
Deep Static and Dynamic Level Analysis: A Study on Infinite Mario

Matthew Guzdial1,3, Nathan Sturtevant2, and Boyang Li3
1School of Interactive Computing, Georgia Institute of Technology

2Computer Science Department, University of Denver
3Disney Research

mguzdial@gatech.edu, sturtevant@cs.du.edu, albert.li@disneyresearch.com

Abstract

Automatic analysis of game levels can provide assis-
tance to game designers and procedural content genera-
tion. We introduce a static-dynamic scale to categorize
level analysis strategies, which captures the extent that
the analysis depends on player simulation. Due to its
ability to automatically learn intermediate representa-
tions for the task, a convolutional neural network (CNN)
provides a general tool for both types of analysis. In this
paper, we explore the use of CNN to analyze 1,437 Infi-
nite Mario levels. We further propose a deep reinforce-
ment learning technique for dynamic analysis, which
allows the simulated player to pay a penalty to reduce
error in its control. We empirically demonstrate the ef-
fectiveness of our techniques and complementarity of
dynamic and static analysis.

Introduction
For many modern games, well-designed levels are at the core
of a fun experience and player retainment. As games can
contain hundreds of levels1, evaluating all game levels with
user studies can become very expensive. Therefore, the abil-
ity to automatically evaluate a game level along multiple de-
sign criteria, such as difficulty (Pedersen, Togelius, and Yan-
nakakis 2009a), enjoyment (Sweetser and Wyeth 2005a) and
aesthetics (Hunicke, LeBlanc, and Zubek 2004), becomes a
useful tool for game level designers with limited resources.
The past decade has witnessed the quick proliferation of re-
search on this topic (e.g., Berseth et al. 2014; Tremblay et
al. 2014).

We can categorize techniques for automatic game level
evaluation as a scale between static analysis and dynamic
analysis based on their reliance on simulated players. Static
analysis encompasses evaluation of level structure without
simulating gameplay. But this is not to say static analy-
sis is incapable of modeling gameplay or game mechanics.
For example, a regression analysis can reveal correlation be-
tween platform shapes and difficulty, which can be attributed
to game mechanics unknown to static analysis. In compari-
son, dynamic analysis relies on simulation to determine how
a player might act in a level. Many techniques fall between

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In May 2016, Candy Crush Soda Saga contained 885 levels.

these two extremes, such as those that rely on static fea-
tures that encode likely player behavior (e.g. counting gaps
to approximate jumps (Pedersen, Togelius, and Yannakakis
2009b)) or those that partially simulate interaction with a
level (e.g. only movement in a first person shooter level (Shi
and Crawfis 2013)).

Designing effective features for static analysis often re-
quires knowledge of game mechanics. For example, for Su-
per Mario Bros., it may be useful to differentiate between
small gaps that can be run over and large gaps that cannot.
To minimize manual coding and acquire important patterns
from data, we turn to convolutional neural networks (CNNs)
(Lang and Hinton 1988; LeCun et al. 1989), which are capa-
ble of learning multi-level feature representations. In this pa-
per, we explore the use of CNNs for analyzing the difficulty,
enjoyment, and aesthetics of Infinite Mario Bros. levels. Ex-
periments show the CNN outperforms traditional methods
and the learned representations capture our intuition about
game difficulty.

Dynamic analysis has access to potential player interac-
tions with a level, providing additional information for an-
alytical purposes. Our analysis shows that a simple A* al-
gorithm produces information that improves our CNN pre-
diction, when paired with more traditional static metrics.
Nevertheless, an additional challenge arises in the construc-
tion of artificial agents that play like humans. To address
this issue, we propose a deep reinforcement learning agent
that simulates two major aspects of human players. First, the
agent faces imprecision in its control, which forces it to fa-
vor a safe path over a fast but risky path. Second, the agent
has a “focus” mechanism, which allows it to pay a penalty
to reduce control imprecision. The amount of focus then be-
comes a surrogate for tension in the game. We leave the eval-
uation of this agent for future work.

