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Abstract

What characters believe, how they act based on those beliefs,
and how their beliefs are updated is an essential element of
many stories. State-space narrative planning algorithms treat
their search spaces like a set of temporally possible worlds.
We present an extension that models character beliefs as epis-
temically possible worlds and describe how such a space is
generated. We also present the results of an experiment which
demonstrates that the model meets the expectations of a hu-
man audience.

Introduction

Narrative planning (Young et al. 2013) has proven a valu-
able tool for generating and adapting stories in interactive
virtual environments. They have the potential to manage
story spaces too large for human authors to anticipate en-
tirely at design time, and can adapt the narrative to each in-
dividual user. Several recent narrative planners (Teutenberg
and Porteous 2013; Ware and Young 2014) have used state-
space search so as to incorporate recent advances in heuristic
search from the classical planning community.

Riedl and Bulitko (2013) call narrative planners strong
story systems because they focus on the author’s require-
ments then find explanations for character actions. In con-
trast, strong autonomy systems focus on rich agent simu-
lation then coordinate agents to ensure the author’s con-
straints. Strong story systems may be preferable in some sit-
uations, but to match the richness of strong autonomy sys-
tems they must include a model of agent beliefs. How agents
act based on their (possibly wrong) beliefs and how their be-
liefs change is an essential part of many stories.

We present a model of agent beliefs suitable for strong-
story state-space narrative planners. We treat the search
space of the problem as a map of temporally possible worlds,
and to this we add epistemically possible worlds to represent
what agents believe. We describe how this space is generated
and present an evaluation to demonstrate that it matches the
expectations of a human audience.
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Related Work
Research on agent beliefs is far too vast to survey completely
here, so we divide it into groups in an attempt to motivate the
unique challenge faced by strong-story narrative planners.

Classical planning assumes a single agent in a fully ob-
servable environment. Ample prior work exists on modeling
beliefs in real world, multi-agent, partially observable envi-
ronments (e.g. Petrick and Bacchus 2002). However, narra-
tive planning seeks only the illusion of reality, and is free to
exploit the omniscience and omnipotence of the author in the
virtual world while generating the story (Ware and Young
2010). Real world planners tend to assume that agents are
all cooperative (Grosz and Kraus 1996) or all competitive
(De Rosis et al. 2003), that ignorance or wrong beliefs are
bad (Bolander and Andersen 2011), or that the planner’s job
is to find a solution that works despite wrong beliefs (Hoff-
mann and Brafman 2006).

Likewise, ample previous work exists for modeling agent
beliefs in strong autonomy systems (Bates, Loyall, and
Reilly 1992, Pynadath and Marsella 2005, Ryan et al. 2015,
and many more). Though not directly applicable to strong
story systems, the theories they are based on influenced
our model, especially doxastic model logic (Linsky 1968),
Kripke structures (1963), truth maintenance systems (Doyle
1979), and beliefs in situation calculus (Demolombe and del
Pilar Pozos Parra 2010).

Various narrative planners have modeled some aspect of
belief, either of the audience or characters, to achieve spe-
cific outcomes like suspense (Cheong and Young 2015), me-
diation (Robertson and Young 2015) or deception (Christian
and Young 2004). These models are typically in service of
some other phenomena and not intended as general solutions
to the belief problem.

Teutenberg and Porteous (2015) implement a general
model of character belief in their IM-PRACTical planner.
They limit recursive beliefs to 1 level; the planner can reason
about what is true (0 levels) and what x believes (1 level),
but to reason about what x believes y believes or deeper (2+
levels) the planner relies on a single state called the popular
belief shared by all agents. Brinke, Linssen, and Theune’s
Virtual Storyteller (2014) is also limited to 1 level. While
this is sufficient for most stories, we seek a model which sup-
ports arbitrary recursion, where the size of the search space
grows proportionately to the amount of recursion used.
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Beliefs across Possible Worlds
As an example we use a version of Treasure Island (Steven-
son 1919) in Figure 1. Jim Hawkins acquires a treasure
map but must enlist the help of the pirate Long John Sil-
ver to to get it. Silver believes the treasure does not exist,
but Hawkins spreads a rumor causing him to believe it is on
the island. Silver takes Hawkins to the island in the hopes of
claiming the treasure for himself, but Hawkins digs it up and
makes off with it.

