
A Programming Model for Boss Encounters in 2D Action Games

Kristin Siu,1 Eric Butler,2 and Alexander Zook1

1School of Interactive Computing, Georgia Institute of Technology
2Department of Computer Science & Engineering, University of Washington

{kasiu, a.zook}@gatech.edu; edbutler@cs.washington.edu

Abstract

Boss fights are a memorable and climatic point of many
games. In this work we present a programming model
for defining boss experiences in 2D action games. The
domain we focus on is characterized by real-time move-
ment through a continuous space in which the player
and opposing boss damage each other through phys-
ical collisions, and player and boss behavior is gov-
erned primarily by finite state machines. Our program-
ming model consists of primitive systems such as kine-
matic physics to store object state and detect collisions
paired with finite state machines to define behavior. We
describe our model and demonstrate its expressiveness
with examples of three classic boss fights from games in
The Legend of Zelda, Castlevania, and Sonic the Hedge-
hog. Our future goals include procedural generation of
boss encounters, and we report on the research chal-
lenges involved in achieving this goal.

Introduction
Whether it is the first test of a player’s skill or the climatic,
final battle, boss fights are some of the most memorable mo-
ments in games. Compared to encounters with normal ene-
mies, boss fights are intended to challenge the player, often
acting as gatekeepers for the player’s progression through
the game. These encounters are used to ensure players have
attained sufficient skill or completed the requirements nec-
essary to progress further. When players overcome bosses,
they are awarded in-game rewards, progress, and achieve-
ment, not to mention a sense of accomplishment.

We are interested in procedurally generating boss experi-
ences similar to the boss encounters in classic 2D action or
adventure games such as The Legend of Zelda series. These
encounters are characterized by combat based around colli-
sions with an enemy hitbox in a 2D plane using real-time
motion in continuous space.

All content generation methods, at a broad level, reduce to
searching a space of design possibilities (Shaker, Togelius,
and Nelson 2015). For example, 2D level generation of-
ten is modeled as searching a space of possible assignments
of tiles in a discretized 2D grid world, where the search is
guided by features such as how the player moves through the

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

space. While the methods for generation and objective func-
tions can all be complex, the representation of a 2D grid-
based level is clear.

However, with bosses, a representation suitable for gener-
ation is non-obvious. Traditionally bosses are implemented
in general-purpose programming languages as they involve
complex, state-based, and usually reactive behaviors. To
generate these boss experiences we need a representation
for bosses that is sufficiently expressive to capture the parts
of the design space we care about while being limited and
structured enough to make generation tractable.

In this paper, we present a programming model for repre-
senting boss experiences similar to classic 2D action games.
Boss experiences are scenarios where a player interacts with
a boss object that has patterned behavior; scenarios end
based on termination criteria. Boss objects are physics ob-
jects enabling collisions—spanning roaming entities in the
world (Moldorm in The Legend of Zelda) to massive set
pieces (Sigma in MegaMan X). Behaviors govern the pat-
terned movements and actions of bosses, and termination
criteria govern when the experience ends (potentially in suc-
cess or failure for the player).

Our programming model uses finite state machines to
describe behavior paired with component-based systems
to represent game state and perform calculations such as
physics and hit points. This model is an important step
towards generating boss experiences in this design space.
The scope of this programming model is currently limited to
specifying physical locations and controlling behavior. As-
pects such as graphics and sound design, while important to
boss design, are beyond the scope of this work.

To demonstrate the expressiveness of the model, we built
a prototype that allows for the implementation of playable
boss experiences. We describe three classic boss fights we
replicated in it: Moldorm from The Legend of Zelda, Drac-
ula from Castlevania, and Dr. Eggman from Sonic the
Hedgehog. In the future we plan to explore techniques to
automatically generate bosses using our model.

Related Work
Our programming model defines both the physical structure
and behavior of a boss. Several researchers have gener-
ated in-game entity structures including ship hulls (Liapis,
Yannakakis, and Togelius 2011), flower shapes (Risi et al.