Related Work
The most common approaches for static game level analy-
sis are game design patterns (Bjork and Holopainen 2004)
and computational metrics (Smith, Whitehead, and Mateas
2010; Horn et al. 2014). A game design pattern refers to
a high-level, descriptive “solution” to a common game de-
sign problem, which can be used for evaluation and gen-
eration of content such as game levels (Hullett and White-
head 2010; Liapis, Yannakakis, and Togelius 2013). Com-

Experimental AI in Games: Papers from the AIIDE Workshop 
AAAI Technical Report WS-16-22

31



putational metrics refer to low-level, technical metrics de-
signed to capture level characteristics of procedurally gener-
ated levels, historically focused on platformer game levels.

Dahlskog and Togelius (2014) identified a set of com-
monly occurring patterns from the original Super Mario
Bros. (e.g. a group of three enemies in a row), and used
these patterns to evaluate generated levels. To some extent
this work is similar to our own analysis of level aesthetics,
however they make no attempt to simulate player experience
or explicitly evaluate levels in terms of fun or difficulty.

Computational metrics have traditionally been applied to
platformer game levels, making much of the work in the field
relevant to our own (Smith, Whitehead, and Mateas 2010;
Horn et al. 2014). Canossa and Smith (2015) present the
most complete list of current computational metrics for plat-
form levels derived from design theory and novice designer
intuition, intended to evaluate difficulty and aesthetics (e.g.
the density and frequency of enemy clusters). These met-
rics are intended to inform human or artificial designers, and
do not tend to reflect the ratings of human players (Marino,
Reis, and Lelis 2015).

Outside of both the traditional computational metrics de-
fined by Smith et al. (2010) and game design patterns ex-
ists a variety of work on deriving strategies for static analy-
sis of game levels. Such work tends to focus upon a single
subjective feature, such as difficulty (Shi and Crawfis 2013;
Tremblay et al. 2014) or aesthetics (Cook, Colton, and
Pease 2012; Cook and Smith 2015; Tremblay and Verbrugge
2015). In this paper we focus on three objectives: difficulty,
fun, and visual aesthetics, but our approach is sufficiently
general to many other subjective features due to the ability
of representation learning.

Dynamic analysis encompasses strategies for the auto-
matic evaluation of levels based on some simulation of
player experience. Many of the modern approaches in dy-
namic analysis take inspiration from the notion of game
“flow” (Sweetser and Wyeth 2005b), a notion that a player’s
growing skill at a game must be met with equivalent chal-
lenge to maximize enjoyment. The majority of work in
dynamic analysis tends to focus on enjoyment (Togelius,
De Nardi, and Lucas 2007; Iida, Takeshita, and Yoshimura
2003) or a combination of difficulty and enjoyment (To-
gelius and Schmidhuber 2008; Cook, Colton, and Gow
2012; Bauer, Cooper, and Popovic 2013). Cook, Colton, and
Gow (2012) and Bauer, Cooper, and Popovic (2013) both
use simulated playouts in order to determine if a platformer
level matches a target difficulty, based on the reachability
and risks of level sections.

Our work explores the combination of static and dynamic
analysis in order to successfully predict the measures of
enjoyment, challenge, and aesthetics on a per-level basis.
The field of player modeling focuses on deriving models of
player behavior or preference in order to evaluate features
of a level on a per-player basis with static and dynamic anal-
yses (Yannakakis et al. 2013). Notably, there exists player
modeling work that shares the domain of Super Mario Bros.,
where we have turned for inspiration for some of our high-
level features (Pedersen, Togelius, and Yannakakis 2009b;
Shaker, Yannakakis, and Togelius 2010). However, due to

its nature, player modeling work requires knowledge of an
individual player’s experience with a level for its dynamic
analysis, data which is difficult and time-consuming to col-
lect. Instead, our work draws on simulated players to stand
in for a theoretical “optimal” player.

There exists a set of prior work in the Super Mario Bros.
domain focused on modeling elements of levels with neu-
ral networks. Summerville and Mateas (2016) make use of a
simulated player and neural network architecture, but with a
focus on level generation. While their learned model of level
design encodes an intrinsic evaluative metric, it is based on
evaluating the best level components to add during level gen-
eration rather than high-level characteristics such as player
enjoyment. Jain et al. (2016) make use of an autoencoder
to in part look at automatically identifying the “style” of a
level, which is similar to our prediction of aesthetics.

