
Studying the Effects of Training Data on
Machine Learning-Based Procedural Content Generation

Sam Snodgrass
Drexel University

Philadelphia, PA USA
sps74@drexel.edu

Adam Summerville
University of California, Santa Cruz

Santa Cruz, CA USA
asummerv@ucsc.edu

Santiago Ontañón
Drexel University

Philadelphia, PA USA
santi@cs.drexel.edu

Abstract

The exploration of Procedural Content Generation via Ma-
chine Learning (PCGML) has been growing in recent years.
However, while the number of PCGML techniques and meth-
ods for evaluating PCG techniques have been increasing, little
work has been done in determining how the quality and quan-
tity of the training data provided to these techniques effects
the models or the output. Therefore, little is known about how
much training data would actually be needed to deploy certain
PCGML techniques in practice. In this paper we explore this
question by studying the quality and diversity of the output
of two well-known PCGML techniques (multi-dimensional
Markov chains and Long Short-term Memory Recurrent Neu-
ral Networks) in generating Super Mario Bros. levels while
varying the amount and quality of the training data.

1 Introduction
Procedural content generation (PCG) studies the algorith-
mic creation of content (e.g., maps, textures, music, etc.), of-
ten for video games. Recently, interest in PCG via Machine
Learning (PCGML) (Summerville et al. 2017b) has grown
and spawned many level generation techniques (Snodgrass
and Ontañón 2014; Dahlskog, Togelius, and Nelson 2014;
Summerville, Philip, and Mateas 2015; Guzdial and Riedl
2016). However, while there is work in evaluating level gen-
erators, there has not yet been any work in exploring the ef-
fects of the quality and quantity of training data on these
PCGML techniques. In this paper we explore how using
varying amounts and varying quality of training data affects
the quality and diversity of the generated levels.

Previously, PCGML techniques have been trained using
all of the training data available for the domain at hand.
However, there may be scenarios where limited training
data is available, or where training data needs to be cre-
ated specifically for a new domain. In these instances it is
important to be able to determine how much training data
is needed, and which techniques could be used with the
amount and quality of the training data available. The con-
tribution of this work is four-fold:

1. A method for measuring the quality of training data.
2. A method for measuring the level of plagiarism for a

PCGML system.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

3. A method for measuring the expressivity of a generative
system.

4. An experiment examining the effect of the amount and
quality of training data on a PCGML system.

The remainder of the paper is organized as follows. First,
we formulate our problem statement. In Section 2 we dis-
cuss related work, including various PCGML techniques and
evaluation approaches. Next, in Section 3, we describe how
we represent our training data, and the level generation tech-
niques we use for our experiments. Section 4 explains our
experimental evaluation, including how we determine level
quality, and how we evaluate our output and models, and
finally our results. The paper closes with conclusions and
lines of future work.

1.1 Problem Statement

The specific question we address in this paper is how well
a PCGML technique performs when provided with varying
amounts and quality of training data. Specifically, under-
standing the effects of using different amounts and types of
training data on the quality and diversity of generated levels.

In order to address this question, we propose a way to
measure the quality of training data, and use it to study not
just the effect of the amount of training data, but also how
much the quality of training data affects the PCGML models
under consideration.

2 Related Work

There have been several PCGML approaches applied to the
domain of platformer level generation. For example, Snod-
grass and Ontañón used Markov models to sample levels
for Super Mario Bros, Lode Runner, and Kid Icarus (Snod-
grass and Ontañón 2016b). Summerville and Mateas (Sum-
merville and Mateas 2016) used long short-term mem-
ory neural networks, and Guzdial and Reidl (Guzdial and
Riedl 2016) used Bayesian networks, both to generate Su-
per Mario Bros. levels. However, these approaches all used
the amount of training data that was available to them, with-
out performing analysis on whether it was the appropriate
amount of training data (i.e. whether their models needed all
the data provided, if their models could benefit from even
more training data, or if higher quality data was needed).

