

Dear Leader’s Happy Story Time:
A Party Game Based on Automated Story Generation

Ian D. Horswill
Northwestern University

Evanston, IL
ian@northwestern.edu

Abstract
Players in Dear Leader’s Happy Story Time are placed in the
role of contestants in a reality TV show where they are forced
to audition for roles in the upcoming film of the host, a de-
ranged billionaire who has inexplicably been elected presi-
dent. The stories are produced by a story generator that com-
bines stock plots and characters to produce kitsch story out-
lines. The players then collaborate to improvise a camp per-
formance of the outline. The game design provides a context
for experimenting with automatic story generation within a
narrative game, as well as an opportunity for experimenting
with knowledge representation schemes for expressing the
tropes of popular narrative. The story generator uses a
higher-order logic for describing tropes, and an HTN plan-
ning algorithm based on Nau et al.’s SHOP.

 Introduction
One of the issues with using story generation in games is
that current generators cannot compete with human-con-
structed narratives, and so cannot easily be used in conven-
tional game genres. Players would be unlikely to accept an
entry in the Mass Effect franchise (BioWare 2012) in which
characters spoke lines generated by current story generation
technology. This does not, however, mean that story gener-
ators cannot be used to interesting effect in games; merely
that the game design must be altered to better match the
strengths and weaknesses of current technology. One prom-
ising approach is to design games in which the system shares
authorship with the players in such a way as to make best
use of the strengths of each party (O’Neill et al. 2011; Ryan,
Samuel, and Summerville 2016; Reed and Garbe 2016;
Horswill 2015; Swanson and Gordon 2012).
 In this paper, we describe work in progress on Dear
Leader’s Happy Story Time, a party game in which players
act out an automatically generated story as the beats are pre-
sented to them in real time. The stories are as bad as one

Copyright © 2016, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

would expect from an automated story generator. But it
works as a party game because the players can deliberately
camp up their performances.

Dear Leader’s Happy Story Time
The game is set in an unlikely dystopian future in which a
billionaire and former reality TV star, referred to only as
“Dear Leader,” declares upon his election as president that
he always wanted to direct. He starts a new reality show,
Dear Leader’s Happy Story Time, in which convicts are
given the opportunity to earn their freedom by auditioning
for places in his next film. Unfortunately, Dear Leader is as
good a screenwriter as Hitler was a painter; and his tastes
tend toward “wholesome, American” (read: kitsch) stories.
Worse, the scripts are only outlines, specifying the general
content of beats, such as “the lovers share a tearful reunion,”
forcing the players to improvise as they are read the beats of
the plot, one at a time, without knowing what beat is coming

Figure 1: Screenshot from game

Experimental AI in Games: Papers from the AIIDE Workshop
AAAI Technical Report WS-16-22

39

next. At the end, Dear Leader, along with the viewing pub-
lic, determine which contestants are hired, which are fired
(lethally), and which will live to play another day.
 Computationally, the game consists of a story generator
together with a collection of stock characters, settings, and
plot tropes. The story generator is essentially an HTN plan-
ner, with plot tropes represented as methods for the planner
(see Story Language, below). The generator finds a random-
ized solution to its top-level task, story, then presents the
beats of the plan, one at a time, to the players as they act out
the story. A prototype of the game has been developed un-
der Unity3D (Unity Technologies 2004).

Aesthetics
Although there have been a number of avant-garde experi-
ments with automated story generation, such as NaNo-
GenMo (Kazemi 2013) and even a published novel, World
Clock (Montfort 2013), current story generators are ex-
tremely limited. They do not produce stories that typical
audiences would choose to consume for entertainment. This
places a serious constraint on the use of story generators in
games intended for such audiences: the context of use of the
generator must be such that the audience will consider the
generated stories satisfying.
 The approach taken in Dear Leader is to salvage bad sto-
ries through playful, ironic performance; calling attention to
their artificiality and theatricality; and surfacing the mecha-
nistic character of their generation. The story generator,
which is effectively generating random combinations of
stock tropes, cannot fail to be kitsch in Greenberg’s tech-
nical sense (Greenberg 1939). So rather than trying to mit-
igate the kitsch, we try to exaggerate it, creating stories that
seem like TV movies made for the Lifetime Channel by an
alien intelligence that had read, but not understood, the TV
Tropes wiki (TV Tropes community 2004). We then en-
courage the players to perform these stories with equal ex-
aggeration.
 Ideally, this exaggeration will allow the stories to be ex-
perienced as camp. However, as Sontag argues (2013),
something can’t be pure camp if it self-consciously seeks to
be camp, so perhaps the best we can hope for is post-modern
irony. In any case, we hope that with repeated play, the re-
flexive nature of the gameplay and the surfacing of the me-
chanics of story creation will create a variant of Wardrip-
Fruin’s (2011) SimCity effect, inviting the player to reflect
on the structures of popular narrative in much the same way
as reading TV Tropes.