Experimental AI in Games: Papers from the AIIDE Workshop 
AAAI Technical Report WS-16-22

86



Figure 1: The Moldorm boss from A Link to the Past

2012), and ship weapon patterns (Hastings, Guha, and Stan-
ley 2009). By contrast, our programming model targets a
broad class of 2D entities and allows for connected parts
with independently governed behaviors (though we do not
yet generate entities).

Several languages have been developed to facilitate au-
thoring behaviors for different domains. Examples include
Façade’s A Behavior Language (Mateas and Stern 2002)
for agent responses to players, the Versu storytelling plat-
form’s1 (Evans and Short 2014) social model of small-group
interactions, and Prom Week’s “social physics” model (Mc-
Coy et al. 2014) for characters’ personal and social traits and
events. By contrast, our model primarily models movement-
based behaviors with simplified patterns that are amenable
to generation rather than purely human scripting. Osborn et
al. (2015) formally model combat in games in terms of op-
erational logics (Mateas and Wardrip-Fruin 2009), but not
at the level of a programming model. Instead, we target the
specific entities in combat, rather than the scenario and sys-
tems encompassing combat as a whole.

Game description languages encompass the broader class
of representations used to specify the entities, behaviors, and
termination criteria associated with classes of games. Ex-
amples include turn-based competitive games in The Stan-
ford Game Description Language (Love et al. 2008), puz-
zle games in Puzzlescript2, and adversarial board games
in the EGGG (Orwant 2000) and Ludi (Browne and Maire
2010). By contrast, our programming model targets a space
of real-time, continuous behaviors. The Video Game De-
scription Language (VGDL) (Schaul 2013) was developed
to model arcade-style 2D games like Frogger, Space In-
vaders, and Pacman. Unlike the VGDL our programming
model supports complex patterns of entity behavior and fa-
cilitates the creation of component-based composite entities.
Casanova (Maggiore et al. 2012) is a DSL for game pro-
gramming that allows for straightforward expression of up-
date/draw loops and declarative rules, and supports efficient
collision detection. Our programming is more high-level

1http://versu.com/
2http://www.puzzlescript.net/

and more restricted, focusing on finite state machines as the
primary update mechanism.

Domain
From ambient interactions to odious overlords, the space
of boss experiences varies widely across games and genres.
Here we focus on boss experiences in classic 2D action and
adventure games. Classic 2D boss designs often use a 2D
top-down camera perspective (e.g., The Legend of Zelda se-
ries and Gradius) or a side-scrolling perspective (e.g., Castl-
evania, MegaMan, and Sonic the Hedgehog). The combat
in these games is characterized by real-time movement in
continuous space, with attacks primarily based on collisions
with a static or moving foe.

Boss experiences in these games share many structures. A
player avatar operates in a 2D environment with an oppos-
ing entity (or entities)—the boss. Both the player avatar and
the boss entity are given a range of 2D movement and a set
of combat mechanics that each can use against each other.
These combat mechanics are frequently (but not always) im-
plemented through the use of hit boxes and attack boxes: the
boss uses its body or projectiles to try to hit the player and
cause damage, while the player tries to use its attacks to hit
certain weak points in the boss and cause damage.

Classic 2D bosses act based on state-based scripted be-
haviors to follow patterns and change in reaction to the
player’s performance. For example, a boss may begin us-
ing new attacks after a player has successfully lowered its
health parameter to a particular threshold. These behav-
iors follow patterns akin to finite state machines, with the
boss transitioning through phases or attack patterns during
the fight. Finite state machines are a typical representation
used in implementations of bosses in this domain (Milling-
ton and Funge 2009). The experience ends when the player
overcomes (or succumbs to) the boss in some way, such as
reducing a health parameter to zero or surviving for a set
amount of time. We capture common facets of 2D boss de-
sign in our modeling language for describing bosses.

