
HyPED: Modeling and Analyzing
Action Games as Hybrid Systems

Joseph C. Osborn, Brian Lambrigger, Michael Mateas
Computational Media

University of California, Santa Cruz
1156 High St

Santa Cruz, CA 95064

Abstract

Platformers and action-adventure games have high-
dimensional state spaces with difficult, non-linear constraints
on character movement; even worse, game environments
often respond to the player in complex ways that can cause
exponential expansion of the planning search space. Plan-
ning problems in these high-dimensional spaces generally
require domain-specific knowledge and manually abstracted
models of game rules to replicate the intuition of human
designers or playtesters. In this work, we outline a system
for modeling these complex games at a precise and low
level in terms of hybrid automata. With this representation,
standard incremental search algorithms can be used to
answer reachable-region queries, taking advantage of the
domain information embedded in the system.

Introduction

Recent work in game design support has successfully ar-
gued that games’ emergent qualities—the chaos that results
when players interact with games’ complex rules—leave
a substantial role for automation in the game design pro-
cess. The educational puzzle game Refraction used model
checking to ensure that all solutions to a puzzle required
the use of necessary mathematical concepts (Smith, Butler,
and Popovic 2013). Some continuous-time games incorpo-
rate such solution-finding techniques into their game design
itself: CloudberryKingdom generates new game levels on
the fly but ensures that they can be won by a player with
bounded reaction time (Fisher 2012).

Besides solution search, one general approach has be-
come increasingly popular in recent years: visualizing (ap-
proximations of) reachable regions (Bauer and Popović
2012; Shaker, Shaker, and Togelius 2013; Tremblay,
Borodovski, and Verbrugge 2014; Isaksen, Gopstein, and
Nealen 2015). In this paper, we aim to improve the avail-
ability of these sorts of tools without committing to specific
game engines or game-making tools.

We follow after the game description language cum
game engine cum model checker BIPED (Smith, Nel-
son, and Mateas 2010), which leverages declarative game
specifications to enable both human-playable prototypes
and machine-analyzable models. BIPED is specialized for

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

games with discrete state spaces and fairly coarse discrete
time. What would a BIPED-like system for continuous-time
games with hundreds of real-valued variables look like? We
answer this question by combining folk approaches of action
game makers—state machines, object pooling, collision de-
tection, game physics simulation, and so on—with formal
approaches from the hybrid systems literature and recent
work in action game design support.

HyPED (Hybrid BIPED) is a modular formalism for
defining action game characters, grounded in the theories
of operational logics (Mateas and Wardrip-Fruin 2009) and
hybrid automata (Alur et al. 1993) (hybrid here refers to the
fact that these systems hybridize continuous and discrete be-
havior). Operational logics combine abstract processes like
collision restitution or state transition systems with a strat-
egy for communicating those processes to players—for ex-
ample, characters which play different animations in dif-
ferent states. HyPED models game entities from graphical
logic games, privileging collision logics and physics log-
ics. These games center simulations of continuous space and
time, collisions between objects, and objects with small sets
of discrete variables whose behaviors change under different
circumstances (generally indicated by changes in visual ap-
pearance). HyPED entities and environments can be readily
converted to Unity or other game engines.

Action games (whose mechanics focus on movement and
collision detection) constitute arguably the most prevalent
genre of digital games. Accordingly, many popular game-
making tools focus on them: GameMaker, Unity 3D, Un-
real, and other systems offer user interfaces and program-
ming APIs supporting collision checking, simple physics,
and in some cases state machines. At the same time, none
of these offers significant support for model checking, visu-
alization of possible system states, parameter synthesis, or
other features that the available domain knowledge would
seem to enable. These tools could be of great use to game
makers, reducing the need for expensive manual testing and
design space exploration.

In the following sections, we define the action game mod-
eling language HyPED and show examples of the diverse
entities it can define. We also show how incremental search
(specifically, Rapidly-exploring Random Trees) can be ap-
plied to the reachable-regions problem for HyPED games (a
more expressive class of games than those to which these

Proceedings, The Thirteenth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE-17)

87

techniques have been previously applied). Moreover, we
show how deep knowledge of system dynamics can improve
the performance of RRT for games, mainly through dimen-
sionality reduction.