Story language
This project began as an attempt to represent the tropes of
popular narrative, particularly genre screenwriting in the

Hollywood tradition as codified on TV Tropes (TV Tropes
community 2004). Consequently, the technical focus in this
project has been on making expressive languages for repre-
senting plot tropes, rather than on powerful planning algo-
rithms. As such, the language used for representing plot
tropes can be thought of as a kind of domain-specific lan-
guage for representing story fragments, together with con-
straints on their application. It can also be thought of as a
fancy story grammar (Mandler and Johnson 1977), albeit
not a context-free one, since it makes liberal use not only of
unification, but of planning and inference.
 A finished story in Dear Leader is represented both as a
set of plot events, and as a story world in which those events
take place. The plot events are generated by a total-order,
hierarchical task network (HTN) planner.
 The story world is similar to Fiasco’s notion of a “setup”
(Morningstar 2009); it includes information such as what
characters, settings, and themes appear in the story, who is
the protagonist, which characters are sympathetic, etc. It is
distinct from the world state tracked by the planner; state
can be changed by actions, but story world information is
fixed over the course of the story (i.e. the story world con-
tains no fluents).
 The story world is represented as a set of ground literals
in a higher-order logic. The programmer can declare facts
about symmetries of predicates, or that one predicate gener-
alizes another. The programmer can also declare inference
rules within the logic, and that given pairs of literals are con-
tradictory. The story generator guarantees that the gener-
ated story world is contradiction-free given the provided in-
ference and contradiction rules.
 Declarations of plot tropes and beats can contain con-
straints on the story world. The story planner will satisfy
them as best it can, backtracking when a plot event’s con-
straint cannot be satisfied in the current story world.
 The system’s plot knowledge consists primarily of a set
of rules for the HTN planner that map plot events to se-
quences of lower-level plot events. Because of the narrative
domain, we refer to HTN tasks as plot events rather than
tasks. In particular, we will refer to the primitive operators
as beats, and the methods as plot tropes. The system’s
knowledge is therefore contained in large part in its stock of
beats and plot tropes.
 A beat declaration specifies the name and arguments of
the beat, together with a template for generating English text
to describe the beat:

beat(distraught(Person),
 $text("[Person] is distraught")).

Here we follow the Prolog/ASP convention of denoting
logic variables through capitalization. Beat declarations
may also optionally include preconditions on state, as well

40

as add lists, and delete lists to modify the state. For exam-
ple:

beat(distraught(Person) :
 { adds(distraught(Person)) },
 $text("[Person] is distraught")).

They may also include constraints on the story world (again,
as distinct from state), either in the form of domain con-
straints for the beat’s arguments, as in:

beat(kills(Killer, Victim,
 Instrument: murder_weapon),
 $text("[Killer] kills [Victim]
 with [Instrument]")).

which states that the Instrument must be a murder weapon,
or as explicit conjunction of literals:

beat(kills(Killer, Victim,
 Instrument: murder_weapon)
 : { constraint:
 (unsympathetic(Killer),
 Killer \= Victim) },
 $text("[Killer] kills [Victim]
 with [Instrument]")).

 Plot trope declarations are more or less the same in the
sense that they specify the name and arguments for a plot
event together with an expansion for it. However, in this
case the expansion is a series of other plot events rather than
English text. Like beat declarations, they can include con-
straints on the story world, preconditions, etc. For example,
the plot trope:

introduce_relationship(P : protagonist,
 L : character,
 lovers(P, L)) :
 (P \= L, compatibility(P, L, C))
 ==>
 meet(P, L, _),
 fall_in_love(P, L, C).

states that you can introduce the relationship of two charac-
ters, P (the protagonist) and L, being lovers by having them
meet someplace and fall in love. However, within the story
world, P and L must be different characters, and they must
share some romantic compatibility C. Note that arguments
to plot events may be literals or other plot events, not just
objects from the story world. This allows higher-order con-
structs such as the task of achieving some condition to be
expressed.