Model Description
We now describe our programming model for bosses. Our
model combines finite state machines to govern behavior
with component-based systems such as physics and health.
These systems expose primitive properties of the player,
boss, and any other objects in the experience. A kinemat-
ics physics system exposes information about physical prop-
erties and geometry. A health system exposes information
about boss vulnerabilities, and provides update routines such
as collision detection.

Boss behavior is defined by a set of state machines, which
we refer to as behavior graphs, whose actions modify the
state of the primitives (e.g., controlling the velocity of an
object) with transitions conditioned on the state of the prim-
itives (e.g., reacting to a collision with the player). These
behavior graphs can themselves have update functions and
multiple behavior graphs can operate in parallel: for exam-
ple, one graph may control how the main body of a boss
should move, while another graph is responsible for track-

87



ing health and hit boxes. Both the player and bosses are fully
described by the state of initial primitive objects (e.g., the
physical shapes of the boss) and the behavior graphs that,
together with built-in systems such as physical simulation,
govern how the player and boss update over time and react
to player actions.

As illustration we will construct the reoccurring Moldorm
boss from The Legend of Zelda series using our model (Fig-
ure 1). We first describe the physics primitives that give the
boss its form. We next describe the health primitives that al-
low the boss to interact with the player. Finally, we describe
the behavior graphs that allow these primitives to change
and thus define how the boss experience progresses.

Primitive State and Systems
The physics and health systems capture common elements
shared by a large number of bosses. For example, all of the
bosses we are interested in use kinematic 2D physics where
collision detection plays a large role in boss behavior. The
physics systems consist of two primary parts: a set of plain
data types storing game state, and update functions that im-
plement the mechanics of the system. This is similar to the
component-entity model of representing game objects (Mar-
tin 2007), where state (e.g., physical location) is stored in
components that are only data (no behavior). Behavior for
all related components is implemented in the update func-
tion of a single system. For our prototype, we implemented
two primary systems: 2D kinematic physics and a health
system that tracks hit boxes and player/boss damage. How-
ever, this model is not strongly tied to these particular sys-
tems and can be instantiated with variations of these systems
or even entirely new systems.

Physics. The player and bosses can have (potentially mul-
tiple) physical components comprised of a position and ori-
entation in 2D space with linear and angular velocities and
2D shape. Our prototype supports circles and boxes for
shapes and uses a simple kinematic model. The update func-
tion updates positions of all objects based on current veloc-
ities and detects collisions. Collisions are exposed and can
be used as conditions for behaviors.

Now, consider Moldorm. Moldorm is a segmented worm
typically composed of five pieces linked in a chain: a head,
three body segments, and a tail. In our model, Moldorm
is constructed from 5 physical objects, each with a circular
shape of sequentially decreasing size. Figure 2a shows the
initial state of Moldorm’s physical objects.

Note that the physical environment of a boss experience
can be an important aspect of boss design. Moldorm’s boss
area is a octogonal platform with a hole in the center. Part
of the challenge is that Moldorm can easily knock the player
off the edge or into the hole. Our model encompasses en-
vironments using the same elements as the player and boss.
As this geometry is typically static, the key difference is that
behaviors are not attached to these objects.

Health. Many bosses have health mechanics, where the
player’s victory condition in a boss experience is to dam-

Node Type Action Description
SelectRandom Selects and assigns a random value

(e.g., Moldorm’s velocity).
Set Sets a value (e.g., velocity).
ChaseTarget Sets a target for an object (e.g.,

Moldorm’s head is the target for its
body parts).

DoNothing Maintains current state (e.g., used to
maintain current physics update).

SetHitbox(es) Turns a hitbox on or off.
TriggerEmitter(s) Creates game object(s).
RemoveObject Destroys an object (e.g., a projec-

tile).
Edge Type Transition Predicate
OnAfter True after some number of update

ticks or frames.
OnCollision True if a physical object collides

with another.
OnValueEquals True if a value equals a target (e.g.,

Dracula picks between two attacks).
OnDamaged True if a damageable hit box is hit.
OnRModN True when a value equals the re-

mainder of a modulo n (e.g., used
to create cycling attack patterns).