Proceedings, The Thirteenth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE-17)

122

In addition to PCGML techniques, there has also been a
lot of work in evaluating content generators and their output.
Smith and Whitehead (Smith and Whitehead 2010) explored
using various evaluation metrics on output levels in order to
measure the expressive range of a generator. Cannosa and
Smith (Canossa and Smith 2015) created a larger list of met-
rics for capturing the expressivity of generators, but did not
perform any experimentation with said metrics. Mariño et al.
(2015) performed an evaluation of level evaluation metrics,
which was expanded on by Summerville et al. (Summerville
et al. 2017a). However, these approaches to evaluation have
not been used to determine the effects of the training data
on PCGML techniques. Snodgrass and Ontañón (Snodgrass
and Ontañón 2016b) touched on guiding their model by se-
lecting the training levels, but did not perform an in-depth
analysis of the effects of different amounts and types of
training data on their models.

While we do not know of any work examining the ef-
fect of training data size on a generative machine learning
model, there has been research into the effect of dataset size
for classification systems. Brain (Brain 1999) examined
a number of different classification systems (Naive-Bayes
(Kononenko 1993), C4.5 decision trees (Quinlan 2014),
MultiBoost (Webb 2000)) on a number of training sets. He
decomposed the error into the bias and variance, and gener-
ally found that the increase in data reduced variance but typ-
ically did not effect bias greatly. Zhu et al. (Zhu et al. 2016)
examined a number of mixture models under different con-
ditions of data size and quality. They found that, for a num-
ber of models, hyperparameters needed to be tuned for the
size of the dataset, and without this tuning an increase in size
can result in decreasing performance. They also found that
while increasing in size generally enhanced performance it
did so at exponentially diminishing returns, indicating that
it would either take substantially more data or models bet-
ter equipped to handle said data. Finally, they found that for
their image classification task that higher quality features did
not result in markedly different performance.

3 Level Generation Methods

In this section we discuss the level representation and the
two PCGML techniques we will using for the remainder of
the paper to explore the effects of training data. We chose to
use two techniques that have previously been shown to be
able to produce high quality content, the LSTM approach of
Summerville and Mateas and the MdMC approach of Snod-
grass and Ontañón mentioned in Section 2.

3.1 Level Representation

We used the tile-based representation employed by the Video
Game Level Corpus (VGLC) (Summerville et al. 2016), an
open repository of training data for PCGML techniques. In
this representation, a level is represented by an h × w two-
dimensional array, M, where h is the height of the level, and
w is the width. Each cell of M is mapped to an element of
T , the set of tile types corresponding to elements within the
game levels. Figure 1 shows a section of a Super Mario Bros.
level (left) and how we represent that level (right).

E E E E E E E E E E E E
E E E E E E E E E E E E
E E E E E E E E E E E E
E E E E E E E E E E E E
E E E E E E E E E E E E
E E E E ? E E E E E E E
E E E E E E E E E E E E
E E E E E E E E E E E E
E E E E E E E E E E E E
E E B M B ? B E E E E E
E E E E E E E E E E E E
E E E E E E E E E E []
E E g E E E E E E E p P
G G G G G G G G G G G G

Figure 1: A section of Super Mario Bros. level (left) and
how we represent that level for use as training data for our
techniques (right).

S1,1

P(Sx,y)

ns0 :� S1,1 S2,1�
P(Sx,y | Sx-1,y)

ns1 :�

S2,1�

S1,2� S2,2�

P(Sx,y | Sx-1,y , Sx,y-1)

ns2 :� S1,2 S2,2�

S1,1� S2,1�
P(Sx,y | Sx-1,y , Sx,y-1, Sx-1,y-1)

ns3 :�

Figure 2: The network structures used by the MdMC ap-
proach. Note that ns3 is the starting network structure,
which falls back to ns2 , and so on.

3.2 Markov chain-based Level Generation

Markov Chains Markov chains (Markov 1971) model
transitions between states over time via a conditional prob-
ability distribution (CPD), P (St|St−1). The set of previous
states that influence the CPD are the network structure.

Multi-dimensional Markov chains (MdMCs) are an exten-
sion that allow any surrounding state in a multi-dimensional
graph to be included in the network structure. By redefining
what a previous state can be in this way, the model can more
easily capture relations from two-dimensional training data.

Training Training an MdMC requires a network structure
and training data, and simply consists of estimating the con-
ditional probability of a given tile type occurring given each
configuration of previous tile types according to the network
structure. We do this by counting the number of times each
tile appears after each previous configuration of tiles.

