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Abstract

In digital games there is an emphasis on the idea of quest
completion; by completing a quest the character wins re-
sources from the giver of the quest, they also will gain a repu-
tation among the Non-Player Characters (NPCs) for its com-
pletion. However, this reputation currently propagates across
the game world in an unrealistic manner; many NPCs will
know of a completion of a quest many townships over with-
out a narrative rationale. In this paper, we examine a method
for allowing NPC interactions to spread reputation in a game
world from an initial witness point of a quest completion to all
other NPCs. This model is examined in a series of connected
graphs: size five models, small world graphs, and graphs de-
veloped from digital games. Tests show that propagation of
the information is highly dependent upon easily established
properties of interactions, such as the graph regularity, aver-
age degree, and diameter. Further, real game graphs demon-
strate that information generated in high population hubs can
be propagated faster than that generated in smaller quests
from outlying areas.

Introduction

Persistent memories of Non-Player Characters (NPCs) in
Role Playing Games (RPGs), primarily revolve about the
events in a game. Table top methods, with a storyteller or
game master (GM), have an idea of in character knowledge,
what is known to the character themselves, and out of char-
acter knowledge, what is known by the player on the me-
chanical side. Character knowledge is able to be retained
in terms of the relationships via the GM’s own mind and
notes. This ability to keep multiple character’s and group
knowledges about the interactions going on between NPC
and characters has sadly not made the transition to the digi-
tal realm in a seamless fashion.

Many games implement an event occurring, such as a
quest completion or killing of an important NPC, then with
immediate effect all NPCs know of its occurrence. While
this may happen with a narrative reasoning, such as in the
case of a massive world event, commonly such events are
very rare and even then the causal factor of the actions of
the player will not be easily seen. Take for example stealing
an item when undetected, the game may have other NPCs
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react to the theft without a narrative reasoning, or a mechan-
ical reasoning. In fact the game mechanics tell the player
that the action was made undetected.

Various games have attempted to produce some manner
of explanation for the ability of NPCs in order to see the
representational value of a player, such as a karmic balance
(2K Games 2007; Bethesda Softworks 2008). Though this is
rather heavy handed, as other characters can in a way read
your soul, which makes it hard for a player to role play a
good thief or an anti-hero caught up in the situation. Oth-
ers have factional affinity in which a player by making ac-
tions towards each faction, e.g. (Bethesda Softworks 2010).
This factional trope is perhaps a hold over from the table
top games such as Dungeons and Dragons in which there is
some form of parameterized morality on a spectrum between
good to evil, chaos to order, see (J.Tweet et al. 2012). Yet,
reputation and role play is far beyond this simplistic, and
very often players will find themselves in situations where
their perceived action is not the same as their nature. World
of Darkness, e.g. Vampire: The Masquerade (Achilli et al.
2011), represents this model of nature, how they are, and de-
meanor, how they wish to be perceived, via their archetype
models this disconnect more fluidly, giving the player re-
wards of bonus points to willpower based off acting their
nature, while demeanors should be role played, which the
GM is able to monitor.

The personal level of relationships has been examined in
a limited manner in such games as Fallout 4’s followers,
who each have specific likes and dislikes with a factional
system for all other NPCs beyond the limited set of follow-
ers with their own reputation system (Bethesda Softworks
2015). Further, player’s reputation only changes based on
actions made in their presence when the liked or offending
action is made or based on your alliances with one of the
faction in key narrative sections in the game.

Memory of NPC agents has been extensively examined in
the framework of decision making models. (Li, Balint, and
Allbeck 2013) examines the use of a parameterized model of
knowledge, which allows for memory and forgetting, in or-
der to allow for human like behaviours based on memories in
NPC agents. Mooney et al. (Mooney and Allbeck 2014) look
at NPC reputations of players based on a Bayesian model;
previous interactions with the player are monitored and ex-
pected future actions are predicted.
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Further, there is a level of work in the creation of narra-
tive using NPCs and reacting to memories. In Talk of the
Town(Ryan and Wardrip-Fruin 2016) dialogs are created
based off of inputs including the game state, these inputs
could include player reputation as part of a dialog genera-
tor. This team has also worked on allowing for characters to
be deceptive in their actions in a limited transfer of knowl-
edge(Ryan et al. 2015).

