
Algorithm Selection in Zero-Sum Computer Games

Anderson Rocha Tavares
Advisor: Luiz Chaimowicz

Laboratory of Multidisciplinary Research in Games
Universidade Federal de Minas Gerais

Belo Horizonte, Brazil
anderson@dcc.ufmg.br

Abstract

Competitive computer games are challenging domains for ar-
tificial intelligence techniques. In such games, human players
often resort to strategies, or game-playing policies, to guide
their low-level actions. In this research, we propose a compu-
tational version of this behavior, by modeling game playing
as an algorithm selection problem: agents must map game
states to algorithms to maximize their performance.
By reasoning over algorithms instead of low-level actions,
we reduce the complexity of decision making in computer
games. With further simplifications on the state space of a
game, we were able to discuss game-theoretic concepts over
aspects of real-time strategy games, as well as generating a
game-playing agent that successfully learns how to select al-
gorithms in AI tournaments.
We plan to further extend the approach to handle incomplete-
information settings, where we do not know the possible be-
haviors of the opponent.

Introduction

To deal with the complexity of competitive computer games,
humans usually resort to strategies to guide their actions.
Strategies can specify a multitude of game-playing behav-
iors: aggressive attacks, conservative defenses, and every-
thing in-between. In practical terms, strategies are policies
that determine the course of low-level game actions to ex-
ecute. A player attempts to map the current game state to
the best possible strategy in its repertoire, taking into ac-
count that his choice will affect the future state (sequential
reasoning) and that other players are likewise attempting to
maximize their performance (multiagent reasoning).

In this research, we formulate this situation as a compu-
tational problem: if we consider software-controlled players
instead of humans and a portfolio of algorithms instead of
a repertoire of strategies, we have a problem of algorithm
selection (Rice 1976) in a multiagent, sequential setting im-
posed by the computer game. For our purposes, an algorithm
is any procedure that maps a game state to a low-level action:
it can be as simple as a lookup table, or as sophisticated as
a full game-playing agent with heuristics, planning and/or
learning mechanisms.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

By reasoning over algorithms instead of low-level game
actions, the complexity of the decision problem for play-
ing agents is reduced at the potential expense of optimality.
This is a reasonable trade-off in computer games, which are
mostly real-time domains: players do not have time to reason
over huge state-action spaces to find optimal actions.

In this research we focus on two-player zero-sum com-
puter games. We adopt Markov games1 as a formal model
of a computer game. In this model, players act simultane-
ously in each state. A transition function, which might be
unknown to the players, determine the next state, based on
their joint actions. Reward functions determine the rewards
for players at each transition. In our Markov game model,
players select algorithms instead of low-level game actions.
This reduces the game’s branching factor on the players per-
spective.

Algorithm selection has been studied in complex prob-
lems, such as SAT (Xu et al. 2008) and General Video Game
Playing (Bontrager et al. 2016). Our framework extends
such previous efforts by accounting for multiple agents and
by allowing shifting between algorithms regularly, instead
of a one-shot selection to solve the problem at hand. How-
ever, our current results, detailed in the next section, were
obtained by testing the case with one-shot selection as well.
Studies on multi-stage algorithm selection are in progress.

Current results

In a first experiment, we instantiated a special case of our
approach upon real-time strategy game StarCraft. The spe-
cial case has a single state, i.e., each player maps only the
initial game state to an algorithm. This reduces the Markov
game to a normal-form game, whose payoff matrix indicates
expected relative performance among algorithms. In this set-
ting, players are algorithm selectors and their policies are
probability distributions over algorithms. Nash Equilibrium
over the payoff matrix specifies a safe policy for algorithm
selection in this setting.

Our experiments confirmed a trend in game-theoretical re-
search (McCracken and Bowling 2004; Ganzfried and Sand-
holm 2015): principled approaches to exploit sub-optimal
opponents can be useful, although they are not as safe as
the equilibrium policy. Such exploitation policies are able to

1Also known as Stochastic Games (Shapley 1953).

