
Scheduling Live Interactive Narratives
with Mixed-Integer Linear Programming

Sasha Azad,1 Jingyang Xu,2 Haining Yu,2 Boyang Li1
1Disney Research

2Decision Science, Walt Disney Parks and Resorts
sasha.azad@disneyresearch.com, {jingyang.xu, haining.yu, boyang.li}@disney.com

Abstract

A live interactive narrative (LIN) is an experience where mul-
tiple players take on fictional roles and interact with real-
world objects and actors to participate in a pre-authored nar-
rative. Temporal properties of LINs are important to its vi-
ability and aesthetic quality and hence deserve special de-
sign consideration. In this paper, we tackle the largely over-
looked problem of scheduling a multiplayer interactive nar-
rative and propose the Live Interactive Narrative Scheduling
Problem (LINSP), which handles reasoning under temporal
uncertainty, resource scheduling, and non-linear plot choices.
We present a mixed-integer linear programming formulation
of the problem and empirically evaluates its scalability over
large narrative instances.

Introduction

The holy grail of AI research in interactive storytelling
(Louchart and Aylett 2004; Roberts and Isbell 2008; Arinb-
jarnar, Barber, and Kudenko 2009; Riedl and Bulitko 2013)
is a narrative world that cannot be distinguished from the
real world. Arguably, the closest form that exists today is a
live interactive narrative (LIN), a role-playing game where
players can interact with human actors at real-world loca-
tions, within an overarching narrative that blends both real
and virtual elements (Shilkrot, Montfort, and Maes 2014).
Compared to traditional live action role-playing, where plots
can be created by game masters dynamically, LINs usu-
ally feature a predefined story with a small number of plot
choices. The rigid structure simplifies the design of the nar-
rative, allowing for the preparation of high-quality materials.

A prominent example of a LIN is the second phase of the
Alternate Reality Game (ARG) Conspiracy For Good (Sten-
ros et al. 2011). After spending a few months collecting in-
formation online, players gathered on London’s streets for
four action scenes over four days, involving a large num-
ber of human actors. Interactive theater productions, such
as Sleep No More (Brantley 2011), offer another variant
where players can explore in an indoor environment with
actors but cannot influence plot decisions. The game Bad
News (Samuel et al. 2016) situates improvisational acting in
a computationally simulated town in an one-on-one interac-
tive setting.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Despite artistic and commercial successes, LINs remain
a niche form of entertainment, partly due to the cost of de-
signing and operating them. Unlike virtual experiences, real-
world resources such as actors, rooms and props incur sig-
nificant operating cost. Interactions between actors and play-
ers may be of uncertain lengths, which is a challenge to a
LINs’ operation. The initial authoring cost of LINs is high;
adapting them to a different environment is not straightfor-
ward.

We propose that an AI scheduling algorithm can mitigate
these challenges and encourage wide adoption of LINS. The
algorithm can optimize the utilization of resources in or-
der to reduce idle time and improve efficiency. It simplifies
the adaptation of LINs to different time and resource con-
straints, which improves reusability and amortizes the initial
development cost (Hansen et al. 2013).

The contributions of this paper are as follows.
• We propose the Live Interactive Narrative Scheduling

Problem (LINSP), which consolidates the Simple Tempo-
ral Problem with Uncertainty (STPU) (Vidal and Fargier
1999; Cui et al. 2015), the Resource-Constrained Project
Scheduling Problem (RCPSP) (Artigues, Demassey, and
Nron 2008), as well as plot choices, which are specific to
interactive narratives.

• We formulate the problem as mixed-integer linear pro-
gramming (MiLP), which allows the use of plot choices
to accommodate temporal uncertainty in scheduling.

• Our empirical evaluation suggests the MiLP problems for
typical-shaped LINs can be solved relatively quickly with
modern solvers, despite the fact that LINSP is NP-hard.

To our knowledge, this is the first attempt to automatically
schedule a live interactive narrative.