Classical and Narrative Planning
A classical planning problem (Russell and Norvig 2010) is
defined as 〈s0, g, A〉, where s0 is the initial state, g is a goal
expression, and A is a set of actions. For every action a ∈ A,
PRE(a) denotes the preconditions of a, propositions which
must be true immediately before the action is taken, and
EFF(a) denotes the effects of a, propositions which becomes
true after the action. A valid plan is a sequence of ground ac-
tions which achieves g. We assume Helmert’s multi-valued
planning task representation (2006), though our model is
also compatible with traditional predicate logic.

The state space for this problem is a graph whose nodes
are states and whose edges are actions. An edge n1

a−→ n2

exists from node n1 to node n2 via action a if the precon-
ditions of a are met in n1 and applying the effects of a to
n1 results in n2. Considered as a narrative space, this graph
represents what narratologists refer to as the set of possi-
ble future worlds (Ryan 1991; Bruner 1986), so we refer to
these edges as temporal edges, drawn in black in Figure 1
(the states on the left column are the actual world states). A
state-space planner begins with a graph composed of only
the node for s0 and, during search, expands the space by
adding temporal edges until reaching a state where g holds.

We define a narrative planning problem as 〈s0, g, A,C〉,
where s0, g, and A are defined as above, and C is a set of
characters, special constants which represent agents that can
have intentions and beliefs. For every action a ∈ A, we de-
fine CON(a) to be the set of characters ∈ C who must con-
sent to take that action. We define OBS(a) to be the set of
characters ∈ C who observe the action when it occurs1.

We define the state space of this problem as above, but
with the addition of epistemic edges. An epistemic edge
n1

c−→ n2 exists from node n1 to node n2 (possibly the same
node) for every character c ∈ C and means that when the
world is in state n1 character c believes that world to be in
state n2. Epistemic edges are drawn in red in Figure 1.

The modal predicate b(c, p) represents whether character
c believes proposition p. To evaluate b(c, p) at some node n,
follow the epistemic edge from n for character c and then
evaluate p. Consider n2 in Figure 1, after Hawkins spreads
the rumor. TB means the treasure is buried. The expres-
sion b(H, b(S, TB)) means “Hawkins believes that Silver
believes the treasure is buried.” To evaluate b(H, b(S, TB))

1Methods for choosing OBS(a) have been given by Christian
and Young (2004), Brinke, Linssen, and Theune (2014), Teuten-
berg and Porteous (2015), and others. Our model makes no partic-
ular commitment to how OBS(a) is chosen.

at n2, we follow the edge n2
H−→ n2 to find what Hawkins

believes, then n2
S−→ n3 to find what Hawkins believes Sil-

ver believes, and we see that TB is true; Hawkins believes
that Silver believes the treasure is buried.

Adding beliefs introduces two changes to the classical for-
malism. First, a state is no longer uniquely identified by its
fluent values. n0 and n2 have the same fluent values, but dif-
ferent beliefs, specifically in n0 we see b(S, TN) but in n2

we see b(S, TB). Second, it is sometimes possible for an
action to occur when a character wrongly believes its pre-
conditions are not met. We call this kind of temporal edge
a surprise edge. In n6 Silver wrongly believes the treasure
does not exist, so he is surprised to observe Hawkins digs it

up
(
n6

dig−−→ n9

)
, an action Silver believed impossible.

Expanding the Narrative Space
We now describe how the narrative space is expanded. The
following procedures allow any node to be expanded at any
time, which facilitates search algorithms that expand only
those parts of the space that are needed to generate a solution
(a focus for our future work).

We use the notation α(a, n) to mean the node reached
by following the temporal edge for action a from node n.
α(a, n) means “the state after action a is taken in n.” In Fig-
ure 1, α(rumor, n0) = n2. We use the notation β(c, n) to
mean the node reached by following an epistemic edge for
character c from node n. β(c, n) means “when in state n, c
believes the state is β(c, n).” In Figure 1, β(S, n0) = n1.