Table 1: Some common node and edge types used for be-
havior graphs in our model. Input parameters to nodes/edges
have been omitted for brevity.

age a weak point of the boss until their health is reduced to
zero. The health system stores this data. Health components
are comprised of health statistics (such as hitpoints) and hit-
boxes to handle damage. Every physics object can be asso-
ciated with a hit box, that can either damage the opponent
and/or serve as a weak point to be damaged by an opponent.
When a damaging hit box collides with a damageable hit
box of an opponent, the owner of the damageable hit box
takes damage. The health system’s update function checks
for such collisions using the output of the physics system.
For Moldorm the entire boss is a damaging hit box and the
player (Link) is a hit box, so the player is damaged when
colliding with Moldorm. Moldorm has one damageable hit
box: the final segment at the end of its tail. The player’s
sword swing creates a temporary damaging hit box capa-
ble of damaging the boss. The system’s default reaction to
damage is reducing health points; this behavior can be over-
ridden with an arbitrary action for more complex behavior.

Behavior through State Machines
The primary constructs in our programming model for repre-
senting behavior are finite state machines, referred to as be-
havior graphs. In each state (node) of the behavior (graph), a
different action is performed while the state is active. Tran-
sitions (edges) between states are taken when a condition
predicate for a transition evaluates to true. Some states last
for multiple game ticks, executing an action every game tick
until a transition occurs. Other states can be instantaneous,

88



(a) (b)

Figure 2: Definition of Moldorm. (a) shows the physical objects that make up Moldorm, and (b) shows the behavior graph.
Blue nodes are instantaneous nodes while orange nodes update every frame until a transition occurs.

where the action is performed only once before immedi-
ately transitioning on the same game tick. Such states re-
quire at least one unconditional outgoing transition. Table 1
demonstrates some commonly used nodes and edges, most
of which appear in our examples.

States correspond to different phases or attack patterns a
boss may take. Moldorm moves through several states, il-
lustrated in Figure 2b. Moldorm has two different high-level
behaviors: first, it moves in random directions, changing its
direction every few seconds or when hitting walls. Second,
when damaged by the player (by being hit in the single weak
point in the tail), it becomes invincible and stops moving for
a few seconds. We represent this behavior in our model us-
ing a graph with 6 nodes.

Moldorm starts in the instantaneous state labeled A in
the graph, where a random velocity vector at the current
speed is chosen for Moldorm’s head. Moldorm immedi-
ately transitions to state B, which performs no action dur-
ing update. Note, however, that the physics system will
update Moldorm’s position according to its velocity. Two
conditions cause Moldorm to move to different states: upon
hitting a wall, Moldorm moves to node C which performs
the instantaneous action of reflecting its velocity, then going
back to B. Alternatively, after a delay of some specified time,
Moldorm goes back to A, choosing a new random direction.

The second half of the graph is reached when the player
damages Moldorm. Upon damage, assuming Moldorm’s
new health is above zero, Moldorm moves to instantaneous
state D, which both stops its movement and disables its dam-
ageable hit box so it cannot be damaged. This temporary
disabling of the hit box implements what is often called in-
vincibility frames. Moldorm then does nothing in node E
until a fixed time delay, where node F will re-enable the

damageable hit box and increase Moldorm’s speed. This
immediately transitions back to A to choose a new direction
for movement (at the new higher speed). If Moldorm is dam-
aged during node B and its health drops to zero, the behavior
will instead transition to termination, ending the encounter.

Bosses may be governed by multiple behavior graphs, ei-
ther nested or in parallel. For example, Moldorm’s body
needs to follow the head. Because this happens regardless
of the state of the boss, it can be represented as a parallel
behavior graph with a single node, G. This node’s update
function performs the action of having the body parts follow
behind the head, moving each body part to the location the
head was at several game ticks previously.