Related Work

Temporal constraints and properties have been studied in in-
teractive storytelling and story generation. Porteous et al.
(2011) employed temporal planning techniques in story gen-
eration with well-defined event lengths. Winer et al. (2016)
proposed temporal properties of story discourse that affect
comprehension. Story generation with multiple human play-
ers in virtual worlds are also investigated (Fairclough and
Cunningham 2003; Riedl et al. 2011; Tomai 2012). Com-
putational improvisational theater (Hodhod and Magerko

Proceedings, The Thirteenth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE-17)

2

2014; Martin, Harrison, and Riedl 2016) is another line of
work related to a real-world stage, but existing works focus
on virtual characters, for which temporal and resource con-
straints are not crucial.

The role of time in the design of ARGs and LINs have
also beend discussed (Benford and Giannachi 2008). Tych-
sen and Hitchens (2008) proposed a theoretical model for the
role of time in multiplayer role playing games. Hansen et al.
(2013) discussed reusability and adaptability for ARGs and
suggested that reliance on live events and human actors can
reduce reusability. In this paper, we do not directly address
the design and content of LINs, but our work can be used
to schedule a well designed LIN to a different set of tem-
poral constraints, thereby improve its reusability. Similar to
our work, MacVean et al. (2011) proposed an algorithm for
adapting ARGs to different geographical regions.

To the best of our knowledge, in this paper we present the
first scheduling algorithm that supports LINs. Our technique
differs from existing scheduling approaches by using plot
choices in LINs to accommodate temporal uncertainty and
resource constraints.

Background

We review two problems that respectively handle temporal
uncertainty and resource usage, upon which our problem is
built.

Simple Temporal Problem with Uncertainty

The Simple Temporal Problem with Uncertainty (STPU)
(Vidal and Fargier 1999) is a constraint satisfaction problem
for events with temporal uncertainty. An STPU is defined on
a directed graph G = {V,E}, where V is a set of vertices
representing time points and E is a set of directed edges that
represent bounded intervals between time points. Every edge
is associated with a lower and an upper limit on its duration.
STPU further differentiates between two types of intervals:

• A requirement edge (Req) is an interval whose length is
controlled by the system.

• A contingent edge (Ctg) is an interval whose length is de-
cided by uncontrollable external factors but always within
pre-specified upper and lower limits.

We use the two types of intervals to model player interac-
tions, which introduce temporal uncertainty into the narra-
tive. For example, the time it takes for a player to find a
location or an object is usually uncontrollable. STPU uti-
lizes controllable events to compensate for this uncertainty
and quantify the amount of temporal control that a drama
manager has over the narrative.

We refer to an assignment to the lengths of all controllable
intervals as a solution and the lengths of all uncontrollable
intervals as a situation. The feasibility problem asks if we
can find a solution such that, no matter what the situation
turns out to be, all temporal constraints are satisfied. This
notion can be further refined into three types of controllabil-
ity criteria, which we briefly describe below.

• Strong controllability implies that we can find an optimal
solution that is valid for all possible situations.

Figure 1: An example STPU with three time points, vA, vB ,
and vC . The contingent constraint cAB is shown with a red
arrow.

• Weak controllability implies that for any completely ob-
served situation, we can find a corresponding solution that
satisfy all constraints. However, this is unrealistic because
the solution depends on the knowledge of all contingent
intervals, including future events.

• Dynamic controllability implies that we can make deci-
sions based only on past observations of the situation to
find valid solutions. This is the most useful definition for
scheduling and the problem can be solved in polynomial
time (Morris, Muscettola, and Vidal 2001).
As an illustration, Figure 1(a) shows the relationships be-

tween three time points in an interactive narrative. The pro-
tagonist is fighting a dragon while a companion of the pro-
tagonist arrives to help. The fight starts at point vA, ends at
vC , and has an uncertain duration of 30 to 40 minutes de-
picted by the contingent edge eAC . We want the protagonist
to experience both individual and team fighting, so we want
the companion’s arrival (vB) to be 5 to 15 minutes before
the battle ends.

To achieve dynamic controllability, the decision on eAB

cannot depend on the observation of eAC because C hap-
pens after B. Figure 1(b) shows a new set of upper and
lower bounds on eAB , [25, 25], which satisfies all the tem-
poral constraints. The solution is valid regardless of the ex-
act length of eAC . For instance, if the length of eAC is 30,
then eBC is 5. If eAC is 40, eBC is 15. Intuitively, solving
an STPU means adjusting the controllable intervals to cope
with the uncertainty posed by contingent edges.