Example trope
“Boy meets girl” is a popular trope in narrative. We will
adopt the alternate name “peep meets peep” to remain gen-
der neutral. In many of its instantiations, the trope involves
two characters meeting and falling in love, then breaking up,
and finally reuniting. We can therefore represent it with a
rule such as:

peep_meets_peep(P, L) ==>
 fall_in_love(P, L, Cof),
 breakup(P, L),
 reunite(P, L).

where P is the protagonist and L their love interest. Here we
assume that the plot events fall_in_love, breakup,
and reunite would each have their own trope rules for
decomposing them into simpler plot events, and eventually
into beats.

However, this trope is a subtrope of a more general trope
involving loss and redemption. In the parent trope, the pro-
tagonist first loses some property or relation, and then
reestablishes it. We can represent this more general trope
using the rule:

loss_and_redemption ==>
 introduce_relationship(P, O, R),
 break_relationship(P, O, R),
 restore_relationship(P, O, R).

stating that we first introduce some relationship R between
the protagonist P and the other O, then break it, then restore
it. The peep meets peep trope is then simply a special case
where 𝑅 = lovers(𝑃, 𝑄). The introduce_relation-
ship rule in the previous section shows an example for in-
troducing the lovers relationship. For reasons of space,
we’ll omit the rules for breaking the relationship and focus
on restoring the relationship. We start with the rules:

restore_relationship(P, L,
 lovers(P, L)) ==>
 saves_life(P, L),
 profess_love(L, P).
restore_relationship(P, L,
 lovers(P, L)) ==>
 saves_life(L, P),
 profess_love(L, P).
restore_relationship(P, L,
 lovers(P, L)) ==>
 attempt_suicide(P, _),
 prevents_suicide(L, P),
 profess_love(L, P).

These rules state that you can reunite lovers by having one
save the life of another or by having the rejected protagonist
attempt suicide only to be saved by their love interest. In all

41

cases, the close call with death forces the love interest to re-
alize the depth of their love for the protagonist.
 Saving the life of a character can be described by:

saves_life(Saver, Savee : character) :
 threatening_situation(Savee, Threat)
==>
 introduce_threat(Savee, Threat),
 rescue(Savee, Saver, Threat).

Threatening situations can include things like being
mugged, or medical emergencies affecting either the Savee
or someone beloved to them, such as a parent, sibling, or pet
ferret:

threatening_situation(_, mugger(_)).
threatening_situation(P,
 medical_situation(P, M)) :-
 medical_situation(M).
threatening_situation(P,
 medical_situation(Who, M)) :-
 beloved_of(P, Who),
 medical_situation(M).

In the case of a medical situation, we introduce the threat by
first telling the audience the specific Patient is threatened,
then letting them know that the Subject (ultimately, the love
interest who rejected the protagonist) is distraught:1

introduce_threat(
 Subject,
 medical_situation(Patient, What))
 ==>
 life_threatened_by(Patient, What),
 when(Patient \= Subject,
 distraught(Subject)).

The protagonist can then save whoever is ill by donating a
kidney or some other valuable medical item:

rescue(Rescued, Saver,
 medical_situation(Who, _))
 : (medical_donation(Donation),
 character(Who))
 ==>
 setting(hospital),
 gives(Saver, Who, Donation),
 when(Rescued \= Who,
 tearful_reunion(Rescued, Who)).

This is a general trope that would be applicable to any Saver
character. Additional rules could be added for specific char-

1 when(P, T) expands to T when P is true, otherwise to the empty plan.

acters or types of characters: doctors can save the patient di-
rectly; supernatural characters might save them through
magic.

The above rules collectively define the loss-and-redemp-
tion trope for the lovers relationship. Others can extend
it to allow the breakup and reestablishment of a marriage, or
a friendship (as in a buddy movie). Or we could further ab-
stract it to accommodate more general predicates such as the
loss and redemption of a character’s honor.

We can also provide rules for subverting the trope, for ex-
ample by providing a yandere2 plot line in which, rather than
reestablishing the relationship, the jilted lover stalks the pro-
tagonist:

yandere_plot(P, S : character)
 : (P \= S,
 dif(Tone1, Tone2, Tone3))
 ==>
 introduce_relationship
 (P, S, lovers(P, S)),
 break_relationship(P, S,
 lovers(P, S)),
 stalks(S, P, Tone1),
 stalks(S, P, Tone2),
 stalks(S, P, Tone3),
 stalker_confrontation(P, S).