Sampling A new level is sampled tile-by-tile according to
the trained conditional probability distribution and the previ-
ous tile configuration at each position. While sampling, the
model might encounter a tile configuration that was not seen
during training (an unseen state). Unseen sates are undesir-
able, since there is no training data for them, and thus the
model will have to generate a tile at random, which often

123

leads to future unseen states. In order to avoid unseen states,
two strategies are used: look-ahead and fallback models.

The look-ahead process samples (and resamples) a fixed
number of tiles in advance, trying to ensure that no unseen
state is reached. If the look-ahead fails and a tile cannot be
found that results in no unseen states, then the model falls
back to an MdMC trained with a simpler network structure.
For our experiments we use ns3 in Figure 2 as the initial
network structure, which falls back to ns2 , and then to ns1 ,
and finally to ns0 . This approach is outlined in more detail
in (Snodgrass and Ontañón 2016b).

In this work we use a state-of-the-art MdMC-based level
generation approach developed by Snodgrass and Ontañón
called Violation Location Resampling (VLR) (Snodgrass
and Ontañón 2016a). VLR can optionally accept a set of
constraints for the sampled levels to adhere to. At a high
level, when VLR samples a new level, it first generates a
new level as the standard MdMC approach would (described
above), but then, any sections of the level that violate pro-
vided constraints are resampled until all constraints are sat-
isfied. In our experiments we pass VLR two constrains: 1)
checks the playability of the level using an A∗ agent and re-
turns any unplayable sections; 2) checks for any malformed
structures (e.g., a pipe missing pieces in Super Mario Bros.).

3.3 Long Short-term Memory RNNs

LSTMs Recurrent Neural Networks (RNNs) operate in a
manner similar to standard neural networks (i.e. they are
trained on data and errors are back-propagated to learn
weight vectors). However, in an RNN the edge vectors are
not just connected from input to hidden layers to output, they
are also connected from a node to itself across time. This
means that back-propagation occurs not just between differ-
ent nodes, but also across time steps.

LSTMs are a neural network topology first proposed by
Hochreiter and Shmidhuber (Hochreiter and Schmidhuber
1997) for the purpose of eliminating the vanishing gradient
problem found in RNNs. LSTMs mitigate the problem via
nodes that act as a memory mechanism, telling the network
when to remember and when to forget. The LSTM architec-
ture can be seen in Figure 3.

Training Torch7 (Collobert, Kavukcuoglu, and Farabet
2011) was used to train the networks in our experiments,
based on code from Andrej Karpathy (Karpathy 2015) us-
ing parameters previously optimized in (Summerville and
Mateas 2016). Specifically, we trained on sequences of 200
tiles at a time, in a network with 512 LSTM cells per layer
and 3 layers. To fight overfitting, dropout was aggressively
used, with 80% of LSTM cells being dropped at each train-
ing instance.

Following work from Summerville and Mateas (Sum-
merville and Mateas 2016) we used a “Snaking” path (it
starts from the bottom left, goes bottom-to-top, flips direc-
tions going top-to-bottom, flips, etc.) and “Depth” informa-
tion (a special meta-tile is inserted at the top of a column
once per each ten columns into the level).

Sampling To prime the network to begin generation, an
input seed is passed in with 3 empty columns with a single

Figure 3: Graphical depiction of an LSTM block.

ground tile at the bottom. The generator is then sampled un-
til an end-of-level termination character is found, with each
newly sampled tile being used as the input for the next step
in the auto-regression process. Note, we do not enforce con-
straints when sampling with the LSTM.

4 Experimental Evaluation

This section first describes the domain used for experimen-
tation, how we assess the quality of training data, our experi-
mental set-up, our evaluation metrics, and finally our results.

4.1 Domain

We perform our experiments using Super Mario Bros.
(SMB) as our domain. We chose SMB because of its wide
use in the field of level generation. Its common use allows
us to leverage previous work on evaluation metrics, and also
makes the effects of the training data easier to understand.

We represent Mario levels using a set of 35 tile types.
Each tile type corresponds to either an enemy type or an
object in the game, such as ?-blocks or pipes. Note, this rep-
resentation is more expressive than previously used repre-
sentations as it differentiates between the types of enemies,
and represents several objects that have previously been ig-
nored, such as springs and moving platforms. We use a total
of 29 levels from Super Mario Bros. and Super Mario Bros.
2: The Lost Levels. Figure 1 (right) shows a section of an
SMB level represented using this tile set.