Resource Constrained Scheduling

A live interactive narrative may utilize real-world resources
such as props, actors, and rooms. The resource-constrained
project scheduling problem (RCPSP) (Artigues, Demassey,
and Nron 2008; Artigues, Michelon, and Reusser 2003) pro-
vides a method to reason over resource usage.

We consider r types of renewable resources and a set of
activities, denoted by A = {a1, . . . , an}. Some activities re-
quire bir instances of resource type r for a fixed processing
time pi. Each resource is available in mk quantities. At any
time, the total number of resources in use cannot exceed the
total number of available resources R(r), ∀r. The RCPSP
feasibility problem, which asks if we can schedule all activ-
ities within a given time limit, is NP-complete (Garey and
Johnson 1975).

3

Live Interactive Narrative Scheduling Problem

In this section, we present a formal definition of the Live
Interactive Narrative Scheduling Problem (LINSP) and de-
scribe its formulation as a mixed-integer linear program, for
which fast solvers exist.

Problem Definition

A LINSP problem is defined as a tuple
〈V,Ereq, Ectg, U, L,A, b, R,M〉. Similar to STPU, we
rely on a temporal graph G, which contains a set of vertices,
V , and two disjoint sets of requirement and contingent
edges, Ereq and Ectg . For each edge eAB ∈ Ereq ∪ Ectg ,
we define an upper limit UAB and a lower limit LAB on
its length. Either limit may be undefined, which we can
write as UAB = ∞ or LAB = −∞. The limits can also be
negative; a negative upper limit UAB implies that vA must
occur after vB .

To handle RCPSP-like resource constraints, we represent
an activity ai using its starting point vSi

and ending point
vEi . The set of activities A = {a1 = 〈vS1 , vS1〉, . . . , an =
〈vSn , vEn〉} where ∀i, vSi , vEi ∈ V and (vSi , vEi) ∈
Ereq ∪Ectg . The length of activity ai is captured by tempo-
ral constraints USiEi and LSiEi . bir is the number of type-r
resource needed by ai. Those resources are utilized at time
vSi

and released at time vEi
. R(r) denotes the total number

of available type-r resource.
Plot choices are represented as sets of time points that are

mutually exclusive to each other. We introduce the set of
mutual exclusive pairs M = {〈vA, vB〉, . . .}. Every pair of
vertices in M never appear in the same story.

Derived from dynamic controllability of STPU, the feasi-
bility problem of LINSP asks if there is an assignment to the
duration of intervals in Ereq based only on previous observa-
tions of Ectg such that all temporal constraints and resource
constraints are satisfied. The problem can be extended to
support multiple simultaneous interactive narratives.

LINSP Is NP-Hard

It is easy to see that the LINSP can be reduced from RCPSP,
so the feasibility problem is NP-hard. Here we provide a
sketch of proof.

For every activity ai in the RCPSP, we create two corre-
sponding time points as its starting (vSi

) and ending (vEi
)

points and a requirement edge in-between. The upper and
lower limits on the requirement edge are both equal to the
duration of the activity pi. Further, we create a dummy start-
ing point v0 that precedes every activity and a dummy end-
ing point v∞ that succeeds every activity. If the RCPSP
problem contains any precedence constraints, they are cre-
ated in the LINSP version accordingly. The derived LINSP
problem has no contingent edges or mutual exclusive pairs.
The feasibility of RCPSP asks if a viable schedule can be
completed in tmax time. This can be modeled by a require-
ment edge from v0 to v∞ with a upper limit of tmax. The
time it takes to create the new LINSP is polynomial to the
size of the RCPSP and its solution is equal to that of the
original RCPSP. �

A Mixed-integer Linear Program Formulation

We present a formulation of LINSP as a mixed-integer lin-
ear program (MiLP). Although MiLP is NP-hard, modern
solvers are fast. Cui et al. (2015) present a MiLP formula-
tion for dynamic controllability in STPU. We consolidate
their MiLP formulation and a flow-based RCPSP formula-
tion and further present LIN-specific constraints to handle
plot choices.