Static Analysis with Convolutional Networks
In this section, we predict the difficulty, enjoyment, and aes-
thetics ratings of Infinite Mario Bros. levels directly from
level maps using a convolutional neural network. As we ex-
pect, the CNN outperforms a traditional baseline and is ca-
pable of extracting useful features for prediction. Further,
we complement the static analysis by CNN with features
extracted from an A* algorithm’s search history, which rep-
resent a shallow dynamic analysis. The combination yields
substantial performance improvements, suggesting comple-
mentarity of the two strategies.

Convolutional Neural Networks
Convolutional neural networks have gained massive popu-
larity recently for processing visual information due to their
capability to learn multi-level representations that are supe-
rior to hand-crafted features (Razavian et al. 2014). A CNN
typically contains convolution layers, pooling layers, and
fully connected layers. A convolutional layer contains multi-
ple filters, which are used to scan the input image from left to
right and from top to bottom. At each position of the filter,
corresponding values in the filter and the image are multi-
plied and the sum of products is returned. More formally, let
a filter be a n-by-mmatrix F . For an input matrix Φc of size
k × l, we have

ap,q =
∑

1≤i≤n,1≤j≤m

Fi,jΦ
c
p+i,q+j (1)

where p, q slide the filter across the input matrix and i, j
iterate over positions within the filter and corresponding po-
sitions of the input matrix. The input then goes through an
activation function (e.g., a sigmoid) to create the output ma-
trix Oc:

Oc
p,q = f (ap,q) (2)

A max-pooling layer returns the maximum element within
a certain patch of the input matrix. Let Φmax and Omax de-
note the input and output matrices respectively, for an n-by-
n max-pooling, we have

Omax
p,q = max

1≤i≤n′,1≤j≤n′
Φmax

np+i,nq+j (3)

32



Figure 1: Each sprite of an IMB level (left) is represented
by an integer in the grid (right). For example, a goomba is
represented by 79.

The height and width of the output matrix are 1/n of the
input matrix.

A fully connected layer can be expressed as a matrix mul-
tiplication and an activation function. The input to the fully
connected layer is reshaped into a vector φ of size d. The
output vector o of size d′ is computed as

o = g(Wφ) (4)

where the d-by-d′ matrixW are the weights of this layer and
g(·) is another activation function. In order to reduce over-
fitting, we make use of the dropout technique (Srivastava et
al. 2014), which randomly disables some connections in the
network for each pass. Training of a CNN is typically per-
formed with gradient descent and backpropagation.

Experiments
We perform a series of experiments to explore static analysis
with convolutional neural networks and its complementarity
with dynamic analysis.

Data Our experiments rely on a dataset created by Reis
et al. (2015), which is composed of 1,437 generated Infi-
nite Mario Bros. (IMB) levels. Each level is tagged by hu-
man volunteers on a nine-point Likert scale for difficulty,
enjoyment, and visual aesthetics. This is the largest dataset
on Mario-like games that we are aware of. We perform re-
gression to predict the reported enjoyment, aesthetics and
difficulty for each level.

We note two limitations with this data set. First, 547 lev-
els (38% of all levels) were rated by only a single volunteer,
and the remainder are rated by anywhere from two to eight
individuals (we take the median value in this case). Second,
the levels are about a fifth as long as the Super Mario Bros.
levels, with an average size of 40 in-game “tiles”. Despite
these limitations, the size of this dataset makes it the most
appropriate choice for training of deep neural network mod-
els as an initial exploratory study.

As input to CNNs, an IMB level is represented as a grid
of integers, equivalent to the in-game tiles that the levels are

Table 1: Results of regression for difficulty, aesthetics, and
enjoyment from three CNN variants.

Measure Method Errors R2

Mean Median

Difficulty

CNN-Map 1.22 0.96 0.39
CNN-A* 1.28 1.05 0.35
CNN-T 1.3 1.08 0.33

CNN-All 0.92 0.72 0.64

Aesthetics

CNN 1.13 0.9 0.09
CNN-A* 1.15 0.9 0.05
CNN-T 1.18 0.92 0.04

CNN-All 1.15 0.89 0.07

Enjoyment

CNN 1.09 0.9 0.16
CNN-A* 1.11 0.91 0.14
CNN-T 1.15 0.95 0.09

CNN-All 1.04 0.85 0.22

Table 2: Results of two random forest variations for diffi-
culty, aesthetics, and enjoyment.