Proceedings, The Thirteenth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE-17)

301

achieve higher payoffs than that of the equilibrium policy
and they have bounded losses in case their exploitation at-
tempts fail. These results are in (Tavares et al. 2016), where
the algorithms were called strategies.

We also built a functional StarCraft bot, named
MegaBot2, based on the framework of Tavares et al. (2016),
to participate in AI tournaments. MegaBot has a portfolio
of three algorithms, which are non-dominant bots of AIIDE
2015 tournament3. We selected non-dominant bots for the
portfolio to test whether MegaBot performs well by learn-
ing how to properly select algorithms rather than due to a
powerful portfolio.

In StarCraft AI tournaments, we do not know the normal-
form game’s payoff matrix beforehand, thus we learn its val-
ues via minimax-Q’s update rule (Littman 1994). Besides, in
StarCraft, we can identify the adversary’s bot name. In the
terms of our model, MegaBot knows against which algo-
rithm it is playing. This reduces the normal-form game ma-
trix to a single column, corresponding to the payoffs against
that specific algorithm. This can be seen as a multi-armed
bandit, so that MegaBot employs an ε-greedy mechanism
for algorithm selection.

MegaBot placed 7th out of 16 competitors in CIG4 and 9th

out of 22 competitors in AIIDE5 2016 StarCraft AI compe-
titions. It has outperformed each of its portfolio components
and received an honorable mention for its learning curve
(measured in rate of victories per round). This indicates that
algorithm selection can be a useful approach for real-time
strategy games. MegaBot did not score better because no
component of its portfolio could defeat the strongest com-
petitors.

Currently, we are investigating the multi-state setting for
algorithm selection, in which players start with an algorithm
and can switch it during the match, being able to select the
best algorithm for the current context. This corresponds to
the general Markov game formalism. To simplify the state
space, as a first approach we cluster similar states to form
the Markov game’s decision points, allowing us to employ
tabular reinforcement learning methods.

In the multi-state setting, preliminary experiments in mi-
croRTS (Ontañón 2013) suggest that Q-learning (Watkins
and Dayan 1992) and MinimaxQ (Littman 1994), which are
traditional tabular reinforcement learning methods, are com-
petitive against PuppetSearch (Barriga, Stanescu, and Buro
2015) and Adversarial Hierarchical Task Network planning
(Ontañón and Buro 2015), which are state-of-the-art search
methods.

Next steps

The proposed model assumes that players know each other’s
algorithm portfolio. Formally, this is a complete-information
Markov game, which is addressed by methods such as Min-
imaxQ (Littman 1994). However, in a realistic setting, the
agent is aware of the opponent’s presence but does not know

2https://github.com/andertavares/MegaBot
3https://www.cs.mun.ca/∼dchurchill/starcraftaicomp/2015/
4https://sites.google.com/site/starcraftaic/result
5http://www.cs.mun.ca/∼dchurchill/starcraftaicomp/2016/

his possible behaviors. Formally, this is an incomplete-
information Markov game. A special case of the incomplete-
information Markov game is the single-state setting, which
corresponds to an adversarial multi-armed bandit (Auer et al.
1995). The Exp3 method of Auer et al. (1995) exhibits theo-
retical performance guarantees for this problem, dismissing
complete information.

On the one hand, MinimaxQ handles the multi-stage
setting by accounting for future states when updating the
action-values, but requires complete information to calculate
a policy to map the current state to a probability distribution
over actions. On the other hand, Exp3 does not account for
future states, but dismisses complete information to calcu-
late a policy. Our proposed approach combines the strengths
of the two methods: we account for future states when up-
dating the current action-values, by using MinimaxQ’s up-
date rule, and dismiss complete information, by using Exp3
method to calculate the policy. To the best of our knowl-
edge, this method to handle incomplete-information Markov
games is novel.

