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Abstract

We release a dataset of 65646 StarCraft replays that con-
tains 1535 million frames and 496 million player actions. We
provide full game state data along with the original replays
that can be viewed in StarCraft. The game state data was
recorded every 3 frames which ensures suitability for a wide
variety of machine learning tasks such as strategy classifica-
tion, inverse reinforcement learning, imitation learning, for-
ward modeling, partial information extraction, and others. We
use TorchCraft to extract and store the data, which standard-
izes the data format for both reading from replays and reading
directly from the game. Furthermore, the data can be used on
different operating systems and platforms. The dataset con-
tains valid, non-corrupted replays only and its quality and di-
versity was ensured by a number of heuristics. We illustrate
the diversity of the data with various statistics and provide
examples of tasks that benefit from the dataset. We make the
dataset available at https://github.com/TorchCraft/StarData.
En Taro Adun!

Introduction

Real time strategy games as an AI research problem is at-
tracting substantial attention (Ontañón et al. 2013; Usunier
et al. 2016; Peng et al. 2017) due to their complex game
dynamics, partial observability, and existing expert games
in the form of human replays. These games are a good test
bed for various reinforcement learning algorithms on a do-
main with higher complexity than toy robotics tasks and
turn-based board games. Due to recent advances in deep
learning, we see a trend of improved model performance
with larger datasets. As learning capacity of these models
increases, there is a growing need for data, especially in or-
der to apply deep learning methods to control in RTS games.

Although learning in StarCraft can be performed through
playing, the dynamics of the game are extremely complex,
and it is beneficial to speed up learning by using existing
games. The availability of datasets of recorded games be-
tween experienced players is therefore desirable.

StarCraft allows one to record replays of games which
contain all commands issued by players. A number of on-
line resources contain collections of replays from various
tournaments (see Table 1). Some information can be directly
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inferred from the replay file; however, reconstructing the full
game state requires playback in StarCraft.

There are several aspects that make it difficult to use the
replays directly for machine learning purposes. Firstly, the
reconstruction speed of StarCraft is limited and would im-
pose an upper threshold on training speed. Secondly, incom-
patibility between replays produced by different StarCraft
versions makes it impossible to use the same game engine
for all the replays or might result in corrupted data. Fi-
nally, the reconstruction process can only be reliably run on
Windows, which adds additional unnecessary restrictions.
Hence, the utility of a replay dataset can be increased by
extracting game states, validating them and storing them as
a separate dataset.

For a dataset to serve as a good base for learning models,
it should fulfill a number of requirements:

Universality: the data stored in the dataset can be used
to learn different aspects of game strategy and at different
levels. Thus the dataset should provide data which is not
specific to any particular context and should be as close to
the full game state as possible.
Diversity: the dataset should cover a variety of game sce-
narios in terms of match-ups, maps, player strategies, etc.
Validity: the dataset should be representative of the dis-
tribution of StarCraft matches where both sides are trying
to win.
Interfacing: one should be able to easily substitute game
states received from the game engine with game states
recorded in the dataset.
Portability: dataset access should be supported on a vari-
ety of platforms and operating systems.
With these requirements in mind, we constructed a new

dataset of StarCraft replays from games among humans that
can be used for StarCraft AI research. The following are our
major contributions.

We provide a large set of StarCraft human replays, which
is about 10x bigger than any of the comparable datasets cur-
rently available. The dataset includes a variety of scenarios
and thus ensures the diversity requirement. Detailed statis-
tics on matchups, maps etc. can be found in further sections.

All replays are checked for playability in StarCraft and
BWAPI. We used additional scripted rule-based checks for
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corruption to fulfill the validity requirement.
The dataset is stored in a format that can be read by

TorchCraft (Synnaeve et al. 2016), a library used as an in-
terface between scientific computing frameworks and Star-
Craft. One can use exactly the same code to read data from
the dataset and control StarCraft. This ensures both inter-
facing and portability requirements, since TorchCraft has a
client in C++, Lua, and Python, and be compiled easily on
any operating system.

For each replay in the dataset, the complete game state
is stored every 3 frames (about 8 frames per second). This
means that one can employ the dataset to learn different as-
pects of the game strategy, from micro level to macro level
and the universality requirement is fulfilled.

The current paper is structured as follows. First, we give
an overview of the existing datasets, their main features and
limitations. We further describe in detail our new dataset,
how it was constructed and verified. Next we present some
statistics related to this dataset and provide example scenar-
ios for which it would be useful. We also provide metadata
on where battles are in the dataset for unit micromanagement
tasks. Discussion on further scenarios and use cases for this
dataset concludes the paper.