Dynamic Object Creation
Creating and destroying game objects such as emitted pro-
jectiles is a common element of many boss encounters. Dy-
namic object construction is a straightforward extension of
constructing the initial game state. Creating “objects” in this
model consists of constructing a collection of one of more
primitive objects (e.g., physical objects) and informing the
systems responsible for updating them (e.g., the physics sys-
tem) that these objects exist. To make this dynamic, actions
in behavior graphs can construct objects using the same con-
structs as initial creation. Object destruction occurs by in-
forming the relevant systems to stop updating the objects. In
this model, we use emitter to refer to a physical object used
as the source of dynamically created objects. Our Dracula
example uses these to throw fireballs at the player.

Extending the Model
Physics and health objects can be viewed as primitive data
types of the model, while behavior graphs are a general

89



way to describe behavior conditioned on and modifying
these primitives. The only interaction between the behavior
graphs and these primitive objects is through reading/writing
their mutable state; that is, the behavior graphs treat them as
plain record data types (e.g., structs). Thus, the model can
be straightforwardly extended with new data types (e.g., 3D
physics). We chose primitive types that enabled us to ex-
press a particular class of 2D bosses.

Extensibility is an important property of the model since
bosses are typically tailored to the mechanics of the game,
particularly the actions the player can take. Therefore, it is
important to be able to incorporate unique mechanics into
the model. New systems can be added by providing one or
more primitive struct types containing data and an update
function that implements the mechanics.

This programming model can be viewed as being param-
eterized over the mechanics. That is, finite state machines
are the common element of boss experiences in this domain,
where the details of the systems such as physics or damage
may vary from game to game. However, the model does
not need to commit to any assumptions about these systems
aside from them having some primitive components with
state and an update function. Thus, the model can be instan-
tiated for a variety of game mechanics. This work describes
two extremely common such mechanics.

Examples

Figure 3: Screenshots of the three example bosses running
in our prototype implementation of our model. Clockwise
from the top left: Moldorm, Dracula, and Eggman.

We implemented our model as a playable prototype and
replicated several bosses from classic 2D games. We de-
scribed Moldorm above; here we describe two additional
bosses: Dracula from Castlevania and Eggman from Sonic
the Hedgehog. While Moldorm uses a top-down camera
perspective, these two bosses both use a side-scrolling cam-
era. We omit descriptions of the player behavior for brevity.

Players are defined using the same primitives and behavior
graphs as bosses, be it Link, a Belmont, or Sonic.

Dracula from Castlevania. As an example of how our
model can construct a 2D boss from a side-scrolling plat-
forming game, we consider one version of the reoccurring
Castlevania Dracula boss. In the Castlevania series, Dracula
is traditionally the final enemy encountered by the player.
The fight often takes place in multiple phases, and here we
describe the first phase from the opening fight of Castleva-
nia: Symphony of the Night.

Figure 4 shows the physical components (a body and a
head rigidly attached to that body) and behavior graph to
define both movement and attacks. Dracula uses an addi-
tional parallel behavior graph to handle invincibility frames
and death, which we omit for brevity. Dracula’s body has
five projectile emitters that fire two kinds of projectiles, his
primary forms of attack. The first set of projectiles (referred
to as “hellfire”) are three small fireballs fired simultaneously
horizontally at the player. The second set of projectiles (re-
ferred to as “dark inferno”) are sequentially launched large,
slow, circular fireballs. Dracula has a damageable hitbox on
the head, only active when he is launching projectiles, and
attack hitboxes on both the head and the main body.

In the boss experience, Dracula teleports to random po-
sitions while facing the player and randomly initiating one
of the two attacks mentioned above. This repeats until the
player reduces Dracula’s health to zero (or succumbs to the
attacks). The behavior graph begins in state A, which se-
lects a random x position (along the floor) for the body and
faces the player. The behavior graph then waits in state B
while the teleport animation plays. The next instantaneous
state C randomly selects a transition to choose an attack.
Both attacks enable Dracula’s damageable hit box. “Hell-
fire” creates 3 projectiles simultaneously with constant ve-
locity (state D), one at each of three emitters, followed by
a delay (state E), during which the boss is vulnerable, be-
fore returning to state A to repeat. “Dark inferno” triggers
two emitters to launch in sequence; the first is followed by
a short delay and the second is followed by a longer delay
where the boss is vulnerable (states F, G, H, and I).