STPU Constraints To reason about temporal uncertainty,
we break down the temporal graph G = 〈V,Ereq ∪ Ectg〉
into a number of triangles, which can be computed by enu-
merating all possible triangles for small graphs or by find-
ing a minimal triangulation (Heggernes 2006). For any edge,
eAB , we introduce two variables representing the its actual
upper and lower limit, denoted by uAB , lAB . Afterwards, for
each triangle with vertices vA, vB and vC , we introduce a set
of constraints for every valid triangle that does not contain
mutually exclusive vertices.

We consider one Ctg edge per triangle at a time. If there
are two Ctg edges in one triangle, they are considered se-
quentially with the other treated as a Req edge. Two Ctg
edges cannot end on the same time point as two uncontrol-
lable intervals cannot be guaranteed to end at the same time.
Thus, triangles with three Ctg edges do not exist.

First, we add shortest path constraints

lAC ≤ uAB + lBC ≤ uAC

lAC ≤ lAB + uBC ≤ uAC

uAC ≤ uAB + uBC

lAB + lBC ≤ lAC

(1)

If there are no Ctg edges in the triangle, no other constraints
are required. Let eAC be the Ctg edge. Then for each trian-
gle, we differentiate among three scenarios: the follow case,
the precede case, and the unordered case. In the follow case,
UBC ≤ 0, indicating that vB is always scheduled after C has
been observed, hence no further constraints are necessary.

The precede case happens when LBC ≥ 0, indicating that
B must precede or coincide with C. We would be unaware
of the exact vA → vC duration when scheduling vB . The
following constraints are needed.

uAB ≤ lAC − lBC

lAB ≥ uAC − uBC
(2)

The unordered case occurs if LBC < 0 and UBC ≥ 0,
indicating vB can be scheduled independently to vC . We add
the following disjunctive constraint.

(lBC < 0) ∨
(
uAB ≤ lAC − lBC

lAB ≥ uAC − uBC

)
(3)

Next, we introduce a waiting period, denoted by wait vari-
able, wABC , indicating vB must either wait until after vC or
till at least UAC − UBC duration after vA.

wABC ≥ uAC − uBC (4)

For every requirement edge eAB and wait variable wABX

where eAX or eBX is contingent, we have the constraint:

lAB ≥ min(lAX , wABX) (5)

4

Different wait variables interact with each other in a process
called wait regression. For a wait wABX and a contingent
edge eDB ,

(wABX < 0) ∨ (wADX ≥ wABX − lDB) (6)

If eDB is a requirement edge, we have

wADX ≥ wABX − lDB (7)

Due to space restrictions, we refer readers to Cui et al.
(2015) and Morris, Muscettola, and Vidal (2001) for a proof
of correctness of the formulation above.

RCPSP Constraints We add constraints for handling re-
source utilization and release using the flow-based continu-
ous time approach (Artigues, Michelon, and Reusser 2003),
which is based on the intuition that when an activity termi-
nates, it transfers its resources to other activities that need
them and occur later. We create an additional activity an+1

to be a resource sink at the end of the narrative for resources
not renewed or transferred to the next activity (e.g., props
destroyed by the activity).

For each pair of activities ai = 〈vSi , vEi〉, aj =
〈vSj , vEj 〉, we introduce a binary variable xi,j , which equals
1 if and only if ai occurs before aj . Otherwise, it equals 0.
The following constraints handle proper sequencing of ac-
tivities, where M is a very large integer.

lSiSj
≥ uSiEi

−M ∗ (1− xi,j), i < j

xi,j + xj,i ≤ 1, ∀(i, j) ∈ {0, . . . , n+ 1}2
xi,k ≥ xi,j + xj,k − 1, ∀(i, j, k) ∈ {0, . . . , n+ 1}3

(8)

For resource type r, we define a flow variable fi,j,r as the
quantity of r flowing from ai to aj at the end of ai. Then
fi,j,r value will always be restricted by the amount of r re-
leased by ai and the amount consumed by aj .