We want to investigate whether our method bounds
agent’s losses, extending the guarantees of Exp3 from single
to multi-state settings and/or MinimaxQ’s guarantees from
complete- to incomplete-information settings. Experimental
results may be useful in this sense: a robust performance of
our method may indicate that further investigation of its the-
oretical properties can be fruitful. In such experiments, we
could also test other bandit methods (e.g. ε-greedy or UCB
(Auer, Cesa-Bianchi, and Fischer 2002)) instead of Exp3, to
verify their performance in practice.

An interesting direction for future research comes from
the fact that so far we worked with out-of-the-box algo-
rithms, i.e. game-playing bots. It would be interesting to
merge our approach with the discovery of options - tem-
porally extended actions - in Markov decision processes
(Machado, Bellemare, and Bowling 2017), as our concept
of algorithms seems connected to the concept of options.
This way, we would be automatically learning how to select
algorithms as well as creating novel, and potentially better,
game-playing algorithms to select.

Future studies could also address the issue of parameter-
ized algorithms. As each parameter setting can specify a
different behavior, the number of possible behaviors to se-
lect can become intractable. It might be possible to deter-
mine bounds in the expected performance of an algorithm
within certain parameter ranges, so that the problem become
tractable again.

Acknowledgments

The author acknowledges CNPq and CAPES for the PhD
scholarship and FAPEMIG for support in this research, as
well as the reviewers for useful suggestions and remarks.

References

Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire, R. E.
1995. Gambling in a rigged casino: The adversarial multi-
armed bandit problem. In Foundations of Computer Science.
Proceedings, 36th Annual Symposium on, 322–331. IEEE.

302

Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
learning 47(2-3):235–256.
Barriga, N. A.; Stanescu, M.; and Buro, M. 2015. Pup-
pet Search: Enhancing Scripted Behavior by Look-Ahead
Search with Applications to Real-Time Strategy Games. In
11th Artificial Intelligence in Interactive Digital Entertain-
ment Conference (AIIDE).
Bontrager, P.; Khalifa, A.; Mendes, A.; and Togelius, J.
2016. Matching Games and Algorithms for General Video
Game Playing. In 12th Artificial Intelligence in Interactive
Digital Entertainment Conference (AIIDE), 122–128.
Ganzfried, S., and Sandholm, T. 2015. Safe Opponent Ex-
ploitation. ACM Transactions on Economics and Compua-
tion 3(2).
Littman, M. L. 1994. Markov games as a framework for
multi-agent reinforcement learning. In Proceedings of the
11th International Conference on Machine Learning, 157–
163. New Brunswick, NJ: Morgan Kaufmann.
Machado, M. C.; Bellemare, M. G.; and Bowling, M. 2017.
A Laplacian Framework for Option Discovery in Reinforce-
ment Learning. CoRR abs/1703.00956.
McCracken, P., and Bowling, M. 2004. Safe strategies for
agent modelling in games. AAAI Fall Symposium on Artifi-
cial Multi-agent Learning 103–110.
Ontañón, S., and Buro, M. 2015. Adversarial hierarchical-
task network planning for complex real-time games. In
Twenty-Fourth International Joint Conference on Artificial
Intelligence.
Ontañón, S. 2013. The combinatorial multi-armed bandit
problem and its application to real-time strategy games. In
Ninth Artificial Intelligence and Interactive Digital Enter-
tainment Conference.
Rice, J. R. 1976. The algorithm selection problem. Ad-
vances in computers 15:65–118.
Shapley, L. S. 1953. Stochastic games. Proceedings of the
National Academy of Sciences 39(10):1095–1100.
Tavares, A.; Azpúrua, H.; Santos, A.; and Chaimowicz, L.
2016. Rock, Paper, StarCraft: Strategy Selection in Real-
Time Strategy Games. In 12th Artificial Intelligence and In-
teractive Digital Entertainment Conference (AIIDE), 93–99.
Watkins, C. J. C. H., and Dayan, P. 1992. Q-learning. Ma-
chine Learning 8(3):279–292.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
SATzilla: portfolio-based algorithm selection for SAT. Jour-
nal of Artificial Intelligence Research 32:565–606.

303