Eggman from Sonic the Hedgehog. Our third example is
the boss from the first zone of the original Sonic the Hedge-
hog game. We omit illustration of the boss objects and its
corresponding behavior graphs for brevity. Like Castleva-
nia, this game uses a 2D side-scrolling perspective. The
player (Sonic) can jump and collide with enemies to cause
damage. The boss, Eggman, uses a flying capsule machine,
augmented with a weapon. Typically only the capsule can
be damaged, but at any time, with a short number of invin-
cibility frames after each hit. The weapon in this first boss
encounter consists of a swinging ball on a chain attached to
the capsule. The ball always damages the player on con-
tact, but the capsule only damages the player if they are not
performing their jumping attack; otherwise the boss is dam-
aged. Platforms in the arena help the player attack the boss
capsule.

90



(a) (b)

Figure 4: Definition of Dracula. (a) shows the physical objects that make up Dracula, and (b) shows the behavior graph.

The boss has two physical objects and its behavior is com-
paratively simple to the previous examples: the boss is not
reactive except for when health points are reduced to zero.
Eggman’s capsule moves at a constant velocity from one
side of the stage to the other while the ball swings in an arc
below. Thus (excepting boss death) the only behavior state
transitions are time-based, and the only actions are adjusting
the velocities of the capsule and ball. The ball uses a paral-
lel behavior graph to calculate its position analytically as a
function of time and the capsule position.

Discussion
In this paper, we described a programming model for
constructing boss experiences in 2D action and adventure
games. We model boss encounters characterized by real-
time movement in a continuous 2D space, where the out-
come is determined primarily by collision with hit boxes,
and behavior is controlled through finite state machines.

As our intent is enabling boss generation using this model,
we have a number of limitations. We focused on boss battles
based on physical combat, so our model does not readily
support boss experiences focusing on systems like resource
management. We also assume a simple mapping between
player input and the player character’s actions and cannot
capture cases like a menu-based GUI in RPG battles, though
we can model the mechanics of the battle itself.

Our model focuses exclusively on the rules and behavior
of objects, while ignoring aspects such as graphical repre-
sentation, sound design, and character design. Many boss
experiences are not about the particular behavioral details
of the player or enemy, instead emphasizing characteriza-
tion of the opponent. One important research question for
generation is how to model and incorporate semantic back-
ground knowledge into models of boss design. Our work
focuses on one domain of many in a class of broader aspects
of games that are not typically modeled, and we hope to see
more work in other such domains.

Future Work

We have two primary areas of future work: boss generation
and designing a game with procedural bosses. Boss gener-
ation can use a number of different paradigms. Our model
defines a grammar for bosses, but admits variable-size boss
representations. As such, generative methods that randomly
expand grammars (Togelius, Shaker, and Dormans 2015) or
perform heuristic search over a grammar are likely appropri-
ate (Togelius and Shaker 2015). We imagine a search in the
space of grammar expansions that evaluates bosses in terms
of working implementation (as a constraint) and a contin-
uous optimization function for boss encounter quality. A
boss is defined in relation to the player in terms of what ac-
tions and skills the player is capable of. Thus any system for
generating bosses will have to reason about the interactions
between player and opponent, using simulated or real player
information. Defining general (or at least reusable) metrics
for measuring the quality of a boss experience remains an
open research question.

Our model can also support offline, mixed-initiative de-
sign, where the same generation process can provide boss
suggestions to a designer based on given player mechan-
ics or high-level descriptors of intended player experience.
This can in turn create bosses grounded in interesting char-
acterization or with interpretable meaning for the player, as
projects like Game-O-Matic (Treanor et al. 2012) have done
for game designs.