fi,j,r ≤ min(bir, bjr)× xi,j , (9)
∀(i, j) ∈ {0, . . . , n} × {0, . . . , n+ 1}

To conserve the total resources, the total r released by event
ai to any subsequent events aj can never exceed the total
resources produced by ai. Hence, for all r we define

fn+1,0,r = R(r)

fi,j,r ≥ 0, ∀(i, j) ∈ {0, . . . , n+ 1}2∑
i∈A∪{0,n+1}

fi,j,r = bir, ∀j ∈ {0, . . . , n+ 1}
∑

j∈A∪{0,n+1}
fi,j,r = bjr, ∀i ∈ {0, . . . , n+ 1}

(10)

Branching Constraints A contribution of this paper is the
ability to use plot choices for constraint satisfaction. If a plot
choice is controlled by the player, the system must make sure
that all choices are feasible. However, the drama manager
may also selectively offer plot choices in order to accom-
modate temporal and resource constraints. See Figure 2(a)
for an example story graph, which contains three alterna-
tive storylines, which respectively require the player to fight

Figure 2: A story with three alternative storylines. Req edges
are shown in black. Ctg edges are shown as red solid arrows
and PCtg edges are red dashed arrows.

Figure 3: The valid ranges of e1,2 that are supported by the
three alternative storylines respectively. The red durations
indicate feasible regions and dashed durations are infeasible
regions.

with a sword (v3 and v4), to cast magic spells (v5 and v6),
and to perform a robbery (v7 and v8). The drama manager
may present some of the storylines to the player depending
on how much time the player spends with the wizard (e1,2).
Note the requirement edge e1,9 imposes a limit on the over-
all length of the story.

Applying STPU constraints to each alternative storyline
individually will lead to the erroneous conclusion that the
overall temporal constraint e1,9 cannot be met. For instance,
the sword-fighting storyline is only feasible when the un-
controllable interval e1,2 falls in [15,80]. Figure 3 shows the
feasible and infeasible ranges for the three storylines, which
individually cannot accommodate the temporal uncertainty
induced by e1,2, but collectively cover the whole range.

Dynamic controllability suggests that, for every contin-
gent edge that is shared by and precedes the alternative sto-
rylines, we can choose among the storylines based on the
outcome of the uncontrollable interval. For example, if the
length of the shared interval e1,2 is 12, we can present the
second storyline to the player, which guarantees the satis-
faction of the requirement constraint of e1,9. In this section,
we introduce additional constraints to allow this behavior.

To capture this intuition, we split the edge e1,2 into three
separate contingent edges, which we call partial contingent
(PCtg) edges, as shown in Figure 2(b). We allow the upper
and lower bound of the three edges to change, but require
that they collectively cover the original interval [10, 90].
We formulate this subproblem as cycle-finding in a directed
graph Gτ = 〈V τ , Eτ 〉. All PCtg edges and the original Ctg

5

Figure 4: Interval coverage from Fig. 3 represented as find-
ing a cycle in a graph.

edge become vertices in a new graph. With abuse of nota-
tion, we use τ0 to denote the original interval as well the
corresponding vertex τ0 ∈ V τ . The PCtg interval and corre-
sponding vertices are denoted as τ0, . . . , τm ∈ Eτ . For each
interval, we denote its lower limit as lτi and upper limit as
uτ
i . The edges in Eτ are determined by the interval over-

laps, which we discuss below. The overall goal of the sub-
problem is to find a cycle that includes τ0 and at least one
other interval. As an example, Figure 4 contains a valid cycle
τ0 → τ2 → τ1 → τ3 → τ0. This is similar to cycle-finding
problems like the Hamiltonian cycle, but do not require ev-
ery vertex to be visited.

The edges Eτ are added using the following mechanism.
For two split intervals τi and τj , i = 0 and j = 0, if the
lower limit of τj (denoted as ljτ) falls within the interval τi,
it suggests that concatenating τi and τj may (albeit not guar-
anteed to) extend the coverage of τi. In this case, we create
a directed edge that from τi and τj . After that, we create an
edge from τi to τ0 if the upper limit of τ0 (denoted as u0

τ)
falls within τi, and create an edge from τ0 to τj if the lower
limit of τ0 falls within τj .