Initialization The space begins with n0, which reflects the
initial values of all fluents in the actual world (i.e. the om-
niscient author’s beliefs). We use the classical closed world
assumption, which says anything not explicitly stated true is
assumed false. We also assume that for any proposition p:

∀c ∈ C (b(c, p) → ∀d ∈ C (b(c, β(d, p))))

This means that, unless explicitly stated otherwise by the
author, characters believe other characters believe the same
things they do. The author states that Silver believes the trea-
sure does not exist, so Silver assumes Hawkins believes the
same. Note that multiple nodes may be required to represent
the initial state (in Figure 1, these are n0 and n1).

Expanding Nodes New nodes in the space are generated
via Algorithm 1, which describes where epistemic edges
should point when adding a new temporal edge. Consider

adding the temporal edge n4
dig−−→ n7. Assume only nodes

n0...n6 have been generated so far, that the search is cur-
rently visiting n4, and that it wants to add a temporal edge
from n4 for the action dig—that is, we want to compute
α(dig, n4). The edge does not yet exist, so n7 is created
to be the head of this new edge (Algorithm 1, line 3). Ini-
tially each epistemic edge for n7 points to the node the edge
pointed to in the parent node; that is, β(H,n7) = n4 and
β(S, n7) = n5 (line 4). Then, for every character who ob-
serves dig (both H and S), their epistemic edges are updated
to point to the state that would result from taking the dig
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Propositions:
HP = Hawkins at port.
HI = Hawkins on island.
SP = Silver at port.
SI = Silver on island.
TN = Treasure doesn’t exist.
TB = Treasure buried.
TI = Treasure on island.
TH = Hawkins has treasure.
TS = Silver has treasure.

rumor
PRE: TB
EFF: (S,TB)
CON: H
OBS: H

sail
PRE: HP SP
EFF: HI SI
CON: S
OBS: H S

dig
PRE: HI TB
EFF: TI
CON: H
OBS: H S

take(H,T)
PRE: HI TI
EFF: TH
CON: H
OBS: H S

take(S,T)
PRE: SI TI
EFF: TS
CON: S
OBS: H S

Initial State:
HP SP TB (S,TN)
Author’s Goal: TH
Hawkins’ Goal: TH
Silver’s Goal: TS

action

character

action temporal edge
surprise edge

epistemic edge

Key:

elieves(S,TB)
PRE: false
EFF: TB
CON: none
OBS: S

Actions:

Fluent 1

Fluent 2

Fluent 3

H

H

Figure 1: A narrative search space graph for the plot of Treasure Island (Stevenson 1919).

1: procedure EXPAND(a, n) � To compute α(a, n).
2: if α(a, n) does not exist then
3: Let n∗ be a new node.
4: ∀c ∈ C let β(c, n∗) = β(c, n).
5: ∀o ∈ OBS(a) let β(o, n∗) = α(a, β(o, n)).
6: Let α(a, n) = n∗.
7: Impose EFF(a) on n∗.
8: end if
9: end procedure

Algorithm 1: Adding a temporal edge to the search space.

action in the state those characters believe the world is cur-
rently in (line 5). This requires computing α(dig, n5) and
α(dig, n6) recursively, which causes nodes n8 and n9 to be
created. Finally, the effects of dig are imposed on n7, so the
fluent TB is changed to TI (line 6).

Imposing Effects Two special cases may arise when im-
posing the effects of an action: imposing a surprise action
and imposing belief effects.

When imposing a surprise action, such as when adding

edge n6
dig−−→ n9, we first impose the preconditions of the

action (except the constant false, which cannot be imposed)
and then impose the effects. When a character observes an
action they believed was impossible, they first update their
beliefs to allow the action to be possible and then update
their beliefs based on the action’s effects.