Boss generation can enable games where facing an ever-
changing, ever-adapting set of bosses is the core game me-
chanic. Compared to boss-centric games like Shadow of the
Colossus or Monster Hunter our system has the potential to
generate a series of bosses that responds to player perfor-
mance and preferences. We envision a game where each
new boss adjusts its physical body, behavior graph, or rep-
resented systems, possibly based on a continually-updating
model of player performance.

91



References
Browne, C., and Maire, F. 2010. Evolutionary game design.
IEEE Transactions on Computational Intelligence and AI in
Games 2:1–16.
Evans, R., and Short, E. 2014. Versu a simulationist story-
telling system. IEEE Trans. Computational Intelligence and
AI in Games 6(2):113–130.
Hastings, E.; Guha, R. K.; and Stanley, K. 2009. Automatic
content generation in the galactic arms race video game.
IEEE Transactions on Computational Intelligence and AI in
Games 1:245–263.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2011.
Neuroevolutionary constrained optimization for content cre-
ation. In IEEE Conference on Computational Intelligence
and Games.
Love, N.; Hinrichs, T.; Haley, D.; Schkufza, E.; and Gene-
sereth, M. 2008. General game playing: Game description
language specification. Technical report, Stanford Univer-
sity.
Maggiore, G.; Spanò, A.; Orsini, R.; Bugliesi, M.; Abbadi,
M.; and Steffinlongo, E. 2012. A formal specification for
casanova, a language for computer games. In Proceedings of
the 4th ACM SIGCHI symposium on Engineering interactive
computing systems, 287–292. ACM.
Martin, A. 2007. Game balance concepts.
http://t-machine.org/index.php/2007/09/03/entity-systems-
are-the-future-of-mmog-development-part-1/.
Mateas, M., and Stern, A. 2002. Architecture, authorial id-
ioms and early observations of the interactive drama Façade.
Technical report, Carnegie Mellon University.
Mateas, M., and Wardrip-Fruin, N. 2009. Defining opera-
tional logics. In DiGRA.
McCoy, J.; Treanor, M.; Samuel, B.; Reed, A.; Mateas,
M.; and Wardrip-Fruin, N. 2014. Social story worlds with
Comme il Faut. IEEE Trans. Computational Intelligence
and AI in Games 6(2):97–112.
Millington, I., and Funge, J. 2009. Artificial Intelligence for
Games. Morgan Kaufmann.
Orwant, J. 2000. Eggg: Automated programming for game
generation. IBM Systems Journal 39(3.4):782–794.
Osborn, J. C.; Lederle-Ensign, D.; Wardrip-Fruin, N.; and
Mateas, M. 2015. Combat in games. In 10th International
Conference on the Foundations of Digital Games.
Risi, S.; Lehman, J.; D’Ambrosio, D. B.; Hall, R.; and Stan-
ley, K. O. 2012. Combining search-based procedural content
generation and social gaming in the petalz video game. In
8th AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment.
Schaul, T. 2013. A video game description language for
model-based or interactive learning. In IEEE Conference on
Computational Intelligence in Games.
Shaker, N.; Togelius, J.; and Nelson, M. J. 2015. Procedural
Content Generation in Games: A Textbook and an Overview
of Current Research. Springer.

Togelius, J., and Shaker, N. 2015. The search-based ap-
proach. In Procedural Content Generation in Games: A
Textbook and an Overview of Current Research. Springer.
Togelius, J.; Shaker, N.; and Dormans, J. 2015. Grammars
and l-systems with applications to vegetation and levels. In
Procedural Content Generation in Games: A Textbook and
an Overview of Current Research. Springer.
Treanor, M.; Blackford, B.; Mateas, M.; and Bogost, I.
2012. Game-o-matic: Generating videogames that represent
ideas. In Proceedings of the The Third Workshop on Pro-
cedural Content Generation in Games, PCG’12, 11:1–11:8.
New York, NY, USA: ACM.

92