4.2 Training Data Quality

In addition to evaluating the performance of the two chosen
PCGML methods when using increasing amounts of train-
ing data. In this paper, we also evaluate the methods using
training data of varying “quality.”

“Quality” is a subjective term, thus, in this paper we con-
sider levels that are more uniform to be of “lesser quality”
than levels with move variety. We thus approximate qual-
ity by computing the entropy of the training levels through
their high-level structures. That is, we split the training lev-
els into 4 × 4 tile sections. We then perform k-medoids on

124

those sections with k = 30. For the k-medoids distance met-
ric, we find the positioning of two sections that yields the
most overlap in tile types between the sections, and weight
that by the area of the overlapping sections. The idea is that
this metric provides us with a measure of how structurally
similar two sections are. Once the clusters are computed, we
represent each level as a histogram containing the number
of 4× 4 level sections belonging to each cluster. Finally, we
compute the entropy of those histograms (Wallis 2006), and
assume that a higher entropy corresponds to more informa-
tion in that level, and thus a higher quality training level.

4.3 Training Sets

In order to evaluate the effects of both the quality and quan-
tity of training data on the chosen models, we devise several
sets of training data. We first order the training levels from
most to least entropic. We then train separate models using
the first 16 columns of the most entropic level, using the first
32 columns, using the first 64 columns, using the first 128
columns, using the most entropic level in its entirety, using
the two most entropic levels, etc. We then repeat this pro-
cess using the least to most entropic ordering of the levels.
In total, we train 66 MdMC models and 66 LSTM models.

4.4 Evaluation Metrics

We evaluate the levels sampled by our systems using both
standard level evaluation metrics and metrics that explore
the expressiveness of the systems given the training data.

• Linearity: This measures how well the platforms in the
level are approximated with a best fit line (Smith and
Whitehead 2010). It returns the sum of distances of each
solid tile type (i.e. not empty, not enemies) from the best-
fit line, normalized by the level length.

• Leniency: This approximates the difficulty of the level
by summing the gaps (weighted by length) and enemies
(weighted by 0.5), and normalizing by the level length
(Smith and Whitehead 2010).

• Enemy Sparsity: This measures the horizontal spread of
enemies through the level by taking the average distance
of enemies from the average of enemy x positions in the
level (Summerville et al. 2017a). A large Enemy Spar-
sity value means enemies are scattered around the level,
whereas a low value means enemies are grouped together.

• Kernel Density Estimation: The expressive range (Smith
and Whitehead 2010) of a generator has typically been
thought of as a visualization of the metric space covered
by the generated content. Most commonly, this has been
visualized as a heatmap in 2 dimensions (linearity and le-
niency, classically (Van der Linden, Lopes, and Bidarra
2013; Snodgrass and Ontañón 2015)) although some have
done up to 8 dimensions (2 at a time) (Summerville and
Mateas 2016). However, in the literature it is common to
refer to the “width” of the expressive range, but this has
yet to be done in anything beyond a qualitative visual as-
sessment (Smith et al. 2011).
From this point on we will use volume as the measure we
care about, as width is problematic as it is a linear dimen-

Figure 4: Kernel density estimate for Linearity and Leniency
for the MdMC Most-to-least 29 Level Generator. The con-
tour lines represent increasing density, and the dots represent
the generated levels.

sion. For instance, a generator that always produced per-
fectly linear levels that had a very wide range in leniency
would still be unlikely to be thought of as very expressive,
given that it is completely lacking in 1 dimension. To this
end, we will consider the n−dimensional volume (e.g.,
area in 2D, standard volume in 3D, etc.) of the generated
metric space to be the size of the expressive range.
To calculate this volume, we use Kernel Density Estima-
tion (KDE) as calculated by the “ks” R package (Duong
and Hazelton 2005). KDE determines a non-parametric
function of the density of a sampled space, similar to
the binning process of a histogram, but typically smooth
given the use of a Gaussian kernel. Figure 4 shows the cal-
culated Linearity and Leniency for the 1000 levels gen-
erated by MdMC Most-to-least 29 Level Generator as
grey circles. The density estimate is visualized by black
contour lines. We then threshold this density estimate for
points greater than 0, which we take to be the boundaries
of the expressive range. We then form an n−dimensional
grid, and count the number of bins that lie within the ex-
pressive n−volume, multiplying the count with the vol-
ume of a single bin. For our experiments we compute the
expressive volume of our models using linearity, leniency,
and enemy sparsity for the density estimation.