Related Work
The existing StarCraft datasets can be subdivided into two
groups based on extracted data type (Table 1). Datasets from
the first group, i.e. (Hsieh and Sun 2008; Weber and Mateas
2009; Cho, Kim, and Cho 2013) focus on specific aspects of
the game and contain data that can only be used in a particu-
lar context. Datasets from the second group, e.g. (Synnaeve
and Bessière 2012) and (Robertson and Watson 2014) con-
tains general purpose full state data and is not restricted to
any particular scope.

The datasets from the first group would typically target
general strategy aspects. For example, the goal in (Weber
and Mateas 2009) was to capture player’s build orders, or
strategic decisions timing. Thus for every replay it contains
a log which specifies the first time each type of unit was pro-
duced by each player. Additionally, every replay was labeled
by an expert, with labels that correspond to a predefined set
of strategies. The replays in the dataset are taken from pro-
fessional level tournaments. (Cho, Kim, and Cho 2013) ex-
tended this set by including additional replays with unit visi-
bility data. The datasets of this group tend to be compact, but
their use is limited to build order prediction. Both (Hsieh and
Sun 2008), (Kim et al. 2010), and (Synnaeve and Bessière
2011a; Synnaeve and Bessiere 2011b) have done build order
prediction as a task.

The datasets from the second group would typically cap-
ture the full game state and tend to be more versatile. Their
usability is determined by the completeness of state repre-
sentation and frequency at which the states are saved. (Syn-
naeve and Bessière 2012) contains game events, player com-
mands, economical situation data for every 25 frames and
unit location data for every 100 frames. Thus it is most suit-
able for medium and macro level AI modules. The replays
in the dataset are also taken from professional level tourna-
ments. (Robertson and Watson 2014) took the same set of

replays and used an adaptive frame recording rate (every 24
or 6 frames) based on player actions. This made the dataset
suitable for unit micromanagement tasks.

The summary on the existing datasets is given in Table 1.
For each of the datasets we provide the number of replays in-
cluded into the set, specify data sources, data format, type of
data extracted and frequency at which the data is extracted.

Several authors have released works that would benefit
from the use of a large scale and standardized game replay
dataset. (Hostetler et al. 2012) manually collects a dataset of
509 games to do unit count prediction under partial observa-
tion in the early game. (Uriarte and Ontañón 2015) uses the
existing dataset provided by (Synnaeve and Bessière 2012)
to construct a combat model for micromanagement. Recent
advance in deep reinforcement learning could benefit from
a large existing repository of high quality replays, as (Sil-
ver et al. 2016) showed by using a large set of Go replays
to create a system that could defeat the world champion of
Go. (Usunier et al. 2016), (Peng et al. 2017), and (Foerster
et al. 2017) all tackle the problem of micromanagement us-
ing deep reinforcement learning methods, which may be im-
proved with this dataset of fine-grained game state data.

Dataset
In what follows we refer to the StarCraft recorded games
as the original replays, and the TorchCraft recorded game
states as extracted replays.

The new STARDATA dataset contains 65546 original
and extracted replays, almost 10 times bigger than the
largest existing datasets (see Table 1). It is based on replays
from (Synnaeve and Bessière 2012) and uses an additional
source of replays (BR, bwreplays.com)). There is no restric-
tion on replay submission on this site, so some replays may
be corrupt, i.e. they might not correspond to a typical game
scenario where both sides are trying to win. There are two
cases when corruption occurs: (1) the replay is recorded on
an older version of the game engine, and (2) the replay is
produced by players testing out strategies and game dynam-
ics instead of trying to win.

The original replays only store a list of commands issued
by each player. If they are played through a different ver-
sion of StarCraft, the replay may become corrupt, resulting
in a game state that is essentially halted or looping until one
player leaves the game. This happens because, for example,
a player loses a battle due to a change in unit strengths in
a different patch and begins trying to control a non-existent
army. The other source of corruption occurs when players
play for any other reason except to win the game. For exam-
ple two players could be testing out strategies and decide to
cooperatively achieve a specific game state.