Related Work

Some game-making tools do support partial declarative def-
initions of game entity behaviors. GameMaker provides for
entities with behaviors driven by events (such as collisions
or timer elapse) that trigger handlers supporting various con-
ditional responses (e.g. changing velocity or incrementing a
variable). These entities also have varying animations at dif-
ferent times and collision areas which correspond to the ani-
mations. Unfortunately, game entities with atomic behaviors
outside of that predefined set are inexpressible in the declar-
ative style; the GML scripting language is provided as an
imperative escape hatch for such cases.

Game designers often narrate entities’ behaviors in terms
of state machines, and this trend is captured in both the aca-
demic (Siu, Butler, and Zook 2016) (our work may be seen
as a rigorous grounding of the same fundamental idea) and
game design literature (Swink 2009). The 3D game-making
tools Unreal and Unity both provide for explicit state ma-
chines specialized for character animation, but in both en-
gines most atomic behaviors are implemented in imperative
code, and none of the above tools has a formal semantics.

This state machine-like description addresses entities’
physical dynamics, audiovisual representation, and discrete
variables like health or ammunition. These are not formal
transition systems: they may have undecidable transition re-
lations (due to various combinations of dynamics and tran-
sition guards) or their discrete state spaces may be infea-
sibly large. Some of these variations can be captured by
other types of automata, but games generally employ state
machine-flavored discrete systems and not formal automata.

Hybrid Automata

Hybrid automata combine a discrete transition system (a fi-
nite state machine) with a set of continuous variables and
a switched set of differential equations over these variables
called flows (Alur et al. 1993). In each state, a different sub-
set of the flows is applied to the continuous variables until
the state is exited along a transition, which may be guarded
on continuous or discrete variables; transitions may also in-
stantaneously modify variables’ values. The usual semantics
for hybrid automata is that they alternate between periods of
continuous flow (called delay or continuous transitions) and
instantaneous discrete transitions.

Hybrid automata have seen extensive use in modeling
cyber-physical systems where linear (or simpler) dynamics
adequately describe the partially known or complex true dy-
namics of a system whose behavior is different at different
times. They have many varieties and syntactic extensions,
and often their dynamics are restricted in one way or an-
other (Henzinger 2000). These restrictions are helpful be-
cause even under very simple physical laws, the question of
state reachability becomes intractable or even undecidable
(though semi-decision algorithms exist).

Key analysis questions here include safety or state reach-
ability (safety is often phrased as never reaching an unsafe,
e.g., illegal or stuck state); calculating a reachable region
(what possible values can the continuous variables take?);
controller synthesis (can we generate a control policy or AI
player which will be safe or meet some optimality crite-
rion?); and parameter synthesis (given an automaton with
some unknown parameters—jumping speed, gravity, plat-
form height—can we find values for those parameters sat-
isfying some constraint?).

Hierarchical Hybrid Automata Game entities often have
highly structured behaviors; Super Mario’s grounded move-
ment comprises walking, running, and standing still, while
his aerial movement has distinct rising and falling behaviors
composed in parallel with moving left and right in midair.
Modeling these distinct flows requires dozens of states, most
of which are slight variations on each other.

Game designers generally handle these overlapping con-
cerns by introducing hierarchy and concurrency into their
state machines. This may be realized using groups of
Boolean variables that have allowed and disallowed com-
binations (exactly one of on ground, jumping up,
and falling is true at a given time, independently
of crouching). These approaches to modularity have
also been explored in hybrid systems; the CHARON lan-
guage (Alur et al. 2001) is a very generic approach with
well-defined semantics.

Besides the complexity of individual entities, hundreds of
game entities may be created and destroyed during play;
this alone puts a significant stress on existing hybrid au-
tomata tools which generally scale poorly with the ex-
tremely high-dimensional state space. Hybrid systems re-
searchers call adding or removing automata from the system
at runtime “reconfigurability”, and CHARON’s derivative
R-CHARON addresses this along with ways for automata to
reference each other explicitly (Kratz et al. 2006). HyPED
can be seen as a specialization of R-CHARON for games.