Measure Method Errors R2

Mean Median

Difficulty RF 1.11 1.0 0.42
RF-MAP 1.01 1.0 0.57

Aesthetics RF 1.41 1.0 -0.46
RF-MAP 1.15 1.0 -0.06

Enjoyment RF 1.21 1.0 -0.16
RF-MAP 1.06 1.0 0.05

constructed from. Each level component is represented by
a unique integer. Figure 1 shows this representation for a
vertical slice of level.

Setup Our basic neural network (shown in Figure 2) con-
tains three convolutional layers with 8, 16, and 32 filters re-
spectively. Each convolutional layer is followed by a max-
pooling layer with a 2 × 2 field. At the end of the network,
we have one fully connected layer with an input dimension
of 448 and an output dimension of 1. The total number of
parameters in the network is 928. The rectified linear acti-
vation function is used for convolutional layers and a linear
activation function for the fully connected layer. Our dropout
ratio is 0.5. The only input to the basic network is the IMB
level map, so it represents a pure form of static analysis. We
denote this network as CNN-Map.

To complement static analysis, we extract 4 features from
an A* agent run through each level and feed them directly to
the fully connected layer without dropout. We call this net-
work CNN-A*. The A* player searches for the fastest path
through a level and solves each level without dying. From
its search history, we extract the first feature: the number of
states expanded divided by the width of the level (1). Al-
though the agent does not die when playing the level, during
the search it may visit a state where Mario dies. We count

33



Input: 
52x14x1 52x14x8 26x8x8 26x8x16 13x4x16

Convolution
8 kernels (3x2)

Convolution 
16 kernels (3x3)

Max-Pooling 
2x2 kernel

Max-Pooling 
2x2 kernel

13x4x32

Convolution 
32 kernels (3x3)

7x2x32

Max-Pooling 
2x2 kernel

448x1

Fully Connected
Layer

Drop-Out
50%

Figure 2: A diagram of our convolutional neural network structure.

these deaths and differentiate between the times of falling in
a gap (2) and the number of death caused by enemies (3). Fi-
nally, we count the number of enemies killed during playing
the game (4). Stomping on an enemy usually slows Mario
down, so A* tends to avoid it. Therefore, if A* has to kill an
enemy, it could indicate that the enemy is in a position that
is difficult to avoid. In sum, these 4 features capture, to an
extent, the difficulty of the level from simulated play traces.

In addition, we create a third network (CNN-T) that takes
in several level features that are commonly used in the lit-
erature: the number of enemies, gaps, power-ups, cannons,
and blocks (Pedersen, Togelius, and Yannakakis 2009b;
Shaker, Yannakakis, and Togelius 2010). These features are
fed as input to the fully connected layer. This represents a
traditional “static” approach to level analysis, without re-
quiring any simulated play traces.

The fourth network (CNN-All) takes in all features, in-
cluding the level map and those used by CNN-A* and CNN-
T. All networks use the sum of squared error as the loss
function. Training was performed with AdaGrad (Duchi and
Singer 2011) and L2 regularization over 1200 epochs.

Lastly, for comparison with a traditional regression tech-
nique, we build two random forest regressors. One makes
use of only the manually designed A* and level features (de-
noted as RF), while the other makes use of the manually de-
signed features and the level map (RF-MAP).

Results Table 1 shows the results from the CNNs and Ta-
ble 2 shows the results from the random forests. We report
averages over 20 random splits with the training set con-
taining 80% of levels and the testing set containing 20%. In
addition to mean and median absolute errors, we also report
the coefficient of determination or R2, which is a measure
of how much variation in the data can be explained by re-
gression. For a number of ground truth values yi, their mean
ȳ and corresponding predictions ŷi, R2 is defined as

R2 ≡ 1− SSreg

SStot
≡ 1−

∑
i(yi − ŷi)2∑
i(yi − ȳ)2

(5)

R2 can be considered as a measure of regression quality. The
ground truth mean ȳ, computed from the test set, provides
an uninformed baseline. A large R2 indicates the regression

works significantly better than predicting ȳ. A negative R2

indicates that the regression underperforms in comparison to
the mean of the ground truth values.