• Plagiarism: This measures the percentage of an output
level that is directly copied from the training levels. We
compute this by first splitting the levels in the training
set into overlapping sections of n columns and removing
any duplicates. We call this set of level sections Tn. We
then split an output level into overlapping sections of n
columns, but do not remove duplicates. We call this series
of level sections Ln. We compute the plagiarism of a level
by counting how many l ∈ Ln are also in Tn. We then de-
termine the number of columns from the output level that
make up the sections that are plagiarized (accounting for
overlapping columns). The value returned is the percent-
age of columns plagiarized in the output level. Notice, we

125

Figure 5: The expressive volume for the 2 different techniques (MdMCs [triangles] and LSTMs [dots]) and 2 different progres-
sions (most-to-least entropy [red] and least-to-most [blue] entropy). We see that the LSTMs in general have higher expressive
volume, due to larger variability in the Leniency. The expressive volume of the original levels is shown for reference.

do not simply count how many individual columns are
plagiarized directly because we are interested in seeing
how large the sections of plagiarism are as well as how
much of the level is plagiarized. For example, given two
levels, one of which has 50% of columns plagiarized with
n = 4, and the second of which also has 50% of columns
plagiarized, but with n = 20, then we consider the sec-
ond to be more plagiarized than the first level, because of
the large amount of continuous plagiarism (i.e. a section
of 20 columns copied directly from the training data is
considered worse than 5 separate 4 column sections).

4.5 Results

Figure 5 shows the results of the expressive volume calcula-
tions. Notice, what we care about here are the ratios between
the expressive volumes of the models, as the actual volume
scales will vary for different domains. In general, we see that
a small amount of data (< 3 levels) results in a very small
expressive volume, which is as we would expect given that
there isn’t much variation in the supplied data. A notable
exception is the MdMC when using the most to least order-
ing of levels. This model’s expressive volume levels off after
only 1 level. Surprisingly, additional data does not increase
the expressive volume of any of the models after about 5
training levels. In the range with sufficient data (> 4 levels)
the LSTMs generally have a larger expressive volume (27%
greater), but all generators have a much smaller expressive
volume than that of the original levels, which is 50% larger
than the next closest generator (LSTM Most-to-least 8 lev-
els). This larger volume is present in all of the individual
metrics, meaning it is not just a failing in any one particu-
lar aspect. We also note that after reaching 5 levels worth of
data, the information density of those levels does not effect
the expressive volume of the models. Perhaps, this is due to
the fact that the variety found in multiple levels, even those
of relatively low information content, exceeds that of any
one level. Of course, there are certainly degenerate counter-
examples (e.g., 5 empty levels would provide no worthwhile
information), but in any reasonable practical application it is

more important to acquire a sufficient amount of data.
Figure 6 shows how much the MdMC and LSTM mod-

els trained with various amounts of training data plagiarize
from the training levels. We also display the plagiarism re-
sults between the training levels. We compute this by treat-
ing each level individually as the output level, and treating
the remaining 28 training levels as the training data. Then,
for each level we compute the plagiarism of that one level
against the other 28 levels. We do this for each training level,
and average the values.

An interesting result we see when using the most to least
order (top-left and bottom-left) is that the percentage of pla-
giarism and the size of plagiarized sections increases with
the amount of training data. We believe this is due to the fact
that as the amount of training data increases, the number of
common structures increases, which makes it more likely
for something that is sampled to be present in the training
data. Alternatively, when using the least to most ordering
(top-right and bottom-right), we see more mixed results with
fewer training levels resulting in a higher percentage of pla-
giarism. We believe this is due to the simplicity of those few
training levels that are being used. That is, because there are
so few differing structures in the initial training levels, the
models are likely to copy those few simple structures.