Imposing belief effects is done through dummy actions.
To impose the belief b(c, p) for character c about proposi-
tion p on some node n, we create a dummy action d such

that PRE(d) = false, EFF(d) = p, CON(d) = ∅, and
OBS(d) = c. This action is then imposed on node β(c, n)
via Algorithm 1, and β(c, n) = α(d, β(c, n)). Consider
adding the edge n0

rumor−−−−→ n2, assuming only nodes n0

and n1 have been generated so far. Adding the edge cre-
ates n2. To impose the effect b(S, TB) on n2, we create the
dummy action believes(S, TB) and impose it on β(S, n2),
which at this time is n1. This causes node n3 to be cre-
ated, and the epistemic edge β(S, n2) is updated to point to
n3. In other words, after Hawkins spreads the rumor about
the treasure, Silver will change his belief from TN to TB,
and Hawkins will know that. In Figure 1, the dummy ac-
tion believes(S, TB) is not part of the authored domain; it
is the dummy action generated to impose b(S, TB), and its
details are only shown in Figure 1 for clarity. Note that these
dummy belief update actions are always surprise actions be-
cause their precondition is false.

Valid Narrative Plans

For a classical planner, any path through the search space
from s0 to a state where g holds is a valid plan. Narra-
tive planning imposes additional constraints on the solu-
tion—every character must believe that every action they
take will contribute to one of their goals. We ensure this us-
ing the causal model of intentionality first defined by Riedl
and Young (2010) then adapted for state-space planning by
Ware and Young (2014). We reproduce only those defini-
tions needed to explain how belief affects the model.

We say two actions a1 and a2 are causally linked via
proposition p if p ∈ EFF(a1), p ∈ PRE(a2), and no action
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occurring between a1 and a2 has an effect which negates p2.
Traditionally, a2 must be a temporal descendant of (i.e. af-
ter) a1, but we allow causal links to traverse epistemic edges
also. When the path from a1 to a2 crosses an epistemic edge
for character c, every precondition q of subsequent actions
should be treated as b(c, q). This means the rumor action
from n0 → n2 is causally linked to dig from n5 → n8 be-
cause rumor has effect b(S, TB) and all paths from n2 to n5

cross an epistemic edge for S, so dig is treated as having pre-
condition b(S, TB). In other words, Hawkins spreading the
rumor that the treasure was buried enabled Silver to believe
dig would eventually be possible.

A causal chain is an alternating sequence of actions and
propositions 〈a1, p1, ..., an, pn〉 such that for all i from 1 to
n − 1, action ai is causally linked to ai+1 via pi. An inten-
tional chain for character c to achieve character goal gc is a
causal chain 〈a1, p1, ..., an, gc〉 such that c intends gc before
a1 and until an, no action is a surprise action, no proposi-
tion is repeated, and a no proposition appears in the chain
with a proposition that negates it. This is based on Ware and
Young’s definition, but with one important relaxation—we
do not require that every action in an intentional chain have
character c as a consenting character.

This modified definition allows us to directly adopt Ware
and Young’s concept of an explained action. An action a is
explained iff, for every consenting character c ∈ CON(a),
a is on an intentional chain for c and every other action in
that chain is also explained. A valid narrative plan is one
that achieves the author’s goal and for which all actions are
explained.

Our relaxed definition of an intentional chain allows one
agent to anticipate the actions of another. Consider the path
n3 → n5 → n8 → n12, which has this intentional chain:

S achieves TS via 〈sail,HI, dig, T I, take(T, S), TS〉
Silver intends to sail to the island and let Hawkins dig up
the treasure, then Silver will take it for himself. Here we see
Silver anticipate what Hawkins will do and incorporate that
into his plan, even though Silver is not a consenting charac-
ter for dig. To summarize, you can include another agent’s
action in your plan if you can explain why that agent would
take that action. In this case, Silver expects Hawkins will dig
because he knows Hawkins also wants the treasure.

Surprise actions cannot be in intentional chains because
characters cannot anticipate them. The path n1 → n6 →
n9 → n14 does not produce the above intentional chain be-
cause dig is a surprise action which Silver did not expect
to be possible. Only after rumor changes his beliefs can he
imagine a plan to get the treasure.