To encode as MiLP constraints, we create binary deci-
sion variables yi,j , whose value is 1 if and only if the cy-
cle we found involves the directed edge (τi, τj). To encode
the logical dependence of yi,j on the temporal relationship
between τi and τj , we introduce auxiliary variables zij1 and
zij2 . zij1 = 1 iff lτi ≤ lτj and zij2 = 1 iff lτj ≤ uτ

i .

(lτi ≤ lτj) ∨ (zij1 = 0)

(lτj ≤ uτ
i) ∨ (zij2 = 0)

yi,j ≤ zij1

yi,j ≤ zij2

(11)

The relatioship between the original interval τ0 and other
intervals must also be encoded; the equations are similar and
omitted due to space restrictions. We subsequently need the
following constraints to enforce the existence of a cycle that
go through τ0.

∑
j

yi,j =
∑
j∈M

yj,i, ∀i
∑
j

yj,i ≤ 1, ∀i
∑
i

y0,i = 1

∑
i

yi,0 = 1

(12)

Figure 5: (a) A LIN with two sets of plot choices. (b) The
same LIN where the Ctg edges are split into PCtg edges to
accommodate additional temporal uncertainty.

Consecutive Plot Choices We discussed the case of one
shared contingent edge that precedes one set of plot choices,
but there could be multiple contingent edges shared by mul-
tiple sets of choices. We can split Ctg edges multiplicatively
to cover the entire solution space. Figure 2 shows a graph
with two sets of choices. The second Ctg edge, like the ear-
lier case, are split into two PCtg edges. The first edge is split
into 4 PCtg edges to accommodate all combinations of plot
choices. The same cycle-finding constraints apply for both
sets of PCtg edges.

Although this approach finds a feasible solution when-
ever there is one, the number of PCtg edges grow exponen-
tially with the number of plot choices. However, this is miti-
gated by two practical factors. First, the total number of plot
choices is limited by the amount of narrative materials au-
thored by human designers. It is likely that we do not have
a very large number of choices. Second, it is often the case
that splitting one or two Ctg edges will create enough flexi-
bility to find feasible solutions for a plot graph. This method
lends itself to an interactive design process, where difficult
Ctg constraints may be detected using slack variables. More
specifically, we can introduce variables εUij and εLij for a Ctg
edge eij and convert LINSP into an optimization problem
that minimizes∑

eij∈Ectg

(Uij − εUij) + (εLij − Lij) (13)

where Uij and Lij are the original bounds on eij . Large val-
ues of εUij and εLij suggest difficult Ctg edges.

Evaluation
Although fast solvers exist, MiLP problems in general are
NP-hard. As an evaluation, we test the scalability of the
MiLP formulation for LINSP as a function of the number
of time points as well as the proportion of uncontrollable
intervals in an interactive narrative.

Setup and Results

We aim to simulate typical LIN scenarios by controlling the
shapes of the graph and the density of temporal bounds.

6

Figure 6: The number of temporal bounds placed on time
intervals as the number of time points in the test problems
increases.

Observing plot graphs in choose-your-own-adventure books
(Yu 2015, p. 3) and plot graphs learned from crowdsourced
stories (Guzdial et al. 2015), we notice that temporal con-
straints in interactive narratives are mostly local. That is,
most edges are between nearby vertices; long-distance edges
are rare, though are needed for controlling the total length of
a story or a story chapter. For mathematical intuition, con-
sider an ideal graph with n vertices contains only k-vertex
components. The number of edges is O(k2 · n

k), which is
linear to n. Thus, we created LINSP problems where the
number of temporal bounds grows roughly linearly with the
number of vertices, as shown in Figure 6.

We created two test suites. The first test suite simulates
77 interactive narratives with temporal and resource con-
straints. Each test problem contains 2-5 copies of the same
interactive narratives running simultaneously, creating a to-
tal of 385 problems. The number of vertices in each problem
ranges from 15 to 220. We select 50% of the constrained
temporal bounds to be resource-consuming activities and
place resource constraints on them. Each narrative contains
0 to 72 resources, with up to 3 resources per activity.