This begins identically to the peep-meet-peep trope, but
ends with a series of stalking incidents (the dif predicate
requires they all have different “tones”), and finally a con-
frontation.

Story generator implementation
The story generator is ultimately a forward-search, ordered,
HTN planner, similar to SHOP (Nau et al. 1999). The plan-
ner tracks story state as it plans, testing candidate plot events
for preconditions, and updating the state based on add and
delete lists, in essentially the same manner as SHOP.
 Although the details are outside the scope of this paper,
the SHOP algorithm can be seen as an extension of the
“threading” technique used in definite clause grammars
(Pereira and Warren 1980), wherein grammar rules are
translated directly into Prolog rules for predicates with extra
arguments (Sterling and Shapiro 1994). We use this tech-
nique to macro-expand beat and trope declarations directly
into Prolog rules that can be executed directly. In particular,
a plot event 𝑒(𝑎1, … , 𝑎𝑛) is expanded into a Prolog predicate
𝑒(𝑎1, … , 𝑎𝑛, 𝑠𝑖𝑛, 𝑠𝑜𝑢𝑡, 𝑝𝑖𝑛, 𝑝𝑜𝑢𝑡) that is true whenever 𝑝𝑖𝑛 is
a plan that enacts 𝑒(𝑎1,… , 𝑎𝑛), and that, when run in state

2 A yandere is a manga/anime trope involving love interests who are violent
sociopaths. While typically female in those genres, Dear Leader is gender
neutral.

42

𝑠𝑖𝑛, results in state 𝑠𝑜𝑢𝑡.3 A Prolog query of the predicate
will cause Prolog to do a forward state-space search for a
plan that solves the task 𝑒(𝑎1, … , 𝑎𝑛). This technique allows
planning to be relatively fast in spite of the use of an inter-
preted Prolog. In addition, it allows the injection of arbitrary
Prolog code during the macro-expansion process. Finally,
it allows arguments to task to be not just objects, but literals
in the underlying logic, such as in the examples above. This
makes the language much more expressive.
 Story world constraints specified in a rule are added as
subgoals at the beginning of the Prolog rule. The story plan-
ner maintains a model of the story world as it generates the
story. When a plot rule stipulates a constraint, it compares
it to the existing model, checking for contradictions. If none
are found, it adds it to the model, along with all its implica-
tions given the current model, to deductive closure. If any
contradictions are found, it backtracks, rejecting the current
plot rule.
 The Prolog interpreter allows specific predicates to be de-
clared randomizable, in which case it will shuffle the order
in which it tries the clauses for that predicate, making it
straightforward to generate randomized stories.

 Text generation is performed using a variant of definite
clause grammars (Pereira and Warren 1980). Each beat dec-
laration includes a DCG for generating text describing the
beat, and additional DCG rules can be included to describe
ancillary generation processes such as how to realize partic-
ular entities as noun phrases.

Example story
Here is an example story generated by Dear Leader using
the tropes discussed above. It tells a love story involving
the manic pixie dream peep and a vampire noble. The text
and formatting are as they appear in-game:

Setting: Starbuck’s
The manic pixie dream peep meets the vampire noble.
The manic pixie dream peep and the vampire noble bond
over their shared love of Dear Leader.
Love develops between the manic pixie dream peep and
the vampire noble.
Time passes
The vampire noble breaks up with the manic pixie dream
peep over their lack of interest in immortality.
The manic pixie dream peep is distraught.
Setting: The hospital
The vampire noble’s little sibling’s life is threatened by
cancer.
The vampire noble is distraught.

3 𝑝𝑜𝑢𝑡 is required for technical reasons, but can be ignored here. It is used
by other predicates calling 𝑒.

The manic pixie dream peep gives bone marrow to the
vampire noble’s little sibling.
The vampire noble and the vampire noble’s little sibling
share a tearful reunion.
The vampire noble professes their love for the manic pixie
dream peep.
The manic pixie dream peep and the vampire noble live
happily ever after.

Note that the current version of the game is completely gen-
der neutral. Hence the use of terms like “manic pixie dream
peep” rather than the conventional “manic pixie dream girl”
and the pervasive use of the pronouns “they” and “their”.
This was a deliberate choice based on the fact that (1) our
playtesters didn’t mind roleplaying same sex relationships
and/or genders other than their own, and (2) explicit gender
support would require a fairly elaborate user interface for
specifying player preferences for gender, heteronormativity,
etc.