Our best neural networks outperform the RF baselines
by 7 percentage points on difficulty, 15 percentage points
on aesthetics and 17 percentage points on enjoyment. Inter-
estingly, the A* features and the traditional level features
by themselves do not improve performance. However, when
combined, these manually designed features improve perfor-
mance on difficulty by as much as 25 percentage points.

The random forests perform well on difficulty but poorly
on aesthetics and enjoyment. This is not unexpected as our
manual features are primarily designed for difficulty. Con-
trasting to our baseline, the results suggest CNN makes more
effective use of level map data than random forest.

Discussion Across all conditions, the median errors are
better than mean error, suggesting the existence of outlier
levels which are difficult to predict. For example, with dif-
ficulty, CNN-All’s prediction is off by five points or more
in two percent of test examples, always under-predicting the
difficulty of the levels. Given that 547 levels are rated by a
single individual, this is somewhat expected, as individuals
may have different understanding of the three criteria.

We observe that CNNs tend to have lower median errors
than random forests, but comparable mean errors. This sug-
gests the CNNs pick up useful patterns that appear in most
levels, and are more robust under the presence of noisy la-
bels. In many user studies, it is difficult to guarantee every
participant understand evaluation criteria in the same way.
Thus, robustness under noise is quite valuable.

We can explain the most data variation in difficulty (64%),
followed by enjoyment (22%) and aesthetics (only 9%). This
is partially due to the fact that aesthetic and enjoyment rat-
ings have smaller variance than difficulty (See Table 3). That
is, aesthetic and enjoyment ratings have smaller SStot. An-
other possibility is that definitions of aesthetics and enjoy-
ment are fuzzier than difficulty, causing volunteers to rate
the levels with different definitions in mind, creating obsta-
cles for prediction. To verify this hypothesis we compute
Spearman’s rank correlation coefficient on the ratings of the
582 levels rated by two individuals (shown in Table 3). We

34



Table 3: Characteristics of the three objectives, including
variance and Spearman’s rank correlation coefficient rho.
The correlation is computed on 582 levels with two ratings.

Objective Variance rho

Difficulty 4.07 0.46

Aesthetics 2.33 0.17

Enjoyment 2.31 0.26

Figure 3: The eight level patches that maximally activate the
first eight filters of the second layer of the CNN.

find similar trends between the correlation of ratings and the
CNN-All R2 values, with difficulty having the highest cor-
relation between ratings and aesthetics having the lowest.

The relationships between different sets of features are
worth discussing. The A* features and traditional level fea-
tures by themselves do not improve performance. This may
be taken as contrary to our hypothesis that dynamic and
static analyses complement each other. However, combining
these features yields significant performance gains. Delving
deeper into the performance of CNN-All, we found the in-
crease arose from combining two traditional level features,
namely the number of enemies and number of gaps, with
the A* features. A CNN using the map and these 6 features
achieves a mean error of 0.93 and a median error of 0.74.
Intuitively, knowing number of deaths due to enemies and
gaps is only helpful after knowing how many enemies and
gaps exist in a level. This interesting discovery suggests that
dynamic features can indeed facilitate static analysis, but de-
signing correct features remains a critical issue.

Qualitative Evaluation To evaluate CNN’s ability to ex-
tract useful features from raw map levels, we visualize the
level patches that maximally activate the learned filters for
CNN-All trained to predict difficulty. Figure 3 demonstrates
that many filters encode relationships between gaps and en-
emies. Of particular interest are the last two on the second
row. The last encodes “question” blocks, which may con-
tain power-ups and reduce difficulty. The second last shows
a koopa under a row of coin blocks. As a koopa occupies two
tiles, the blocks prevent Mario from jumping and stomping
on the koopa, representing a challenge to the player. These
filters suggest CNN is capable of identifying useful repre-
sentations that predict the difficulty objective.

Figure 4: Two examples of levels that are rated as the highest
difficulty, but are predicted by our system to be moderate.