When comparing between the MdMC and LSTM ap-
proaches, we see that the LSTM tends to plagiarize a higher
percentage of columns and larger sections than the MdMC
approach. This is to be expected as the LSTM considers a
larger amount of context when generating, keeping four full
columns worth of tiles in working memory, which leads to
learning of larger structures (and thus more plagiarism of
such structures). This is exemplified when only one training
level is used, and upwards of 150 column sections are pla-
giarized from the given training level, due to the ability of
the LSTM to nearly memorize the entire level. However, we
can see that when only 5 training levels are used, the plagia-
rism decreases drastically from the one level model.

Furthermore, we can see that the MdMC when trained
with all the available training levels (29), plagiarizes a lower

126

Figure 6: Plots of our plagiarism metric for both the MdMC and LSTM models with increasing amounts of training data, as well
as a measure of plagiarism between training levels. We can see that the LSTM tends to sample levels with higher percentages of
plagiarized columns. However, when plagiarizing, the MdMC and LSTM both plagiarize similarly sized sections, when trained
with more levels. Notice, that the MdMC plagiarizes slightly less than the training levels plagiarize from each other in terms of
section size and percentage, while the LSTM plagiarizes at slightly higher percentages, and around the same section sizes.

percentage of columns from the training data than the train-
ing levels plagiarize from each other, while the LSTM when
trained with all levels plagiarizes a higher percentage. No-
tice, both models plagiarize around the same maximum sec-
tion size in this case. While the LSTM trained with all lev-
els does plagiarize a higher percentage than the original lev-
els, nearly all trained models (except for LSTM 1 level and
MdMC Least-to-Most 16 Columns) are roughly comparable
or below the plagiarism of the original to themselves, indi-
cating that neither approach suffers greatly from plagiarism
when a sufficient amount of data present.

From the plagiarism and volume estimate results, we see
that using all of the available training data is not necessary,
and in some cases may even hinder the result. Figure 5 shows
that the MdMC’s expressiveness levels off around 6 levels
with the least to most ordering and after only 1 level with
the most to least ordering, while the LSTM expressiveness
levels off after around 10 training levels in both cases. Ad-
ditionally, the expressiveness of the LSTM models doesn’t
change based on the ordering of the training levels, while it
does for MdMCs for small amounts of training data. Finally,
training with more information dense levels can reduce the
amount the models plagiarize from the training data.

5 Conclusions and Future Work

In this paper we explored the effects of the amount and
quality of training data on two machine learning-based pro-

cedural content generation approaches, multi-dimensional
Markov chains (MdMCs) and long short-term memory re-
current neural networks (LSTMs). We found that despite
most published results naively using all of the available
training levels, there can be benefits to more carefully choos-
ing a smaller subset of the available training data. Specifi-
cally, we found that using a smaller subset of training levels
(7 for the MdMC and 10 for the LSTM) did not negatively
affect the expressiveness of either model. This has important
implications for the practical applicability of PCGML tech-
niques, since it means that we do not need large amounts
of training data to make them work in a given domain. Ad-
ditionally, we found that by using a subset of levels with
high-entropy in the level structures, the models can be made
to plagiarize less from the training levels.

In the future, we would like to investigate these principles
in more domains. In particular, more difficult domains such
as Lode Runner, which involves solving puzzles. We would
be interested in exploring how various training data affects
other level generators. Lastly, we would like to devise more
formal methods for determining the quality of training data
in a particular game for a particular model, which would
allow our results to be more easily applied to new models.

References

Brain, D. 1999. On the effect of data set size on bias and
variance in classification learning. In Proceedings of the