Related Work
There has been a considerable amount of work on story gen-
eration, within the AI and cognitive science research com-
munities, and among authors of electronic literature
(Kazemi 2013). The most relevant of these are the systems
that make some attempt at knowledge representation, of
which there are three main strands.
 Most story generators use some kind of planning formal-
ism. Examples include early systems such as TALE-SPIN
(Meehan 1977), MINSTREL (Turner 1993; Tearse et al.
2014), and UNIVERSE (Lebowitz 1983). More recent sys-
tems, such as FABULIST (Riedl and Young 2010), have
adopted more powerful planning formalisms and imported
concepts from narratology, or sought to extend the planning
process to encode different notions of story quality
(Porteous and Cavazza 2009; Ware and Young 2011).
 The planning algorithm used in Dear Leader is less so-
phisticated than that of modern story planners such as FAB-
ULIST or CPOCL. However, the story language is arguably
more expressive than that found in contemporary story plan-
ners.4 The story world generation in Dear Leader is also
very similar to the first-phase of story generation in UNI-
VERSE, although the logic and algorithm used are different.
 Another strand in story generators involves the develop-
ment of explicit cognitive models, such as in MEXICA
(Pérez y Pérez and Sharples 2001), or the design of genera-
tors influenced by models of narrative comprehension from
cognitive science (Ware et al. 2014; Ware and Young 2012).
 A separate, and controversial, strand in the story genera-
tion literature involves the use of story grammars (Lakoff

4 For example, it’s unclear how one could represent something like the in-
troduce_relationship operation, which takes a relationship literal
as an argument, in a language like PDDL (Kovacs 2011).

43

1972; Mandler and Johnson 1977; Compton, Filstrup, and
Mateas 2014). The critique of story grammars is that they
are not sufficiently expressive to capture the true structure
of stories (Wilensky 1983). However, this depends in part
on what one takes to be a “grammar.” Certainly, traditional
context-free grammars are insufficiently expressive, but
unification grammars allow for coordination of information
in distal parts of the story via communication through fea-
ture structures. And as mentioned above, the SHOP planner
on which our system is based (Nau et al. 1999) bears distinct
similarities to definite-clause grammars (Pereira and Warren
1980). Indeed, to the extent that some of the planning-based
systems, such as MINSTREL and UNIVERSE, work by re-
combining elements from a plot library, the difference be-
tween planning- and grammar-based generators is perhaps
less a sharp distinction than a spectrum of systems at differ-
ent points along something like the Chomsky hierarchy.
 There have been a number of recent attempts to bring
story generation (broadly construed) into some kind of a
mixed-initiative context. Magerko and colleagues have
built systems that can collaborate with humans in traditional
improv games (O’Neill et al. 2011). Fiascomatic (Horswill
2015) generates simple story worlds as starting points for
the live-action freeform game Fiasco (Morningstar 2009).
The Icebound Concordance (Reed and Garbe 2016) ex-
plores the collaborative co-generation of interactive narra-
tive by using a story generator and exposing some of its
choice points to the player. And both Storyteller
(Benmergui 2013) and Best Laid Plans (Ware and Young
2015) use story planners to create gameplay based on narra-
tive puzzles.
 At a very high level, the most spiritually similar system
to ours is the experimental game Bad News (Ryan, Samuel,
and Summerville 2016). Like Dear Leader, it combines a
procedurally generated world with human-improvisational
performance. Although the story outline in Bad News is
much more fixed than the stories generated by Dear Leader,
the story world it generates is far more elaborate, involving
an entire town of simulated characters and relationships.
Samuel’s notions of moving from player agency to player
ownership in interactive narrative have also been an im-
portant influence in this work.

Initial playtests and future work
The replay value of Dear Leader’s prototype is significantly
reduced by its limited trope repertoire. Our hope is that this
will change with the addition of more plot tropes and stock
characters.
 The main problem with the current game design is that
it’s easy for characters playing a beat to unwittingly intro-
duce plot elements that are then contradicted by later beats.
Since the story generation is non-interactive, there’s no way

for the system to redirect the story based on these elements,
or even for it to be aware of them. Therefore, the primary
game design challenge is to find ways of communicating to
the players what not to do without simply giving them the
entire plot in advance, which would remove the fun of not
knowing what’s coming. There are a number of possibilities
for this. One is to have one player act as the director (i.e. a
GM) to whom the entire story can be divulged in advance.
Another is to try to divulge more of the story world config-
uration to the player in advance.
 The specifics of the story world representation and the in-
ferential power of its constraint satisfaction system are also
very much in flux. While the current implementation is suf-
ficient for the current set of tropes, characters, and settings,
it will likely have to be extended in the future. In addition,
some kind of well thought-out ontology for things like social
relationships should be added.