While hybrid automata seem to be a natural fit for mod-
eling action games, previous attempts to apply them have
failed to scale either in terms of expressiveness or perfor-
mance past toy examples due to limitations of the model-
ing languages and tools used (Aaron, Ivančić, and Metaxas
2002). We believe HyPED resolves many of these issues.

Rapidly-exploring Random Trees

Rapidly-exploring Random Trees (RRT) is a commonly-
used incremental search algorithm for planning in high di-
mensional spaces (LaValle 1998). The basic RRT algorithm
is to repeatedly sample points from the configuration space
CS of possible combinations of values of all the variables
in the world, finding each time the closest node in the tree
to the sampled point and growing it towards the sampled
point; if this can be done without violating any constraints,
the resulting node is added to the tree and the process con-
tinues. In the case where we want to search for all possible
states rather than a specific path, RRTs are useful because
they quickly expand the tree to cover the state space. This
is due to their implicit Voronoi bias: newly sampled states

88

are most likely to be in the largest Voronoi region induced
by the tree built so far. Additionally, for problems where a
solution is required and traditional searches are not feasible
(e.g., in high-dimensional state spaces), RRTs are an attrac-
tive choice because they require little knowledge of the ac-
tual dynamics of a system.

RRTs have previously been applied to the reachability
question for hybrid automata (Branicky et al. 2003); most
previous work in this area uses a lexical distance metric
and assumes a single automaton. In our case, we set a high
penalty for mismatched discrete modes but do not use a lex-
ical distance because not all mode transitions of the same
transition system distance are equally easy to make (con-
sider taking a door from the locked to unlocked state
versus taking a character from standing to crouching:
both are one-step transitions but the latter is much easier to
realize). Note also that our constraint violations are condi-
tions such as player death or going out of bounds, rather than
assuming any collision is a constraint violation—we are not
moving robots around a factory floor, but game characters
through a level.

Our work also forgoes an accurate cost-to-go metric (used
to locate the nearest node in the tree), finding other ways to
maintain the Voronoi bias that makes RRT effective. This is
achieved in part through extensions to the RRT algorithm
which are built for that purpose, and in part through analysis
of the hybrid system to find a tight approximation of the
reachable configuration space, preventing infeasible states
from being sampled.

Game design support

RRTs are commonly used for pathfinding in games (Al-
gfoor, Sunar, and Kolivand 2015). These approaches gen-
erally work on an abstraction of the concrete dynamics, e.g.,
by assuming a top-down 2D world where entities can move
freely in straight lines, ignoring dynamic objects in the en-
vironment. In general, however, dynamic objects may not
simply be obstacles to avoid, but also bridges or platforms
that must be collided with in order to reach a goal location.
This is a marked departure from traditional application areas
for RRT, and one which merits further study in the realm of
simulation and state space exploration.

RRTs have also been used to aid in level design and so-
lution verification as a substitute for time-consuming test-
ing by designers or playtesters. They are useful in these
cases because their bias towards exploring the state space
completely accounts for the wide range of possible states a
player may find themselves in.

Bauer et al. used RRTs to trace jump trajectory and land-
ing position of game agents in Treefrog Treasure (2012),
creating a visualization of reachable states and paths avail-
able to the player throughout the level. This implementation,
however, required advance knowledge of the parabolic mo-
tion of the character and the static world geometry. In con-
trast, the combination of HyPED’s modeling formalism and
RRT presented here allows for a wide range of both level
and entity dynamics.

Tremblay et al. used RRT in more dynamic environ-
ments (2014). This work experimented with various search

Figure 1: Flappy Bird.

algorithms, most notably the combination of RRT and lo-
cal goal-directed planners like A* and Monte Carlo Tree
Search. Some of the test environments had dynamic level
geometry, such as moving platforms, to add a degree of dif-
ficulty above that of Bauer’s work. Like the Treefrog Trea-
sure work, planning was performed on an abstraction of the
game character’s true physics.