Figure 5: Two examples of levels that are rated near lowest
difficulty, but are predicted by our system to be moderate.

We further present examples of levels where our predic-
tion of difficulty failed in Figure 4 and Figure 5. It is gener-
ally not straightforward to explain why the network fails on
individual cases, but we hypothesize that it is partially due
to the A* agent playing too well at the difficult levels. An
AI player behaving more similarly to humans may provide
some remedy.

Dynamic Analysis with Deep Reinforcement
Learning

Dynamic analysis considers the dynamics of the gameplay
and actual play traces, so it can provide insights not avail-
able in static analysis. However, an obstacle of automatic dy-
namic analysis lies in the disparity between a human player
and a simulated computational player. In this section, we
propose a deep reinforcement learning agent that plays like
human players with adjustable skill levels.

We argue that the most common challenge faced by a
player in a Mario-type game, such as platform games and
infinite runners, is not finding the correct strategy. Rather,
the challenge lies in controlling the character precisely by
pressing the right button at the right time; lack of precision
often leads to harm or death. This type of control-dominant
game is in contrast to strategy-dominant games like chess

35



Figure 6: Two possible paths in an Infinite Mario level. An
A* player prefers the lower path (green arrow) whereas we
expect a human player to choose the upper path (red arrows)
most of the time.

or poker. A computer player equipped with perfect control
can master a control-dominant game easily. A simple A* al-
gorithm is known to excel at Super Mario Bros (Togelius,
Karakovskiy, and Baumgarten 2010).

However, in order to model attributes of a game level as
perceived by human players, we need the simulated player to
play like a human. Figure 6 illustrates the difference between
a human player and an A* player. An optimal A* player, in
order to minimize the time spent in a level, takes the lower
path and evades or stomps on every enemy, since jumping
onto the platform would slow it down. In contrast, we expect
a human player who understands his or her own imperfect
control to jump on the platform to evade all enemies. We
can see a similar scenario in the top level in Figure 5, which
suggests that this disparity impacts difficulty prediction.

We propose to model such behavior by giving a rein-
forcement learning (RL) agent imperfect controls, which are
captured by the agent’s actions having stochastic effects.
In order to cope with stochasticity and maximize reward,
the agent would be forced to choose a safe path over a
risky one. We formally model a control-dominant game as
a Markov Decision Process (MDP). An MDP contains a se-
quence of time steps 0, 1, 2, . . .. At time t, the agent is sit-
uated at state st and has a set of available actions A(st).
When the agent executes an action at ∈ A(st), the next
state st+1 is randomly drawn from a probability distribution
P (st+1|st, at). The agent then receives a deterministic re-
ward rt+1 = R(st, at, st+1). In a finite horizon setting, the
agents aims to maximize its reward

∑T
k=0 γ

krt+k+1 where
γ is a discount factor between 0 and 1, and T is the hori-
zon. We seek a solution to an MDP as a deterministic policy
π(s) = a that maps a state to an action.

We identify timing as the main source of imprecise con-
trol faced by human players; we consider pressing the wrong
button (e.g., pressing jump when intending for fire/speed) to
be rare. This is modeled by the stochastic transition func-
tion P (st+1|st, at). For example, when the jump action is
executed in state s, if the player is on the ground, there is a
non-zero probability that s′ reflects the state resulted from
the player hitting jump a little earlier or a little later. Similar
imprecision is modeled for the release of buttons.

Furthermore, we propose a technique for modeling ten-

sion in the reinforcement learning framework. This tech-
nique is motivated by how humans deal with stressful sit-
uations (Rice 1999). When coping with an immediate cri-
sis, the human body releases epinephrine and glucocorti-
coids, as well as increases oxygen and glucose supply in the
blood, which temporarily improves performance. However,
sustained stress can damage the body and lead to multiple
health risks. The subjective feeling of tension is directly re-
lated to high levels of epinephrine.