To ensure game quality, we (1) remove games produced
before November 25, 2008 – the release date for StarCraft
patch 1.16, and (2) implemented a heuristic that would track
mineral and gas usage in the second half of the game and fil-
ter out those that are under 70% of total collected amounts.
Games may be played on older patches after the date patch
1.16 is release. On visual inspection of several games like
these, we saw that the heuristic would filter out most of
them. The false positives of this heuristic tend to be highly
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Dataset # Replays Source Data Format Extracted Data Frame Skip

(Weber and Mateas 2009) 5493 GG, TL, IC text game logs first production time n/a
(Synnaeve and Bessière 2012) 7649 GG, TL, IC text game logs full game data 25 / 100 frames

(Cho, Kim, and Cho 2013) 5493+570 GG, TL, IC, YG text game logs first production time n/a
(Robertson and Watson 2014) 7649 GG, TL, IC database full game data adaptive, 6 / 24 frames

STARDATA (this work) 65646 GG, TL, IC, BR TorchCraft full game data 3 frames

Table 1: Summary on StarCraft AI datasets. Sources: GG=GosuGamers.net, TL=TeamLiquid.net, IC=ICCup.com, YG=ygosu.
com, BR=bwreplays.com

PvZ TvZ PvT TvT PvP ZvZ
18016 14531 17385 2550 7015 6149

Table 2: Number of games per matchup in STARDATA.
Legend: P = Protoss, T = Terran, Z = Zerg

Map Name Count Map Name Count

Fighting Spirit 19817 Othello 1.1 1161
Python 1.3 7545 Colosseum II 2.0 1086

Heartbreak Ridge 5700 Longinus 953
Destination 1.1 5655 Andromeda 1.0 808

Tau Cross 1383 Icarus 1.0 769
Circuit Breakers 1.0 1366 Medusa 2.2 763

Blue Storm 1269 Outsider 2.0 716

Table 3: Most frequent maps in STARDATA.

unbalanced games, or games with players who are not famil-
iar with the rules of StarCraft and thus cannot manage their
resources well.

The saved frame data contains full game state, includ-
ing unit dynamic characteristics (about 30 per unit) and bul-
lets. Every third frame is saved, making the dataset suitable
for tasks that require high frequency control, such as mi-
cro management. However, we encode frames as their deltas
(differences), and we apply the ZStandard (lossless) com-
pression algorithm. This gives us a 38x compression ratio
over storing the full state every 3 frames, while enabling
lossless reconstruction. The STARDATA set total size is 365
GB (compressed, can be streamed), while the original re-
plays’ total size is 5.5 GB. To provide a common evalua-
tion ground, we split the dataset randomly into subsets: train
(59060 games), development (3289 games) and test (3297
games).

Statistics

Scenario diversity is summarized in Tables 2 and 3 where we
provide the distribution of games over matchups and map
occurrences respectively. The most popular matchups are
PvZ and PvT, and the least popular is TvT. Mirror matches
are played far less often than matches with different races.
The most popular map is Fighting Spirit by far, followed
by Python 1.3. The dataset includes 524 unique maps. Two
maps are considered the same if every tile has the same
ground height and walkability. 182 maps were played more

Figure 1: Density plot of the total number of units created.
A few outliers of more than 1000 units are not shown.

than 10 times per map, and 83 maps were played more than
100 times per map. The tail is composed of older versions
of maps and a few ones rarely seen in competitive play. We
decided to include them anyway for the sake of diversity.
We do not guarantee that all maps in the dev and test sets
appear in the train set. We believe it is important to be able
to understand a map based on the statistics of other simi-
lar maps. Although humans will have trouble playing a new
map from scratch, they are able to quickly pick up intrica-
cies and succeed on them to some degree. Since most of our
dataset comes from a public database, we cannot provide
any player disambiguation statistics, since players are free
to change their username as much as they want in StarCraft.

Game statistics

Figures 1 and 2 show density plots of the total number of
units produced and game lengths respectively. Games seem
to follow a log-normal distribution shape, with most games
lasting between 10 and 20 minutes and producing between
40 to 300 units. There is a long tail of games over 60 min-
utes and 1000 units that we do not show. We make a few
interesting observations from these density plots: (1) Most
ZvZ matchups tend to finish early. (2) TvT and PvT games
generally last very long. (3) Zerg games tend to end with
few units or with many. We observe a very skewed distribu-
tion towards 0, but also a very fat tail. (4) Protoss builds the
fewest number of units, especially in the late game
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Figure 2: Density plot of game lengths in minutes. A few
outliers that last longer than 60 minutes are not shown.