As Tremblay et al. noted, their RRT algorithm only sam-
ples in R

2 (a designated player character’s x and y position)
and compares 2-D Euclidean distance, losing completeness
(or at least causing extremely slow convergence) for levels
with reactive elements. Many games have design elements
whose state depends on player input, like collapsing bridges
or moving platforms that stay inert until the player touches
them. These reactive elements are troublesome for search al-
gorithms as they exponentially increase the state space, pre-
venting successful search if not carefully considered in state
sampling.

Consider, for example, a sampled state on the other side of
a gate which depends upon a switch to change the locked
state of the gate. RRTs may try to expand nodes which, while
close by euclidean distance, cannot progress without first
backtracking to the switch; if the discrete state of the gate
is not taken into account in sampling or the distance metric
an RRT planner could easily become trapped. This expan-
sion is addressed in our work by sampling in the full state
space but also reducing the dimensionality of this space as
much as possible via static analysis.

HyPED

The main design goal of HyPED is to translate concepts
from hybrid control theory to the theory of action games
so that tools and techniques from the former can be applied
in the latter. There are substantial differences between clas-
sical hybrid automata and game character state machines,
some of which have been detailed above. Here, we present
a high-level account of HyPED’s syntax and semantics for a
game design audience. This explanation is self-contained,
but more complete documentation can be found at our
source code repository (Osborn and Lambrigger 2017).

Our immediate goal was to reduce repetition using hierar-
chical and parallel composition of behavioral modes. Fig. 1
illustrates hierarchical (but not parallel) modeling with a
simple Flappy Bird-like entity. Flappy has two mutually ex-
clusive top-level states: alive and dead. In the alive
state, the entity moves to the right according to the value
of its move speed parameter (we call this type of contin-
uous variable evolution a flow); this state is itself split into

89

Figure 2: Super Mario (abbreviated).

flapping and falling states which alternate when the
flap button is pressed or released respectively. Implicitly,
Flappy’s acceleration in y is gravity, but this is overrid-
den by the flapping state which fixes y velocity.

Flappy has one square-shaped collider positioned at
the entity’s origin (entities may in general have several col-
liders, which can be conditionally active or inactive) tagged
with the body type; when it touches something tagged
wall the entity transitions into the dead top-level state no
matter whether it’s falling or flapping. Metadata in
the HyPED game definition describe which tags are checked
for collision with which other tags, and whether collisions
should also reset the implicated velocity components to zero.

Flows defined in a state also apply in its descendants un-
less overridden (as in the dead state’s y′ = 0, which over-
rides the effects of gravity). Compared to classical hybrid
automata, HyPED automata are extended mainly by admit-
ting external theories like collision and button input.

For a more complex example, consider Mario (Fig. 2).
Mario has several concurrent modes, including his size,
whether he has temporary invulnerability after being hurt,
and his movement (separated by dashed lines). The flows
of a entity with multiple active parallel modes are the union
of those flows; conflicting assignments to a single variable
are illegal (in the case of Mario, only the movement mode
applies any flows). To keep this rule straightforward, HyPED
only allows concurrency at the top level of an entity.

The Size behavior group introduces two new concepts.
First, whenever the entity enters the Hurt.Yes state,
it becomes smaller; dying is the responsibility of a differ-
ent behavior group (not shown). Second, the self-transition
in the fire state produces a new MarioFire entity at
Mario’s current position. The Hurt group also introduces
a new type of edge condition: the timer, which becomes
true if the edge’s origin state (in this case, Hurt.Yes) has
been active for more than the given amount of time.

Finally, the movement group in Mario is much more
complicated than it was for Flappy. The main behaviors here
are ground movement and the two aerial modes which dif-
fer in gravity and air control. Note that these states do not
for the most part define flows directly, but instead define en-
velopes in the sense used by Swink (Swink 2009). These at-
tack/decay/sustain/release envelopes, inspired by audio pro-
cessing and control theory, are like miniature automata on
their own. They characterize (in this case) the left/right mir-
rored control over x velocity typical of platform game char-
acters with acceleration (attack phase) up to a maximum
speed (sustain phase) which quickly decreases to 0 when the
buttons are let go (release phase). A character like The Leg-
end of Zelda’s Link would be moved by a four-way envelope
activated by the x and y control axes and controlling Link’s
x and y velocity. Note that while Mario’s ground movement
has a deceleration when buttons are released, aerial horizon-
tal movement keeps the current velocity instead.