The second test suite contains 119 problems, where
the proportion of contingent edges are chosen from
{0%, 12.5%, 25%, 50%} and the number of vertices ranges
from 15 to 150. All problems were solved with the Gurobi
solver (Gurobi Optimization Inc. 2016) on a 2.7GHz In-
tel Xeon E5 12-Core processor with 64GB RAM. Figure 8
shows the results in a box-and-whisker plot. Figure 7 and
Figure 8 show the results for two test suits respectively.

Discussion

We observe that most problems in the first test suites can be
solved under 400 seconds. As the number of bounds grow
linearly with the number of vertices, the time taken to solve
LINSP instances grows moderately. The quadratic line fitted
to data provides a decent description of the growth trend,
with only a few outliers unaccounted for. For the second test
suite, we observe a significant increase in the variance in the
time needed to solve a problem, as the numbers of vertices
and Ctg edges increase. However, the growth still appears
to be moderate, as most problems can be solved within 10

Figure 7: The total time taken to solve LINSP instances as
the number of vertices increases.

Figure 8: The total time taken to solve LINSP instaces as the
number of Ctg edges increases.

minutes. Interestingly, the solution time decreases when go-
ing from 90-120 vertices to 120-150 vertices. We postulate
that this is because more temporal bounds become redundant
and are easily satisfied when the number of vertices increase
beyond a point. We conclude the MiLP formulation provides
a practical solution for the scheduling of LINs under typical
assumptions and with fast solvers, even though the LINSP
problem is NP-hard.

Conclusions

In this paper, we present a formulation for event and re-
source scheduling for live interactive narratives, which com-
bines two existing problems and extends them with addi-
tional flexibility to accommodate uncertainty using mutu-
ally exclusive plot choices. Numerical evaluation suggests
that, under moderate assumptions, the formulation provides
practical support for designing and executing interactive nar-
ratives in the real world. Future work will address story
mediation, or the ability to dynamically change the story
(Robertson and Young 2015) while making scheduling de-
cisions. We hope this computational technique will enable
novel forms of interactive entertainment that is cost-effective
and easy to operate.

7

References

Arinbjarnar, M.; Barber, H.; and Kudenko, D. 2009. A crit-
ical review of interactive drama systems. In Proceedings of
the AISB 2009 AI and Games Symposium.
Artigues, C.; Demassey, S.; and Nron, E., eds. 2008. Re-
source Constrained Project Scheduling: Models, Algorithms,
Extensions and Applications. ISTE-Wiley.
Artigues, C.; Michelon, P.; and Reusser, S. 2003. Inser-
tion techniques for static and dynamic resource-constrained
project scheduling. European Journal of Operational Re-
search 149(2):249–267.
Benford, S., and Giannachi, G. 2008. Temporal trajectories
in shared interactive narrative. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. 73–
82.
Brantley, B. 2011. Shakespeare slept here, albeit fit-
fully. In The New York Times. Last retrieved from
http://www.nytimes.com/2011/04/14/theater/reviews/
sleep-no-more-is-a-macbeth-in-a-hotel-review.html.
Cui, J.; Yu, P.; Fang, C.; Haslum, P.; and Williams, B. C.
2015. Optimising bounds in simple temporal networks with
uncertainty under. dynamic controllability constraints. In
Proceedings of the 25th International Conference on Auto-
mated Planning and Scheduling. 52–60.
Fairclough, C., and Cunningham, P. 2003. A multiplayer
case based story engine. Technical Report TCD-CS-2003-
43.
Garey, M., and Johnson, D. 1975. Complexity results for
multiprocessor scheduling under resource constraint. SIAM
Journal on Computing 4:397–411.
Gurobi Optimization Inc. 2016. Gurobi optimizer reference
manual.
Guzdial, M.; Harrison, B.; Li, B.; and Riedl, M. O. 2015.
Crowdsourcing open interactive narrative. In Proceedings
of the 10th International Conference on the Foundations of
Digital Games.
Hansen, D.; Bonsignore, E.; Ruppel, M.; Visconti, A.; and
Kraus, K. 2013. Designing reusable alternate reality games.
In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems.
Heggernes, P. 2006. Minimal triangulations of graphs: A sur-
vey. Discrete Mathematics 306(3):297–317. Minimal Sepa-
ration and Minimal Triangulation.
Hodhod, R., and Magerko, B. 2014. Pharaoh: Conceptual
blending of cognitive scripts for computationally creative
agents.
Louchart, S., and Aylett, R. 2004. Narrative theory and emer-
gent interactive narrative. International Journal of Continu-
ing Engineering Education and Lifelong Learning.
MacVean, A.; Hajarnis, S.; Headrick, B.; Ferguson, A.;
Barve, C.; Karnik, D.; and Riedl, M. O. 2011. Wequest:
Scalable alternate reality games through end-user content au-
thoring. In Proceedings of the 8th International Conference
on Advances in Computer Entertainment Technology.
Martin, L. J.; Harrison, B.; and Riedl, M. O. 2016. Improvi-
sational computational storytelling in open worlds. In Nack,