Figure 3: Ratio of effective supply to maximum supply of
a surrendering player. A number near 0 indicates that the
player fought until the bitter end. A number near 1 indicates
that the player gave up fairly fast.

Figure 3 illustrates how easily games are given up. It as-
sumes the player with less supply at the end of the game is
losing, which is generally true. We find that the distribution
of this ratio is bell-shaped and approximately normal. There
is a spike at ratio 1.0 which corresponds to players who give
up at their maximum supply. It is the most prominent for
Zerg players and least for Protoss players.

Figure 4 shows the ratio of resources mined between the
two players (poorer to wealthier). This graph gives a good
idea of how balanced the dataset is in terms of skill level. If
players mine approximately the same number of resources
as each other, then their skills are probably similar. We see
a distribution much like what we would expect, with most
games close to 1. We see that the most unbalanced games
tend to be TvT, PvT, or TvZ. Several games of these three
matchups see one side mining 20x the resources of the other
side. This is likely due to how strong a Terran defense can

be, as they defend against attacks on relatively few resources
and with no map control. We see that a significant propor-
tion of all games ends with no gas mined, as they end too
early due to a ”rush” strategy. We also observe that most
TvZ games end with one player mining twice as much gas
than the other, likely due to Zerg’s high gas dependence.

Downstream Tasks

We provide some examples of learning and control tasks that
can be addressed with the use of this dataset.

Strategy Classification

The simplest form of strategy classification is to predict
build order, i.e. order in which buildings are constructed.
And the major challenge is to perform the prediction under
partial observations. We provided many examples of exist-
ing research into this domain in Related Works. Since this
dataset contains full game states and provides a large diver-
sity in terms of strategies employed, it should serve as a good
based for strategy space estimation and strategy inference.

Inverse Reinforcement Learning

Inverse reinforcement learning (IRL), or apprenticeship
learning (Abbeel and Ng 2004), is the process of learning a
task when given an expert trace but no explicit reward func-
tion. Although StarCraft does have a reward function as 0–1
win–loss score at the end of a game, the rewards are quite
sparse and learning a more accurate reward function may
be necessary for control. Furthermore, this dataset provides
a large repository of auxiliary signals, such as number of
units, resources, and more abstract ideas like map control to
help ease the problem. However, doing IRL in an environ-
ment with a huge action space and state space under partial
observability is still a difficult task.

Imitation learning

Imitation learning is the process of learning to perform a task
given only a demonstration of the task. Given a few state se-
quences, the goal is to find a mapping function f() : Z → A
that returns an action for each state and demonstrations the
behavior shown. Some key problems include dealing with
unseen states, generalizing to new situations, and poor data
quality (Argall et al. 2009) As for IRL, this dataset provides
a rich dataset with complex dynamics as a test bed for imita-
tion learning algorithms, without the expense involved with
real robots.

Forward modeling

Forward modeling is essentially predicting the future. A
recent direction focuses on predicting future video frames
from past frames (Mathieu, Couprie, and LeCun 2015). This
dataset provides a level of complexity between turn based
board games and the real world, as video prediction can-
not rely on a structured distribution of future frames as Star-
Craft games can. Having a good forward model would al-
low a StarCraft AI to make tactical decisions, and forward
modeling research benefits from the restricted domain and
complex dynamics that StarCraft provides. Additionally, a
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Figure 4: Density plot of the ratio of resources gathered by the player with the most resources to the player with the least
resources. A number closer to 1 indicates a more balanced game. ”Rush” strategies typically have poor resource mining, which
creates an apparent spike near 0.

parameterized forward model may allow us to skip an ex-
pensive simulator for a single step of a forward model, or
step forward in time cheaply to enable better tree search on
large action and state spaces. Since this dataset provides full
game states at high sampling rates, it is suitable for forward
modeling tasks at different scales. One can learn a forward
model on very small time steps, to see if a model can learn
the short-term dynamics of a game. (Uriarte and Ontañón
2015) used a replay dataset to learn a combat model of Star-
Craft dynamics. One can also learn a forward model oper-
ating on the long-term dynamics, predicting the tactics and
unit distributions across the game map.

Partial Information Handling

Another difficult problem is to derive and adjust player’s
strategy under partial observability in StarCraft. Example
tasks include: (1) uncover the fog of war and restore the
complete state using partial observations; (2) derive mod-
els to control observability; (3) exploit partial observabil-
ity to hide your strategy. For example, (Weber, Mateas, and
Jhala 2011) uses particle filters, and (Synnaeve 2012) uses
Kalman filters, both to estimate the position of enemy units
under the fog of war after seeing them for briefly. Profes-
sional human players are very efficient in handling partial
observations and solving the mentioned tasks. And the ca-
pacity to handle partial information is an important con-
stituent for the successful strategy in StarCraft. This dataset
should serve as a good base for approaching such tasks.