The last new feature in this diagram is the edge up-
date (e.g., y′ := min(y′, 100)) which instantaneously
changes a variable’s value during a transition. This is used
to set Mario’s initial jumping speed (on the transition into
jumping) and also to clip that speed when the jump button
is released to get Mario’s characteristic fine jumping control.

A HyPED game (or world) consists of a number of entity
definitions as described above along with an initial configu-
ration defining static level geometry (e.g., tilemaps, possibly
imported from the Video Game Level Corpus (Summerville
et al. 2016)) and the initial instances, if any, of each entity
definition. HyPED further divides up the world into distinct
spaces which are linked together in the style of Zelda rooms,
each with its own population of entities.

HyPED is very expressive; it can describe not only enti-
ties like those above but also completely different ones in-
cluding Link, moving platforms, doors, Treefrog Treasure’s
jumping frog, a top-down racecar, and even (in theory) three
dimensional entities and spaces, though this is not yet sup-
ported by our interactive player program. To support these
and other entities, HyPED also provides for references be-
tween entities (as in R-CHARON) and for discrete variables
which may only be updated during transitions. Discrete vari-
ables provide for quantities like ammunition or keys.

Static Analysis

Because we have deep knowledge of game entities’ discrete
and continuous dynamics, we can derive useful information
to simplify game entities or to improve performance. For
example, it is straightforward to combine the dimensions of
static level geometry with information about entities’ collid-
ers to determine what positions they might be able to inhabit.
We can also leverage the structure of entities to generate fast
cache-aware data representations or low-level code.

Consider a horizontally moving platform which smoothly
animates left and right between two fixed positions using
a left state and a right state. Some useful properties
are immediately obtained: we know from the flows of each
state that this platform’s y position will be constant and that
its x velocity will always be one of two fixed values. We
also can learn (by looking at the transition guards) that the

90

platform’s x position will always be within a fixed interval.
In the present work, we use this information to reduce the
dimensionality of configuration space, which helps RRT find
better solutions faster without losing completeness. Keeping
the sampled configuration space closer to the true reachable
space of the system is a good way to maintain Voronoi bias.

In the future we hope to extend this to approximate enti-
ties’ behaviors, e.g., by finding closed-form equations for
cycles through an automaton; this could be used to turn
Mario’s jump into a (piecewise) parabola suitable for model-
predictive control, reducing the number of discrete dimen-
sions of the system. We are especially excited at the prospect
of generalizing these techniques to help generate hierarchi-
cal plans, treating a game like Zelda as the combination of
a low-level moving-and-attacking game with a high-level
graph navigation game. Smoothly climbing up and down be-
tween different abstractions of a game entity is key to this
approach, as is finding concrete propositions which, if they
were to become true or false, would help achieve an inter-
mediate goal. HyPED models contain the information nec-
essary to perform these sorts of transformations.

Translation to Unity

Although we have an interactive player application, HyPED
is not a complete game engine—that is explicitly not a goal
of the system. HyPED is for prototyping and analyzing game
worlds and entities. We expect that HyPED entities and lev-
els will be exported or translated to other engines once their
design is sufficiently well-understood; here we outline that
approach for the Unity engine.

The static geometry currently used in HyPED is a sim-
ple tilemap for which a translation to Unity is obvious. We
focus on translating HyPED entities to Unity prefabs. An
entity combines several concurrent top-level behaviors with
some colliders from a fixed set, of which only some might
be active at a given time. These colliders correspond to e.g.,
Unity BoxColliders and have similar parameters. We
envision one MonoBehavior per HyPED entity type to
manage collider positioning relative to the entity and to ac-
tivate or deactivate these colliders as necessary.

Posit one additional MonoBehavior subclass per con-
current top-level behavior group; it should carry a bitfield or
a set of Boolean values describing which child states are cur-
rently active. In FixedUpdate, each active mode’s contin-
uous flows and envelopes are applied and transition guards
are checked; if any guard is satisfied, that transition is taken
(updating the active states) and instantaneous updates are
applied, skipping the rest of the guards. The behavior class
should also track which modes were entered and exited dur-
ing this update cycle. The low-level implementation of these
classes should closely mirror the Python version.