F., and Gordon, A. S., eds., Proceedings of the 9th Interna-
tional Conference on Interactive Digital Storytelling. 73–84.
Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. In Proceedings
of the 17th International Joint Conference on Artificial Intel-
ligence, IJCAI’01, 494–499.
Porteous, J.; Teutenberg, J.; Charles, F.; and Cavazza, M.
2011. Controlling narrative time in interactive storytelling.
In The 10th International Conference on Autonomous Agents
and Multiagent Systems, 449–456.
Riedl, M. O., and Bulitko, V. 2013. Interactive narrative: An
intelligent systems approach. AI Magazine 34(1):67–77.
Riedl, M. O.; Li, B.; Ai, H.; and Ram, A. 2011. Robust
and authorable multiplayer interactive narrative experiences.
In The 7th Annual Conference on Artificial Intelligence and
Interactive Digital Entertainment.
Roberts, D. L., and Isbell, C. L. 2008. A survey and qualita-
tive analysis of recent advances in drama management. Inter-
national Transactions on Systems Science and Applications,
Special Issue on Agent Based Systems for Human Learning
4(2):61–75.
Robertson, J., and Young, R. M. 2015. Interactive narrative
intervention alibis through domain revision. In Proceedings
of the 8th Workshop on Intelligent Narrative Technologies.
Samuel, B.; Ryan, J.; Summerville, A. J.; Mateas, M.; and
Wardrip-Fruin, N. 2016. Bad news: An experiment in
computationally assisted performance. In Interactive Story-
telling: 9th International Conference on Interactive Digital
Storytelling, 108–120. Springer.
Shilkrot, R.; Montfort, N.; and Maes, P. 2014. nARratives
of augmented worlds. In Proceedings of 2014 IEEE Interna-
tional Symposium on Mixed and Augmented Reality-Media,
Art, Social Science, Humanities and Design.
Stenros, J.; Holopainen, J.; Waern, A.; Montola, M.; and
Ollila, E. 2011. Narrative friction in alternate reality games:
Design insights from conspiracy for good. In The DiGRA
2011 Conference.
Tomai, E. 2012. Towards adaptive quest narrative in shared,
persistent virtual worlds. In Proceedings of the 5th Intelligent
Narrative Technologies Workshop.
Tychsen, A., and Hitchens, M. 2008. Interesting times: Mod-
eling time in multi player and massively multiplayer role
playing games. Leonardo Electronic Almanac.
Vidal, T., and Fargier, H. 1999. Handling contingency in
temporal constraint networks: from consistency to controlla-
bilities. Journal of Experimental and Theoretical Artificial
Intelligence 11:23–45.
Winer, D.; Amos-Binks, A. A.; Barot, C.; and Young, R. M.
2016. Good timing for computational models of narrative
discourse. In Proceedings of the 7th Workshop on Computa-
tional Models of Narrative.
Yu, H. 2015. A Data-Driven Approach for Personalized
Drama Management. Ph.D. Dissertation, Georgia Institute
of Technology.

8

