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Abstract

Multi-agent path finding (MAPF) is a well-studied problem
in artificial intelligence, where one needs to find collision-
free paths for agents with given start and goal locations.
In video games, agents of different types often form teams.
In this paper, we demonstrate the usefulness of MAPF al-
gorithms from artificial intelligence for moving such non-
homogeneous teams in congested video game environments.

Introduction

Path finding is a component of many video games. For ex-
ample, agents in turn-based or real-time strategy games need
to plan collision-free paths from their current locations to
their goal locations, often in dynamic and congested envi-
ronments. Moving the agents in a team rather than individu-
ally makes it easier for players to control hundreds of agents.
Furthermore, the agents often have types and thus form a
non-homogeneous team. In Dragon Age: Origins, for exam-
ple, a player moves teams of agents, where a team might
consist of mages, warriors, and rogues. Agents of the same
type form a group within the team because they can inter-
change their goal locations. In our example, the mages thus
form the first group, the warriors form the second group,
and the rogues form the third group. Each goal location re-
served for a mage, warrior, or rogue can be occupied only by
a mage, warrior, or rogue, respectively, but it does not matter
by which one. A similar situation arises in Age of Empires
for archers, spearmen, and knights.

We therefore study the problem where a player moves
a non-homogeneous team by occasionally specifying goal
locations for them, for example, after observing new parts
of the environment. The player may specify new goal lo-
cations even before all agents have reached the previously
specified goal locations. We demonstrate the usefulness of
multi-agent path finding (MAPF) algorithms from artificial
intelligence for finding collision-free paths for all agents.
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Multi-Agent Path Finding

MAPF is NP-hard to solve optimally (Yu and LaValle
2013b; Ma et al. 2016b). It can be solved via reductions to
other well-studied combinatorial problems (Surynek 2015;
Yu and LaValle 2013a; Erdem et al. 2013) or by dedicated
optimal, bounded-suboptimal, or suboptimal MAPF algo-
rithms (Standley and Korf 2011; Goldenberg et al. 2014;
Sharon et al. 2013; Wagner 2015; Sharon et al. 2015;
Boyarski et al. 2015; Cohen et al. 2016; Silver 2005;
Sturtevant and Buro 2006; Luna and Bekris 2011; de Wilde,
ter Mors, and Witteveen 2013; Wang and Botea 2011). Many
MAPF algorithms have been used on maps from video
games (Silver 2005). See (Ma et al. 2016a; Felner et al.
2017) for longer surveys on MAPF algorithms.

MAPF has recently been generalized in different direc-
tions (Hönig et al. 2016a; Ma et al. 2016a; Hönig et al.
2016b; Ma, Kumar, and Koenig 2017; Ma and Koenig 2016;
Ma et al. 2017). Target Assignment and Path Finding
(TAPF) is a variant of MAPF that allows agents in the same
group to interchange their goal locations (Ma and Koenig
2016) and thus applies to non-homogeneous teams. During
execution, one can maintain user-specified safety distances
between agents and adhere to their kinematic constraints
(Hönig et al. 2016a; 2016b).

We use Conflict-Based Min-Cost-Flow (CBM) (Ma and
Koenig 2016), a state-of-the-art optimal TAPF algorithm.
CBM is a two-level algorithm that minimizes the makespan
(that is, the earliest time when all agents reach their goal
locations). On the upper level, CBM performs a best-first
search on a collision tree and resolves collisions between
agents in different groups. Each high-level node contains a
set of constraints and a path for each agent that obeys these
constraints. On the lower level, CBM uses a polynomial-
time min-cost max-flow algorithm (Goldberg and Tarjan
1987) on a time-expanded network.

Each time the player specifies new goal locations, CBM is
called to solve a new TAPF instance from the current loca-
tions of the agents to their newly specified goal locations. We
use cost one for move actions and cost zero for wait actions
to avoid unnecessary move actions, such as moving forward
and then immediately backward. We also use a large cost
for actions that result in collisions between agents in differ-
ent groups to make CBM more efficient, as discussed in (Ma
and Koenig 2016).
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Figure 1: Screenshots of moving ten agents in three groups with a wide goal pattern. New goal locations are specified every
twelve time steps. From top-left to bottom-right: (1) agents start; (2) agents avoid obstacles; (3) agents pass through a narrow
passageway; (4) agents turn (since the goal pattern was rotated by ninety degrees); (5) agents pass through another narrow
passageway; and (6) agents reach their final goal locations.

Table 1: Experimental results.

instance makespan CBM calls average
running time (s)

wide-4 193 50 0.146
wide-8 190 25 0.202
wide-12 184 17 0.153
narrow-4 158 40 0.139
narrow-8 157 20 0.139
narrow-12 156 14 0.151

Demonstration

We use CBM with ten agents in three groups in the
video game environment brc202d (Sturtevant 2012) from
Dragon Age: Origins on a 2.5GHz Intel Core i5-2450M with
4GB of RAM. CBM plans in a window of size 30 cells by
30 cells around the agents. The window typically contains
many rows in the direction of the next goal locations and
few rows in the opposite direction. The goal locations are
specified manually. They are typically about twenty cells
away from the current locations of the agents. We use two
goal patterns (that is, layouts of the goal locations), namely
(nineteen cells) wide and (seven cells) narrow, and three up-
date frequencies of the goal locations, namely every four,
eight, and twelve time steps. Our videos are available at
http://idm-lab.org/bib/abstracts/Koen17k.html.

Table 1 reports the makespan, the number of calls to
CBM, and the average running time per call (in seconds)
for each combination of width of the goal pattern and up-
date frequency of the goal locations. Figure 1 shows screen-
shots for a wide goal pattern and an update frequency of
twelve time steps (called wide-12 in the table). The first
group, shown in red, consists of three warriors. The second

group, shown in green, consists of four rogues. Finally, the
third group, shown in blue, consists of three mages. The goal
pattern is shown in a lighter shade of the same color as the
agents of the same group. CBM is called every twelve time
steps to solve a new TAPF instance from the current loca-
tions of the agents to their newly specified goal locations.

Conclusions and Future Work

Our experimental results show that CBM runs sufficiently
fast to find collision-free paths for small numbers of agents
over short distances in real-time, even in congested video
game environments. We are currently working on a sys-
tem that moves agents in formation over longer distances.
Formations, for example, keep the agents safe by making
the warriors move in front of the formation, the rogues on
both sides, and the mages in the back. However, formations
often have to be compromised temporarily in congested
video game environments, for example, when agents move
through passageways that are narrower than their formation.
In our demonstration, the goal patterns correspond to the
above formation, yet the agents do not always restore the for-
mation during execution immediately when possible, which
is an issue that our system will address. Our system will use
swarm-based approaches in simple parts of the video game
environment (because they run fast) and switch to CBM in
congested parts (because swarm-based approaches fail in
them), where it automatically determines appropriate inter-
mediate goal locations that trade off between a small running
time, a small makespan (that is, short paths) and a close ad-
herence to the player-specified formation (where the tradeoff
can be specified by the player as well).
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