As a computational analogy, we introduce a “focus”
mechanism. The RL agent can choose a focus level when
executing an action. A high focus reduces the errors in the
control but also creates a negative reward, as captured by
the reward function R(st, at, st+1). This negative reward is
better than death but worse than spending a few extra sec-
onds in the level. To maximize its reward, the agent must
elevate its focus only when facing a situation that requires
precise control and cannot be easily evaded. As a result, we
expect the focus level throughout a game to provide a sur-
rogate for a tension curve, a representation of the tension a
human player feels over time as they play through a game.
In practice, the focus mechanism can can be implemented as
having multiple sets of actions, one set for each focus level.

Following Mnih et al. (2013), we propose to use a convo-
lutional neural network to learn a state-action value Q(s, a)
using off-policy temporal difference learning and ε-greedy
exploration. Temporal difference learning bootstraps the
learning by adjusting the network’s estimate of Q(s, a)
based on other estimates.

Conclusions

In this paper, we offer a categorization of game level analysis
as static and dynamic analysis. We identify some challenges
faced by the two classes of techniques: the design of use-
ful features and creating AI players similar to humans. As a
powerful function approximator, a convolutional neural net-
work provides some answers to both challenges. Its use in
reinforcement learning can help to create an AI player that
imitates humans players with imprecise control.

In our experiments, we utilize a CNN for the purpose of
predicting the difficulty, enjoyment, and aesthetics for an In-
finite Mario Bros. level. Our network outperforms a strong
baseline in the form of a random forest and extracts useful
intermediate features automatically. Further, we show fea-
tures extracted from play traces complement this type of
static analysis. Taken together, we present a novel and suc-
cessful approach to predicting human ratings of gameplay
experiences in platformer game levels.

Acknowledgement

The authors thank Jim McCann for valuable discussion and
Levi Lelis and Julian Hernandez for providing updated data
from the Infinite Mario Bros. user study. This paper contains
images generated by the Infinite Mario Bros. game.

36



References
Bauer, A. W.; Cooper, S.; and Popovic, Z. 2013. Automated
redesign of local playspace properties. In The 8th International
Conference on the Foundations of Digital Games, 190–197.
Berseth, G.; Haworth, M. B.; Kapadia, M.; and Faloutsos, P.
2014. Characterizing and optimizing game level difficulty. In
The 7th International Conference on Motion in Games, 153–
160.
Bjork, S., and Holopainen, J. 2004. Patterns in game design.
Game Development Series. Charles River Media.
Canossa, A., and Smith, G. 2015. Towards a procedural evalu-
ation technique: Metrics for level design. In The 10th Interna-
tional Conference on the Foundations of Digital Games.
Cook, M., and Smith, G. 2015. Formalizing non-formalism:
Breaking the rules of automated game design. In The 10th In-
ternational Conference on the Foundations of Digital Games.
Cook, M.; Colton, S.; and Gow, J. 2012. Initial results from co-
operative co-evolution for automated platformer design. In Eu-
ropean Conference on the Applications of Evolutionary Com-
putation, 194–203. Springer.
Cook, M.; Colton, S.; and Pease, A. 2012. Aesthetic consid-
erations for automated platformer design. In The 9th Artificial
Intelligence and Interactive Digital Entertainment.
Dahlskog, S., and Togelius, J. 2014. A multi-level level gen-
erator. In The IEEE Conference on Computational Intelligence
and Games, 1–8.
Duchi, E. H. J., and Singer, Y. 2011. Adaptive subgradient
methods for online learning and stochastic optimization. Jour-
nal of Machine Learning Research.
Horn, B.; Dahlskog, S.; Shaker, N.; Smith, G.; and Togelius, J.
2014. A comparative evaluation of procedural level generators
in the mario ai framework. In The 9th International Conference
on the Foundations of Digital Games.
Hullett, K., and Whitehead, J. 2010. Design patterns in fps
levels. In The 5th International Conference on the Foundations
of Digital Games, 78–85.
Hunicke, R.; LeBlanc, M.; and Zubek, R. 2004. MDA: A for-
mal approach to game design and game research. In Challenges
in Game AI Workshop at the 19th National Conference on Arti-
ficial Intelligence.
Iida, H.; Takeshita, N.; and Yoshimura, J. 2003. A metric for
entertainment of boardgames: its implication for evolution of
chess variants. In Entertainment Computing. Springer. 65–72.
Jain, R.; Isaksen, A.; Holmgård, C.; and Togelius, J. 2016. Au-
toencoders for level generation and style identification. In The
2nd Computational Creativity and Games Workshop.
Lang, K., and Hinton, G. 1988. A time delay neural network
architecture for speech recognition. Technical Report CMUCS-
88-152.
LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard, R.;
Hubbard, W.; and Jackel, L. 1989. Backpropagation applied to
handwritten zip code recognition. volume 1, 541–551.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013. Towards a
generic method of evaluating game levels. In The 9th Artificial
Intelligence and Interactive Digital Entertainment Conference.
Marino, J. R.; Reis, W. M.; and Lelis, L. H. 2015. An empir-
ical evaluation of evaluation metrics of procedurally generated