This concept of anticipated actions is used to compute the
actual plan (the story that is narrated) by considering the au-
thor as an omniscient character who believes n0. When the
author can anticipate an action, the author believes it will be
possible (and since the author’s beliefs are accurate, it will
be), and it must have an explanation for all character who

2In a multi-valued planning task, the concept of negation is
complicated. See Helmert’s (2006) discussion.

consent, therefore it should appear believable to the audi-
ence (Riedl and Young 2010). In Figure 1 the actual plan is
n0 → n2 → n4 → n7 → n10, but other nodes like n12 rep-
resent possible worlds that had to be expanded to explain, for
example, why Silver consented to sail (because he planned
to take the treasure, though this never actually happens).

Evaluation
We claim that our model has two important advantages.
First, it accurately simulates how people process beliefs
and second, it does so more accurately than models lack-
ing nested beliefs. We demonstrate these features using an
empirical human subject evaluation.

We compare our model of belief with two others, one
without the notion of belief and one with a single layer. We
say the former has 0 layers of belief, where all agents are
considered omniscient. Classical planners call this the full
observability assumption. The latter generalizes agents’ be-
lief of others’ by a shared state among all agents. For IM-
PRACTical (Teutenberg and Porteous 2015), this shared state
is called the popular belief, which is updated based on pub-
lic actions. We call this the 1+1 layer of belief model. Our
model with 2 or more layers of belief is denoted 2+.

We also sketch a proof that our 2+ model generates a su-
perset of the stories produced by these other models and the
resulting stories make sense to human readers.

Empirical Evaluation
To evaluate the 2+ model, we used it to produce three sto-
ries representing different narrative elements including de-
ception, cooperation, anticipation, and surprise. The stories
were presented to human subjects who answered questions
about agents’ beliefs. These answers were used to measure
the accuracy of each model.

Stories We generated each story as a plan by hand using
the 2+ model. Each plan was translated into text by convert-
ing its actions into sentences using a simple natural language
template for the actions. Figure 2 presents summaries of the
stories. These three stories were specifically selected to de-
pict the benefits of epistemic edges.

In Homecoming, Mike forms a plan to meet Jenny at the
school because he believes that Jenny believes that a party is
happening at the school and he expects her to go there. Using
the 0 model, everyone is aware of the actual location of the
party, so invitations cannot be explained. Using 1+1, Mike
cannot reason about what he believes that Jenny believes,
since inviting someone to a party is not a public action and
does not update the popular belief.

In The Forty Thieves, the thieves use their mark to indi-
cate the location of the treasure. Alibaba anticipates their
attack and takes advantage of their belief by marking the
guardhouse. Using the 0 model, the thieves directly attack
Alibaba’s house. Using 1+1, marking Alibaba’s door is not
a public action and thus Alibaba cannot anticipate thieves’
attacking the marked house.

Finally, in The Most Wanted, Sheriff William infers that
to arrest Jack, he should trick him into robbing the wagon.
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Expecting this, he hides in the wagon to surprise and ar-
rest Jack. Using the 0 model, Jack always knows where
the money is and Sheriff William’s hiding can’t be ex-
plained. This story can also be generated using 1+1, similar
to Teutenberg and Porteous’s Othello example (2015).

Experiment Design An interactive webpage was pre-
sented to participants via Amazon’s Mechanical Turk
crowd-sourcing platform. One story was presented to each
participant. The page consisted of an introduction, the story
and belief questions, and finally five comprehension ques-
tions after the story was removed from the screen. Figure
3 shows an image of the page asking readers what Sheriff
William believes that Jack believes after he has told Jack
about the money.

The three stories are divided into sequences of simple
steps (temporal edges), and each sequence is presented to
the participant one step at a time. Figure 2 summarizes the
steps of each sequence in a numbered list. Before the first
(the initial state) and after each sequence, participants are
asked multiple-choice questions about the agents’ beliefs for
1-2 layers. Figure 2 shows the questions of each story. All
questions had the same answer options, and options were
arranged randomly.