Conclusion
Part of the promise of advanced game AI is to allow for
more sophisticated interactive storytelling within games.
However, current story generators will not be able to com-
pete with human-authored storytelling any time soon (if this
is even desirable). By building mixed-initiative story games
in which player and computer share authorship of the story,
the human player can compensate for whatever deficiencies
the AI system might have, thereby allowing a limited story
system to still produce a meaningful play experience.
 Over time, successive generations of game can shift the
division of labor as story generation technology improves,
providing a path for incremental progress while still allow-
ing the feedback of putting a playable experience in front of
real humans.
 The limitations of current interactive narrative systems
make it easier in some ways to aim for comedy than drama
(Horswill 2012). We have consequently aimed in Dear
Leader for an aesthetic of irony, exaggeration, and camp. It
should be acknowledged, however, that this is a risky strat-
egy. As in games such as Cards Against Humanity (Dillon
et al. 2011), this can encourage subversive play but can also
be played for homophobia and misogyny in those who are
so inclined. It is our hope that the game will not be popular
with such players.

Acknowledgements
I would like to thank the Joe Bates, Spencer Florence, and
Dan Feltey for being great playtesters, and the reviewers for
their very helpful comments and suggestions; apologies for
failing to fit them all. I’d also like to thank Ethan Robison
for great discussions about tropes, and Ben Samuel for his
thoughts on narrative, improvisation, and ownership.

44

References
Benmergui, Daniel. 2013. “Storyteller.” In Experimental
Gameplay Sessions, Game Developer’s Conference. San
Francisco, CA: UBM Techweb.
BioWare. 2012. “Mass Effect 3.”
Compton, Kate, Benjamin Filstrup, and Michael Mateas. 2014.
“Tracery : Approachable Story Grammar Authoring for Casual
Users.” Papers from the 2014 AIIDE Workshop, Intelligent
Narrative Technologies (7th INT, 2014), 64–67.
http://www.aaai.org/Library/Workshops/ws14-21.php.
Dillon, Josh, Daniel Dranove, Eli Halpern, Ben Hantoot, David
Munk, David Pinsof, Max Temkin, and Eliot Weinstein. 2011.
“Cards Against Humanity.” Ad Magic.
Greenberg, Clement. 1939. “Avant Garde and Kitsch.” Partisan
Review 6 (5): 34–49.
Horswill, Ian D. 2012. “Punch and Judy AI Playset: A Generative
Farce Manifesto Or: The Tragical Comedy or Comical Tragedy of
Predicate Calculus.” Intelligent Narrative Techologies V (INT5),
14–19.
———. 2015. “Fiascomatic : A Framework for Automated Fiasco
Playsets Playset Definition,” 22–28.
Kazemi, Darius. 2013. “National Novel Generation Month
Repository.” https://github.com/dariusk/NaNoGenMo.
Kovacs, Daniel L. 2011. “BNF Definition of PDDL3.1.”
http://www.plg.inf.uc3m.es/ipc2011-
deterministic/attachments/Resources/kovacs-pddl-3.1-2011.pdf.
Lakoff, George. 1972. “The Structural Complexity of Fairy Tales.”
The Study of Man 1: 128–90.
Lebowitz, Michael. 1983. “Creating a Story-Telling Universe.” In
Proceedings of the Eigth International Joint Conference on
Artificial Intelligence, 63–65. Karlsruhe, Germany: Morgan
Kaufman.
Mandler, J.M., and N.S. Johnson. 1977. “Remembrance of Things
Parsed: Story Structure and Recall.” Cognitive Psychology 9: 111–
51.
McCoy, Joshua, Mike Treanor, Ben Samuel, Noah Wardrip-Fruin,
and Michael Mateas. 2011. “Comme Il Faut: A System for
Authoring Playable Social Models.” In Proceedings of the 7th AI
and Interactive Digital Entertainment, edited by Vadim Bulitko
and Mark O. Riedl. Stanford, CA: AAAI Press.
Meehan, James R. 1977. “TALE-SPIN, an Interactive Program
That Writes Stories.” In Proceedings of the 5th International Joint
Conference on Artificial Intelligence, 91–98. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.
Montfort, Nick. 2013. World Clock. Cambridge, MA: Bad Quarto.
Morningstar, Jason. 2009. Fiasco. Durham, NC: Bully Pulpit
Games.
Nau, Dana, Yue Cao, Amnon Lotem, and Hector Munoz-Avila.
1999. “SHOP: Simple Hierarchical Ordered Planner.” In
Proceedings of the 16th International Joint Conference on
Artificial Intelligence, 968–73. Stockholm, Sweden: Morgan
Kaufmann Publishers Inc.
O’Neill, Brian, Andreya Piplica, Daniel Fuller, and Brian
Magerko. 2011. “A Knowledge-Based Framework for the
Collaborative Improvisation of Scene Introductions.” In
Proceedings of the 4th International Conference on Interactive
Digital Storytelling. Vancouver, Canada.