127

Fourth Australian Knowledge Acquisition Workshop.
Canossa, A., and Smith, G. 2015. Towards a procedural
evaluation technique: Metrics for level design. Proceedings
of the 10th International Conference on Foundations of Dig-
ital Games.
Collobert, R.; Kavukcuoglu, K.; and Farabet, C. 2011.
Torch7: A MATLAB-like environment for machine learn-
ing. In BigLearn, NIPS Workshop, number EPFL-CONF-
192376.
Dahlskog, S.; Togelius, J.; and Nelson, M. J. 2014. Linear
levels through n-grams. Proceedings of the 18th Interna-
tional Academic MindTrek.
Duong, T., and Hazelton, M. L. 2005. Cross-validation
bandwidth matrices for multivariate kernel density estima-
tion. Scandinavian Journal of Statistics 32(3):485–506.
Guzdial, M., and Riedl, M. 2016. Game level generation
from gameplay videos. In Twelfth Artificial Intelligence and
Interactive Digital Entertainment Conference.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Computing.
Karpathy, A. 2015. The unreasonable ef-
fectiveness of recurrent neural networks.
http://karpathy.github.io/2015/05/21/rnn-effectiveness/.
Kononenko, I. 1993. Inductive and bayesian learning in
medical diagnosis. Applied Artificial Intelligence an Inter-
national Journal 7(4):317–337.
Marino, J. R.; Reis, W. M.; and Lelis, L. H. 2015. An em-
pirical evaluation of evaluation metrics of procedurally gen-
erated Mario levels. In Eleventh Artificial Intelligence and
Interactive Digital Entertainment Conference.
Markov, A. 1971. Extension of the limit theorems of prob-
ability theory to a sum of variables connected in a chain.
In Dynamic Probabilistic Systems: Vol. 1: Markov Models.
Wiley. 552–577.
Quinlan, J. R. 2014. C4.5: Programs for machine learning.
Elsevier.
Smith, G., and Whitehead, J. 2010. Analyzing the expres-
sive range of a level generator. In Proceedings of the 2010
Workshop on Procedural Content Generation in Games, 4.
ACM.
Smith, G.; Whitehead, J.; Mateas, M.; Treanor, M.; March,
J.; and Cha, M. 2011. Launchpad: A rhythm-based level
generator for 2-d platformers. IEEE Transactions on Com-
putational Intelligence and AI in Games 3(1):1–16.
Snodgrass, S., and Ontañón, S. 2014. Experiments in map
generation using Markov chains. In Proceedings of the Ninth
International Conference on Foundations of Digital Games,
volume 14.
Snodgrass, S., and Ontañón, S. 2015. A hierarchical MdMC
approach to 2D video game map generation. In Eleventh
Artificial Intelligence and Interactive Digital Entertainment
Conference.
Snodgrass, S., and Ontañón, S. 2016a. Controllable proce-
dural content generation via constrained multi-dimensional

Markov chain sampling. In 25th International Joint Confer-
ence on Artificial Intelligence.
Snodgrass, S., and Ontañón, S. 2016b. Learning to generate
video game maps using Markov models. IEEE Transactions
on Computational Intelligence and AI in Games.
Summerville, A., and Mateas, M. 2016. Super Mario as a
string: Platformer level generation via LSTMs. Proceedings
of 1st International Joint Conference of DiGRA and FDG.
Summerville, A. J.; Snodgrass, S.; Mateas, M.; and
Ontañón, S. 2016. The VGLC: The video game level corpus.
In Seventh Workshop on Procedural Content Generation at
First Joint International Conference of DiGRA and FDG.
Summerville, A.; Mariño, J.; Snodgrass, S.; Ontañón, S.;
and Lelis, L. 2017a. Understanding Mario: An evaluation of
design metrics for platformers. In Proceedings of the Twelfth
International Conference on Foundations of Digital Games.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2017b. Procedural content generation via machine learning
(PCGML). arXiv preprint arXiv:1702.00539.
Summerville, A. J.; Philip, S.; and Mateas, M. 2015. MCM-
CTS PCG 4 SMB: Monte Carlo tree search to guide plat-
former level generation. In Eleventh Artificial Intelligence
and Interactive Digital Entertainment Conference.
Van der Linden, R.; Lopes, R.; and Bidarra, R. 2013. De-
signing procedurally generated levels. In Proceedings of the
the second workshop on Artificial Intelligence in the Game
Design Process.
Wallis, K. 2006. A note on the calculation of entropy from
histograms. http://mpra.ub.uni-muenchen.de/52856/.
Webb, G. I. 2000. Multiboosting: A technique for com-
bining boosting and wagging. Machine learning 40(2):159–
196.
Zhu, X.; Vondrick, C.; Fowlkes, C. C.; and Ramanan, D.
2016. Do we need more training data? International Journal
of Computer Vision 119(1):76–92.

128