The Unity object obtained by assembling these behaviors
and colliders together should exactly realize the HyPED def-
inition. Game-specific aspects including graphical proper-
ties can be added on top of this base object.

RRT Improvements
A key argument for formal modeling languages is the ready
availability of algorithms and software tools for querying or

verifying properties of the model. Incremental search has
proved successful in analyzing dynamical systems, so we
wondered how well these techniques would work in this
somewhat more complex hybrid domain.

We explored three main improvements to rapidly-
exploring random trees for high-dimensional or highly-
constrained domains. Resolution-Complete RRT (RC-RRT)
back-propagates failure signals similarly to Monte Carlo
Tree Search in order to prune unsuccessful branches from
consideration (Cheng and LaValle 2002). In our tests, dy-
namic level geometry creates many situations which can trap
progress. With RC-RRT, branches leading to bad states are
less likely to be expanded, improving coverage.

Reachability-Guided RRT creates an approximate hull of
reachable points around the leaves to help determine if, for
any sampled state and nearest node, there is an input which
can control the node to the state (Shkolnik, Walter, and
Tedrake 2009). This is useful for complex constraints as it
prevents the selection of nodes that, while close to a sam-
pled state, may be blocked or trapped.

Environment-Guided RRT (EG-RRT) uses the back-
propagating failure of RC-RRT in tandem with the reach-
ability approximation of RG-RRT (Jaillet et al. 2011). This
improves search performance in situations where both al-
ternatives fail. Our test cases contain both complex hybrid
dynamics and non-static geometry, so we would expect EG-
RRT to perform the best here as well.

Refined Sampling

Because we know the system dynamics, we can constrain the
configuration space without losing completeness. Naively,
we might imagine that for each entity with 2D position, ve-
locity, and acceleration along with a discrete mode we would
require six continuous and one discrete dimension in config-
uration space. If we knew in advance that some entity was
(e.g.) a platform that only moved with constant positive or
negative velocity between two x coordinates with a fixed y
position, we could easily reduce this down to one continuous
dimension with narrow bounds (x) and one Boolean discrete
dimension. We calculate such reduced spaces automatically
by simple inspection of flows after constant propagation in
each discrete space. Our reduced space CSR is still an over-
approximation (no actually-valid states will be outside CSR),
so this simplification does not lose completeness.

Evaluation
For our testing, we crafted several high-dimensional plan-
ning problems with non-trivial solutions, both to test the
expressiveness of HyPED’s models, and to evaluate solu-
tion planning in the complex spaces afforded by hybrid au-
tomata representation. Each RRT-based planner (RRT, RC-
RRT, RG-RRT, EG-RRT) was given a budget of 20 seconds
to find solutions in the test levels, with the average time to
find a solution calculated and recorded in the following ta-
bles. We also tried variants of these algorithms which only
sampled in R

2, but these were strictly dominated by sam-
pling in the full configuration space.

Compared to Tremblay and Bauer’s results, our computa-
tion times are higher. We believe this is mainly because we

91

Figure 3: Tests 1 and 2.

work on real (and arbitrary) system dynamics of more com-
plex characters and environments. For similar reasons, we
were not able to successfully apply A* as a local planner.

Test 1

In Test 1 (see Fig. 3), we introduce reactive level elements
with a simple timing puzzle. Starting on the far left, the agent
must navigate across the platforms to the colored goal square
on the right. The agent itself may only move right, left, or
stay still. Platform 2 (in blue) on the middle-right contin-
ually moves between the middle of the gap and the other
island, while Platform 1 (in brown) remains stationary until
the agent touches it, after which time Platform 1 acts simi-
larly to Platform 2. To navigate to the goal, the agent must
time their boarding so that Platform 1 meets Platform 2 in
the middle of the gap, then board Platform 2 and ride it to
the goal. Humans can do this after a few tries, but heuristic
search performs very poorly since it must do nothing for a
while before making progress (it is a surprisingly challeng-
ing problem despite its visual simplicity).