Pereira, Fernando C. N., and David H. D. Warren. 1980. “Definite
Clause Grammars for Language Analysis - A Survey of the
Formalism and a Comparison with Augmented Transition
Networks.” Artificial Intelligence 13 (231-278).
Pérez y Pérez, Rafael, and Mike Sharples. 2001. “MEXICA: A
Computer Model of a Cognitive Account of Creative Writing.”
Journal of Experimental and Theoretical Artificial Intelligence 13
(2): 119–39.
Porteous, Julie, and Marc Cavazza. 2009. “Controlling Narrative
Generation with Planning Trajectories: The Role of Constraints.”
In Proc. of 2nd Int. Conf. on Interactive Digital Storytelling.
Reed, Aaron A., and Jacob Garbe. 2016. “The Ice Bound
Concordance.” Santa Cruz, California: Self-published.
Riedl, Mark O, and R. Michael Young. 2010. “Narrative Planning:
Balancing Plot and Character.” Journal of Artificial Intelligence
Research 39 (217-268).
Ryan, James Owen, Ben Samuel, and Adam Summerville. 2016.
“Bad News : A Game Of Death And Communication,” 160–63.
Sontag, Susan. 2013. “Notes on ‘Camp.’” In Against Interpretation
and Other Essays. Farrar, Straus and Giroux.
Sterling, Leon, and Ehud Shapiro. 1994. The Art of Prolog.
Cambridge, MA: MIT Press.
Swanson, Reid, and Andrew S. Gordon. 2012. “Say Anything:
Using Textual Case-Based Reasoning to Enable Open-Domain
Interactive Storytelling.” ACM Transactions on Interactive
Intelligent Systems 2 (3).
Tearse, Brandon, Peter Mawhorter, Michael Mateas, and Noah
Wardrip-Fruin. 2014. “Skald: Minstrel Reconstructed.” IEEE
Transactions on Computational Intelligence and AI in Games 6:
1–10.
Turner, Scott R. 1993. “Minstrel: A Computer Model of Creativity
and Storytelling.” University of California at Los Angeles.
TV Tropes community. 2004. “TV Tropes.” www.tvtropes.com.
Unity Technologies. 2004. “Unity 3D.” San Francisco, CA.
Wardrip-Fruin, Noah. 2011. Expressive Processing: Digital
Fictions, Computer Games, and Software Studies. Cambridge,
MA, USA: MIT Press.
Ware, Stephen G, and R Michael Young. 2015. “Intentionality and
Conflict in The Best Laid Plans Interactive Narrative Virtual
Environment” X (January): 1–11.
Ware, Stephen G., and R. Michael Young. 2011. “CPOCL: A
Narrative Planner Supporting Conflict.” In The Seventh Annual
International Conference on Artificial Intelligence in Interactive
Digital Entertainment. Stanford, CA: AAAI Press.
———. 2012. “Validating a Plan-Based Model of Narrative
Conflict.” In International Conference on Foundations of Digital
Games. Raleigh, NC.
Ware, Stephen G., R. Michael Young, Brent Harrison, and David
L. Roberts. 2014. “A Computational Model of Plan-Based
Narrative Conflict at the Fabula Level.” IEEE Transactions on
Computational Intelligence and AI in Games 6 (3): 271–88.
doi:10.1109/TCIAIG.2013.2277051.
Wilensky, Robert. 1983. “Story Grammars versus Story Points.”
Brain and Behavioral Sciences 6: 579–623.

45