mario levels. In The 11th Artificial Intelligence and Interactive
Digital Entertainment Conference.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou,
I.; Wierstra, D.; and Riedmiller, M. 2013. Playing Atari with
deep reinforcement learning. Technical report, Deepmind Tech-
nologies. arXiv:1312.5602.
Pedersen, C.; Togelius, J.; and Yannakakis, G. N. 2009a. Mod-
eling player experience in super mario bros. In The IEEE Sym-
posium on Computational Intelligence and Games.
Pedersen, C.; Togelius, J.; and Yannakakis, G. N. 2009b. Mod-
eling player experience in super mario bros. In IEEE Sympo-
sium on Computational Intelligence and Games, 132–139.
Razavian, A. S.; Azizpour, H.; Sullivan, J.; and Carlsson, S.
2014. Cnn features off-the-shelf: An astounding baseline for
recognition. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops.
Reis, W. M. P.; Lelis, L. H. S.; and Gal, Y. 2015. Human com-
putation for procedural content generation in platform games.
In The IEEE Conference of Computational Intelligence and
Games, 99–106.
Rice, P. L. 1999. Stress and Health. Brooks/Cole-Wadsworth.
Shaker, N.; Yannakakis, G. N.; and Togelius, J. 2010. Towards
automatic personalized content generation for platform games.
In The 6th AAAI Conference on Artificial Intelligence and In-
teractive Digital Entertainment.
Shi, Y., and Crawfis, R. 2013. Optimal cover placement against
static enemy positions. In The 8th International Conference on
the Foundations of Digital Games, 109–116.
Smith, G.; Whitehead, J.; and Mateas, M. 2010. Tanagra: A
mixed-initiative level design tool. In The 5th International Con-
ference on the Foundations of Digital Games, 209–216.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. The Journal of Machine Learning
Research 15(1):1929–1958.
Summerville, A., and Mateas, M. 2016. Super mario as a string:
Platformer level generation via lstms. In The 1st International
Conference of DiGRA and FDG.
Sweetser, P., and Wyeth, P. 2005a. Gameflow: A model for
evaluating player enjoyment in games. ACM Computers in En-
tertainment 3(3).
Sweetser, P., and Wyeth, P. 2005b. Gameflow: a model for eval-
uating player enjoyment in games. Computers in Entertainment
(CIE) 3(3):3–3.
Togelius, J., and Schmidhuber, J. 2008. An experiment in auto-
matic game design. In The IEEE Conference on Computational
Intelligence and Games, 111–118.
Togelius, J.; De Nardi, R.; and Lucas, S. M. 2007. Towards au-
tomatic personalised content creation for racing games. In The
IEEE Symposium on Computational Intelligence and Games,
252–259. IEEE.
Togelius, J.; Karakovskiy, S.; and Baumgarten, R. 2010. The
2009 mario ai competition. In IEEE Congress on Evolutionary
Computation, 1–8.
Tremblay, J., and Verbrugge, C. 2015. An algorithmic approach
to decorative content placement. In The 11th Artificial Intelli-
gence and Interactive Digital Entertainment Conference.

37



Tremblay, J.; Torres, P. A.; Brasil, B.; and Verbrugge, C. 2014.
Measuring risk in stealth games. In The 9th International Con-
ference on Foundations of Digital Games.
Yannakakis, G. N.; Spronck, P.; Loiacono, D.; and André, E.
2013. Player modeling. Dagstuhl Follow-Ups 6.

38