In our tests, EG-RRT succeeds most consistently (see
Tab. 1); the failure propagation metric prunes any branches
which fall off the level or activate platform 1 at poorly-
chosen times. EG-RRT’s success is further increased by the
refined sampling described above.

Naive Bounds
#Nodes Goal Reached #Success

Time #Nodes
RRT 1087 4.87s 334 27

RC-RRT 1083 4.94s 308 22
RG-RRT 580 3.34s 109 20
EG-RRT 771 7.91s 315 32

Reduced Bounds
RRT 1048 3.31s 219 24

RC-RRT 1018 3.11s 219 24
RG-RRT 505 2.44s 69 13
EG-RRT 814 9.8s 365 46

Table 1: Results for Test 1; timeout at 20 seconds (50 runs)

Test 2

In Test 2 (see Fig. 3), the difficulty is increased further, as
the timing puzzle introduces both an obstacle and a means of
progress. In this test, the agent is a Mario-like agent which
can jump with complex dynamics. Once again, Platform 2

(in green) moves horizontally between the upper geometry
and a position about 200 pixels to the right. Platform 1 be-
haves as before, remaining at rest until touching the player.

In this test (see Tab. 2), EG-RRT and RG-RRT perform
poorly without reduced bounds due to the fact that if the
sampled state is not closer to the reachable hull than to some
node in the tree, they will choose a new sample state and be-
gin the process again, evidenced by the much smaller num-
ber of nodes explored compared to RRT and RC-RRT. Only
when the state space is reduced does EG-RRT once again
outperform the rest; it improves even more than the other
algorithms do. It is interesting to note that (at least for this
problem) the less-informed search algorithms can obtain re-
sults much faster when they are able to obtain results at all,
but their success rate is much lower.

Naive Bounds
#Nodes Goal Reached #Success

Time #Nodes
RRT 224 1.61s 23 21

RC-RRT 221 2.53s 32 24
RG-RRT 99 0.62s 4 8
EG-RRT 113 1.19s 7 13

Reduced Bounds
RRT 204 2.75s 45 40

RC-RRT 199 3.55s 45 32
RG-RRT 92 4.62s 25 28
EG-RRT 107 6.33s 38 43

Table 2: Results for Test 2; timeout at 20 seconds (50 runs)

Future Work

Bringing down constant factors and getting more RRT ex-
ploration steps for a given time budget is our immediate
next step. We are currently using a naive implementation
of RRT nearest-neighbor finding to make it easy to try out
variations on the algorithm; improving this is obvious and
should give a substantial performance boost (Atramentov
and LaValle 2002); alternately, we could adapt HyPED to
leverage a standardized planning library. Using a different
distance function is also worth exploring. Right now we use
squared distance, but this may not be a good choice for high-
dimensional data. Later, we would like to further refine the
configuration space by deeper static analysis and also to ex-
plore non-incremental-search approaches to the reachable-
regions problem (for example, bounded model-checking).

We also hope to incorporate more RRT variants including
RRT+ (Kim and Esposito 2005) and A*-guided RRT, and
to characterize automatically how well our RRT search trees
cover the configuration space. Wrapping these search algo-
rithms in useful interfaces for design support is also impor-
tant future work. Finally, we believe we could improve the
coverage of our technique by using random forests instead
of individual random trees to address differences in starting
position or game state.