Mechanical Turk provides notoriously noisy data, and this
study was especially difficult given that it asks people to
think about thinking. Therefore, we only considered a re-
sponse valid if the participant correctly answered all com-
prehension questions. For Homecoming, The Forty Thieves,
and The Most Wanted, we collected 21, 23, and 70 sets of
valid responses respectively.

Results The results were first analyzed to investigate par-
ticipant agreement. Using Krippendorff’s α (Krippendorff
2012), inter-rater reliability for Homecoming was α = 0.79,
and for The Forty Thieves α = 0.70, representing moder-
ately high agreement. For The Most Wanted, α = 0.20,
and while any positive value represents agreement, this story
showed low agreement.

Next, for each question, we determine which answer is
considered to be correct by human subjects. The binomial
exact test (Howell 2012) with Bonferroni correction (Holm
1979) was used to investigate if participants significantly
agreed on an answer for each question. We say participants
agreed when p ≤ 0.05. Consequently, 4 questions (about
6%) were removed from further analysis because partici-
pants did not agree on a right answer (all with p-values of
1.00). Note that, using this method, it is possible for two an-
swers to be significant if subjects were divided about equally
between them. This occurred for 1 question in The Most
Wanted, so we considered either answer correct.

The accuracy of each model is calculated as the number
of questions that model answers the same as human subjects
divided by the total of number of questions (which was 62).
The contingency tables that allow us to compare our model
to 0 and 1+1 are given in Table 1. The 2+ model achieves
the highest accuracy for all stories, with 95% accuracy over-
all, whereas the 1+1 and 0 models achieved 54% and 40%
respectively. Also note that the 1+1 model was not strictly
better than the 0 model.

Homecoming (24 questions)
1. Ed finds out about a party at school and invites his 

friend Mike.
2. Mike invites Jenny to the party because he has a crush 

on her.
3. Ed discovers the party is actually at a fraternity house.
4. Ed calls Mike to inform him the party is at the 

fraternity house.
5. Mike does not have Jenny’s phone number, so he goes 

to school, waits for Jenny to arrive, and then informs 
her the party is at the fraternity house.

Where does Mike believe the party is?
Where does Jenny believe the party is?
Where does Mike believe Jenny believes the party is?
Where does Ed believe Mike believes the party is?

The Forty Thieves (24 questions)
1. Alibaba overhears forty thieves tell their boss, Jafar, 

of a treasure hidden in a cave.
2. Alibaba goes to the cave, gets the treasure, and takes 

it to his house.
3. Jafar goes to the cave to find the treasure missing. 

The thieves search the town and find it in Alababa’s
house. Alibaba notices the thieves placing a mark on 
his house.

4. The thieves report to Jafar that the treasure is in 
Alibaba’s house, which is marked.

5. Alibaba removes the mark from his house and marks 
the town`s guardhouse. Jafar and the thieves arrive in 
town and see the mark.

6. Jafar and the thieves break into the guardhouse and 
are arrested.

Where does Alibaba believe the treasure is?
Where does Jafar believe the treasure is?
What does Alibaba believe the thieves believe?
What do the thieves believe that Jafar believes?

The Most Wanted (18 questions)
1. Sheriff William wants to trick a local gunman named 

Jack. The Sheriff loads some money from the town 
bank into a wagon.

2. Sheriff William goes to the saloon to inform Jack that 
the money is in the wagon.

3. Sheriff William returns to the bank and takes the 
money out of the wagon.

4. Sheriff William climbs into the wagon himself.
5. The wagon sets off to the desert. Jack follows it and 

holds it up at gunpoint. He opens the wagon to find 
Sheriff William waiting inside to arrest him.

What does Jack believe is in the wagon?
What does Jack believe William believes?
What does William believe Jack believes?

