mance of the AIM models in the context of MCTS.

Experiment 5: Effect on MCTS
The last experiment is designed to see how the performance
of the AIM model influences the performance of MCTS.
Table 5 shows the gameplay performance for several MCTS
configurations (always using a computation budget of 500
playouts per game cycle). We used the default configuration
parameters of LSI, and the three parameters of NaiveMCTS
set to ε0 = 0.4, εl = 0.33 and εg = 0.0). The first two
rows show the baseline MCTS bots used for generating the
training data, showing that they achieve a score of 0.788 and
0.837 respectively (remember the maximum score is 1.00,
corresponding to winning every single game in every single
map against every single opponent).

The next 9 rows of the table show the performance of IN-
MCTS. In these 9 configurations, we use the AIM model
learned from the WorkerRush as the playout policy (shown
in our previous work to be the best for playouts), and we
change the AIM model used in the tree policy. All these
experiments used a computation budget of 500 playouts per
game cycle. As we can see, surprisingly, the highest per-
formance is achieved using feature set fs1 (no features!).
Our hypotheses is that given that naive sampling relies on
ε-greedy, if an action has a very low probability according
to the model, this action will never be selected regardless of
the computation budget. Thus, models that cut the branch-
ing factor too much, might be performing pruning too ag-
gressively. However, the model learned using fs1, still cap-
tures the overall distribution of actions, but at a coarser level,
which seems to help guide MCTS, without pruning as ag-
gressively, resulting in better performance. Comparing the
performance achieved using fs1, we see that it is in the same

13

Table 5: Gameplay performance of IMCTS.

Bot Score
Original bots

LSI 0.788
NaiveMCTS 0.837

INMCTS (fs1)
INMCTS(AIM(WR),AIM(WR)) 0.935
INMCTS(AIM(WR),AIM(NMCTS5000)) 0.946
INMCTS(AIM(WR),AIM(NMCTS10000)) 0.937

INMCTS (fs2)
INMCTS(AIM(WR),AIM(WR)) 0.921
INMCTS(AIM(WR),AIM(NMCTS5000)) 0.901
INMCTS(AIM(WR),AIM(NMCTS10000)) 0.922

INMCTS (fs3)
INMCTS(AIM(WR),AIM(WR)) 0.893
INMCTS(AIM(WR),AIM(NMCTS5000)) 0.894
INMCTS(AIM(WR),AIM(NMCTS10000)) 0.897

NaiveMCTS (filtering actions)
INMCTS(AIM(WR), no filter) 0.876
INMCTS(AIM(WR), 25% filter) 0.814

order or a bit higher than that achieved by NaiveMCTS when
given a computation budget of 10000 playouts per game
game cycle, which is remarkable.

An interesting question to be answered in future work
is whether this is an anomaly observed because of the re-
liance of naive sampling on ε-greedy, or whether other ban-
dit strategies would also suffer from this problem.

Finally, the bottom two rows show the performance
achieved by using, as the unit probability model, a simple
model that, selects a random set of actions (of a predefined
size) and assigns them 0 probability, the remaining actions
are given a uniform probability (this is to simulate the re-
duction in branching factor due to the models, but with-
out actually using any kind of probability estimation). We
tested both using no filtering of the actions (i.e., just using a
uniform distribution), and filtering out 25% of the actions,
which is about the amount of actions that were assigned
probability values of near zero when using the AIM models.
The results show that performance goes down with respect
to not filtering, indicating that the performance of INMCTS
comes not from just reducing the branching factor, but from
the learned probability model.

Conclusions
This paper has presented a collection of experiments to un-
derstand the effect of different factors such as the training
set, feature set and amount of training data have on the per-
formance of action probability models. We also present
results on how the performance of these action probability
models affects the performance of MCTS.

Our results show that, when used in conjunction with our
proposed informed naive sampling, probability models that
discard too many of the possible actions seem to perform
worse than those that perform a more coarse grained predic-
tion. It is unclear to us at this point whether this is due to
pruning the tree too aggressively, of because the models are
pruning aggressively while not being all that accurate. As

pat of our future work, we would like to study more accurate
models (such as deep neural networks, as used in AlphaGO),
and see if this effect can also be observed.

Also, we want to investigate the effect of incorporating
probability models into other bandit policies, to see if the
same trends are observed. In order to evaluate this, however,
we must have in mind that policies like UCB1 cannot be ap-
plied directly to RTS games, since the large branching factor
makes them perform very poorly. A possibility is modifying
the way the MCTS is constructed (for example (Balla and
Fern 2009) constructed a tree that only considered one unit
per tree node, instead of the whole combinatorics of player-
actions). Additionally, we are currently studying these con-
cepts in the context of StarCraft, and seeing if the branch-
ing factor reduction that can be achieved is enough to help
MCTS scale up to playing the full game of StarCraft.

References
Balla, R.-K., and Fern, A. 2009. UCT for tactical assault
planning in real-time strategy games. In Proceedings of IJ-
CAI 2009, 40–45.
Bennett, P. N. 2000. Assessing the calibration of naive
bayes’ posterior estimates. Technical Report CMU-CS-00-
155, Carnegie Mellon University.
Browne, C.; Powley, E.; Whitehouse, D.; Lucas, S.; Cowl-
ing, P.; Rohlfshagen, P.; Tavener, S.; Perez, D.; Samoth-
rakis, S.; and Colton, S. 2012. A survey of monte carlo
tree search methods. Computational Intelligence and AI in
Games, IEEE Transactions on 4(1):1–43.
Buro, M. 2003. Real-time strategy games: a new AI research
challenge. In Proceedings of IJCAI 2003, 1534–1535. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Ontanón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A Survey of Real-Time
Strategy Game AI Research and Competition in StarCraft.
IEEE Transactions on Computational Intelligence and AI in
Games (TCIAIG) 5:1–19.
Ontanón, S. 2013. The combinatorial multi-armed bandit
problem and its application to real-time strategy games. In
Ninth Artificial Intelligence and Interactive Digital Enter-
tainment Conference.
Ontañón, S. 2016. Informed monte carlo tree search for real-
time strategy games. In Proceedings of IEEE-CIG 2016.
Rish, I. 2001. An empirical study of the naive bayes classi-
fier. In IJCAI 2001 workshop on empirical methods in arti-
ficial intelligence, volume 3, 41–46. IBM New York.
Shleyfman, A.; Komenda, A.; and Domshlak, C. 2014. On
combinatorial actions and CMABs with linear side informa-
tion. In ECAI, 825–830.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of go with deep neural networks and tree search.
Nature 529(7587):484–489.
Uriarte, A., and Ontañón, S. 2016. Improving monte
carlo tree search policies in starcraft via probabilistic models
learned from replay data. In Proceedings of AIIDE 2016.

14