92

References

Aaron, E.; Ivančić, F.; and Metaxas, D. 2002. Hybrid system
models of navigation strategies for games and animations.
In International Workshop on Hybrid Systems: Computation
and Control, 7–20. Springer.
Algfoor, Z. A.; Sunar, M. S.; and Kolivand, H. 2015. A
comprehensive study on pathfinding techniques for robotics
and video games. International Journal of Computer Games
Technology 2015:7.
Alur, R.; Courcoubetis, C.; Henzinger, T. A.; and Ho, P.-
H. 1993. Hybrid automata: An algorithmic approach to the
specification and verification of hybrid systems. In Hybrid
systems. Springer. 209–229.
Alur, R.; Grosu, R.; Lee, I.; and Sokolsky, O. 2001. Com-
positional refinement for hierarchical hybrid systems. In In-
ternational Workshop on Hybrid Systems: Computation and
Control, 33–48. Springer.
Atramentov, A., and LaValle, S. M. 2002. Efficient near-
est neighbor searching for motion planning. In Robotics
and Automation, 2002. Proceedings. ICRA’02. IEEE Inter-
national Conference on, volume 1, 632–637. IEEE.
Bauer, A. W., and Popović, Z. 2012. Rrt-based game level
analysis, visualization, and visual refinement. In Eighth
Artificial Intelligence and Interactive Digital Entertainment
Conference.
Branicky, M. S.; Curtiss, M. M.; Levine, J. A.; and Morgan,
S. B. 2003. Rrts for nonlinear, discrete, and hybrid planning
and control. In Decision and Control, 2003. Proceedings.
42nd IEEE Conference on, volume 1, 657–663. IEEE.
Cheng, P., and LaValle, S. M. 2002. Resolution complete
rapidly-exploring random trees. In Robotics and Automa-
tion, 2002. Proceedings. ICRA’02. IEEE International Con-
ference on, volume 1, 267–272. IEEE.
Fisher, J. 2012. How to make insane, procedural platformer
levels. Gamasutra.
Henzinger, T. A. 2000. The theory of hybrid automata. In
Verification of Digital and Hybrid Systems. Springer. 265–
292.
Isaksen, A.; Gopstein, D.; and Nealen, A. 2015. Exploring
game space using survival analysis. Foundations of Digital
Games.
Jaillet, L.; Hoffman, J.; Van den Berg, J.; Abbeel, P.; Porta,
J. M.; and Goldberg, K. 2011. Eg-rrt: Environment-guided
random trees for kinodynamic motion planning with un-
certainty and obstacles. In Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on, 2646–
2652. IEEE.
Kim, J., and Esposito, J. M. 2005. Adaptive sample bias
for rapidly-exploring random trees with applications to test
generation. In American Control Conference, 2005. Pro-
ceedings of the 2005, 1166–1172. IEEE.
Kratz, F.; Sokolsky, O.; Pappas, G. J.; and Lee, I. 2006. R-
charon, a modeling language for reconfigurable hybrid sys-
tems. In International Workshop on Hybrid Systems: Com-
putation and Control, 392–406. Springer.

LaValle, S. M. 1998. Rapidly-exploring random trees: A
new tool for path planning.
Mateas, M., and Wardrip-Fruin, N. 2009. Defining opera-
tional logics. Digital Games Research Association (DiGRA)
4.
Osborn, J. C., and Lambrigger, B. 2017. Hyped.
Shaker, M.; Shaker, N.; and Togelius, J. 2013. Ropossum:
An authoring tool for designing, optimizing and solving cut
the rope levels. In Proceedings of the Ninth Aaai Conference
on Artificial Intelligence and Interactive Digital Entertain-
ment. AAAI Press.
Shkolnik, A.; Walter, M.; and Tedrake, R. 2009.
Reachability-guided sampling for planning under differ-
ential constraints. In Robotics and Automation, 2009.
ICRA’09. IEEE International Conference on, 2859–2865.
IEEE.
Siu, K.; Butler, E.; and Zook, A. 2016. A programming
model for boss encounters in 2d action games. In Experi-
mental AI in Games Workshop.
Smith, A. M.; Butler, E.; and Popovic, Z. 2013. Quantify-
ing over play: Constraining undesirable solutions in puzzle
design. In FDG, 221–228.
Smith, A. M.; Nelson, M. J.; and Mateas, M. 2010. Ludo-
core: A logical game engine for modeling videogames. In
Proceedings of IEEE Conference on Computational Intelli-
gence and Games.
Summerville, A. J.; Snodgrass, S.; Mateas, M.; and On-
tanón, S. 2016. The vglc: The video game level corpus.
arXiv preprint arXiv:1606.07487.
Swink, S. 2009. Game feel. A Game Designers Guide to
Virtual Sensation. Burlington, MA 1.
Tremblay, J.; Borodovski, A.; and Verbrugge, C. 2014. I can
jump! exploring search algorithms for simulating platformer
players. In Tenth Artificial Intelligence and Interactive Dig-
ital Entertainment Conference.

93