Figure 2: Summaries of the stories used in the evaluation.
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Figure 3: An image of a belief question after four steps

0 1+1
Correct Incorrect Correct Incorrect

2+ Correct 6 18 15 9
Incorrect 0 0 0 0

(a) Homecoming

0 1+1
Correct Incorrect Correct Incorrect

2+ Correct 11 9 11 9
Incorrect 0 0 0 0

(b) The Forty Thieves

0 1+1
Correct Incorrect Correct Incorrect

2+ Correct 6 9 8 7
Incorrect 2 1 0 3

(c) The Most Wanted

Table 1: Contingency tables for the 0, 1+1, and 2+ models

Analysis After Further Noise Reduction Much of the
observed disagreement occurred over the initial state, espe-
cially for The Most Wanted. When participants do not agree
on the initial configuration of the world, which was explic-
itly described for each story, that disagreement is likely to
propagate throughout the story. As a further filter on noise,
we re-ran the above analysis to remove participants who
did not answer the initial state questions as intended (the
initial state questions were then excluded from analysis).
This reduced inter-rater reliability for The Forty Thieves to
α = 0.65 and Homecoming to α = 0.76, but increased
The Most Wanted to α = 0.37. This also explains why 70
valid responses were collected in total for The Most Wanted
above—we needed to ensure at least 20 valid responses
based on this filter, and used all data in both analyses.

Using this filter, we discarded 5 questions (9%) which had
no agreed-upon answer, and no question had multiple right
answers. The overall accuracy for the 2+, 1+1, and 0 mod-
els were 100%, 49%, and 44% respectively. These results
further support our model.

Formal Evaluation
We claim our 2+ model of belief generates a superset of sto-
ries generated by the 0 and 1+1 models. Due to space limi-
tations, we present only the sketch of the formal proof.

Our 2+ model generates all stories the 0 layer model gen-
erates because planning without belief is a special case of
planning with belief. When all characters accurately know
the initial state and everyone is an observing character on
all actions, we simulate the 0 model’s full observability as-
sumption. Our model generates some stories the 0 model
cannot. We offer the stories in Figure 2 as examples. Con-
sider The Most Wanted. The 0 model has no way to explain
why Jack robs the wagon; it only makes sense when we con-
sider that he wrongly believes the money is in the wagon.

Similar reasoning applies for 1+1. 2+ can generate stories
where all epistemic paths of length 2 or more lead to the
same state. When this does not hold, it can generate more.

Our final claim is that stories generated by 2+ remain be-
lievable. Previous studies (Riedl and Young 2010; Ware and
Young 2015) validated that the causal model of intentional-
ity creates believable character behavior. Our model states
that when character A believes character B could and would
take an action, it is reasonable for A to anticipate B’s action.
A study to demonstrate this is planned as future work.

Limitations and Future Work
Our results demonstrate that the 2+ model captures subjects’
understanding of belief with high accuracy, higher than the
other two models. However, this evaluation was designed to
test stories with two layers of reasoning about belief, so the
results only support our claim that the 2+ model outperforms
0 and 1+1 models on these types of stories. Indeed, 0 or 1
layer is probably sufficient in many scenarios.

We must reemphasize that Amazon’s Mechanical Turk
does not provide an ideal population. Specifically, of 255
responses, 195 were not usable because people failed to an-
swer the initial or comprehension questions correctly. A high
percentage of readers demonstrated a notable difficulty in
processing nested beliefs. For instance, a many subjects con-
sidered what Sheriff William believes to be the same as what
Jack believes Sheriff William believes.

This study only asked participants to follow epistemic
edges, but one strength of our model is that paths of mixed
epistemic and temporal edges are meaningful. For exam-
ple, asking why Alibaba clears the mark from his house
and marks the guard’s house would require readers to fol-
low temporal edges after epistemic ones. This is how agents
employ nested beliefs in anticipating the plans of others, and
we intend to investigate this in a future study.

Finally, our ultimate goal is to develop a fast planning
algorithm which generates the same solutions as those de-
fined by this model. We emphasize fast because the speed
of planning algorithms is an ongoing research topic and our
model has considerably increased the size of the state-space
by introducing beliefs. Our future work will also focus on
addressing this issue, perhaps by enhancing the 2+ model to
generate fewer states or by developing a planning algorithm
that intelligently selects only those nodes which need to be
expanded to generate a solution.
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