Battle detection

Unit micromanagement plays an important role in StarCraft.
However, finding relevant battle segments in replays is a te-
dious process. (Synnaeve and Bessière 2012) used a heuris-
tic to backtrack the battles starting from the deaths of units,
seeking agglomerative locality in space and time around the
event, but was dependent on several hyperparameters. Thus
we developed a procedure to detect the battles automatically
and provide this information along with the dataset. We use

Algorithm 1 Battle detection
1. Find the location of every death in the game
2. Perform Mean Shift with flat kernel of size 1 on the deaths

in x-y-t space, normalizing such that a unit ball corre-
sponds to 20 seconds on t axis and 200 walktiles on x
and y axes.

3. Merge modes that are within a unit ball from each other,
assign unit death events to the closest modes within a unit
ball.

4. Filter out all clusters with fewer than 3 deaths.
5. Add 6 seconds before and after each cluster on the t axis

to be sure to include tactical maneuvers before and after
the battle

6. Set battle bounding box to a 200x200 rectangle around
the cluster center in x-y space.

7. Greedily merge all clusters with bounding boxes in
x-y-t space whose Jaccard similarity scores are greater
than 0.6, restricting the x-y space to be a 200x200 rect-
angle

Mean-Shift (Comaniciu and Meer 2002) to cluster the deaths
into several bins, and run some heuristic filters on the results.
The full detection algorithm is described in algorithm 1

We distribute this metadata: for each battle we specify bat-
tle location as a bounding box of the battle region, and du-
ration as a time interval between the start frame and the end
frame. We also provide the counts of each unit type involved
in the battle.

Opening clustering

As an example of what exploratory data analysis can yield,
inspired from (Synnaeve and Bessiere 2011b), we performed
clustering to in search for canonical opening strategies. We
applied K-means over the flattened matrix of the number of
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Figure 5: Example of the clusters obtained from numbers
of each unit type, sampled every 20s, for Protoss. All units
were used in the clustering, but we only display a subset for
visual analysis. Each subplot is its own cluster. The y-axis
can be interpreted as the normalized score of how often each
unit is created in each time bin across all games. At the same
time bin for the same unit type, a value twice as high implies
the cluster mean had twice the number of units for that type.

units of each type, sampled every 20 seconds, for the first 8
minutes of each game. We normalize the unit counts across
each time bin across each type. We cross-validated the num-
ber of clusters to maximize the silhouette coefficient, that
measures the separation distance (intra-inter) of the clusters.
Figure 5 exhibits some of the clusters we obtained for the
Protoss race.

We can clearly observe some common Protoss strategies
discovered via this analysis. The top most cluster appears
to be a Dragoon heavy start with Reavers and Shuttles, a
common strategy in PvP games. The third cluster is a Zealot
heavy army with Cosair and High Templar support, a com-
mon strategy against Mutalisk heavy Zerg lineups. The 4th
cluster is a Dark Templar rush, a devastating strategy when
the opponent does not counter them quickly enough with de-
tection.

Conclusion
We presented STARDATA – a large dataset of StarCraft re-
plays that contains full state data recorded every 3 frames.
This enables the study of tactical and strategic elements of
StarCraft gameplay at different scales. None of the exist-
ing datasets offers full state data on such a fine grain scale.
One can address unit micromanagement scenarios that re-
quire high frequency control and macroeconomic strategy
learning at the same time using this dataset.

STARDATA is 10x larger than the largest of the exist-
ing StarCraft datasets. It contains diverse game scenarios
in terms of maps, matchups and player strategies – we pre-
sented various statistics over the set to illustrate the diver-
sity. At the same time, we used several heuristics to keep
only valid scenarios and filter out the corrupted ones. The
TorchCraft library was used to extract and store the data.
This way we provide a standardized interface for access and
ensure portability across platforms.

We believe that this dataset is going to be useful for
the AI research community and propose a number of tasks
for which this dataset can be employed. In particular, data-
hungry deep reinforcement learning algorithms could bene-
fit from a large amount of diverse scenarios. We also encour-
age others to propose interesting tasks to use this dataset as
a benchmark.
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