However, what has been lacking is how the communi-
cations can be made via interactions and the role of the
propagation of information on a large scale. Brown and Qu
(Brown and Qu 2015) examine this problem of NPCs allow-
ing for instant messaging about the game world in a variety
of contexts, and give rationales for using elements of cas-
cade method updates as a method of passing information.

This paper provides an early implementation of such a
cascade of updates and examines the flow of information
about a number of graphs. Three types are examined: a set
of test graphs of small size in order to act as a proof for
the method, a series of synthetic graphs with expectations in
their properties (small world graphs), and graphs extracted
from actual interactions made by NPCs in the digital games.
The selected digital games graphs being The Elder Scrolls 4:
Oblivion and Fallout 4 (Bethesda Softworks 2015). It is our
hypothesis, based on other implementations of cascades, that
the underlaying graph of connections of characters will have
dramatic effects upon the propagation of information, how-
ever, using basic knowledge of graph parameters, developers
will be allowed for a level of control of this propagation and
expected outcomes can be modeled.

Reputation on Networks

Reputation computation is well studied in many fields of
study including multi-agent systems, social networks, au-
tonomous systems to name a few. Reputation is used in de-
cision problems where one needs to make a decision with
insufficient information. In this section, we discuss how rep-
utation propagation is modeled on real network applications.

Real life multi-agent environments can be turned into
graphs with vertices as agents. Therefore, reputation propa-
gation on graphs concern various types of applications such
as vehicular networks (Hussain et al. 2016) and author net-
works (Lee et al. 2011). (Khairullina et al. 2015) studies how
different types of information has different patterns of prop-
agation behaviors on social networks. Authors shows that
depending on contents, such as advertisements and social
appeals, the spreadings of information differ. In this paper,
we also show that how reputation propagates differently in
different types of networks. In (Lee and Oh 2014), authors
study the convergence of reputation based on Bayesian game
theory. They proposed a reputation game where players are
either honest or dishonest. Then based on the behaviors of
players, they showed that playing honest is an evolutionary
stable strategy. In our work, we model interactions among
NPCs based on their preferences and test saturation of in-
formation on various graphs. In (Lee and Oh 2013), authors
introduced a model for reputation propagations in social net-
works. We also show how our reputation propagates in var-

ious networks according to the proposed reputation system
for NPCs.

Proposed Model

In this section, we formally introduce our reputation model
for NPCs. In many game environments, information propa-
gates instantly. For example, if a user kills the dragon, ev-
eryone in the game knows about the incident. Since the in-
stance knowledge propagation is neither realistic nor ideal,
we propose a realistic information transfer model based on
reputation of NPCs.

Model Requirements

In order to improve treatment of interactions among NPCs, a
set of requirements is defined for realistic information trans-
fer system as follows:

• Beliefs NPCs have beliefs about the state of the world
which may be correct or incorrect compared to the true
state of the world.

• Communications NPCs may communicate their beliefs
to other NPCs.

• Updates NPCs may update their beliefs based on new ob-
servations of the world or information that was obtained
via communications.

• Spacial and Temporal NPCs are located in a game space
and communications must pass through with respect to the
space/time and beliefs will change via updates over time.

• Reliability NPCs may lie, misremember, and forget.

• Persistence NPCs are persistent objects in a game world
and their memories are retained beyond any number of
interactions.

• Relationships NPCs engage in relationships to various
factions and this places a network on their communica-
tions.

• Trust NPCs trust or mistrust each other in the relation-
ships and will only change their beliefs via updates.

• Goals NPCs have goals, ambitions, dreams, desires, and
will work towards them, i.e. might lie or not make com-
munications to serve their or a factions goals.

Considering previously listed elements, we build our knowl-
edge transfer system based on communications among
NPCs which are influenced by reputation of NPCs.

Basic concepts

Now we introduce preliminary concepts which are used in
our model to update reputation values.

• Event An event occurs when a player makes some actions
in game. Events are usually tied to quests and this model
can extend traditional RPG quest games easily.

• Category Events will have associated categories which
briefly describe the parts of the game the events are related
to. For example, when we introduce an event in traditional
RPGs, an event for helping a poor woman will have the
following associated categories: old, woman, help, etc.
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• Weight We also introduce a special parameter to each
event, its weight. The greater the weight of an event, the
more it affects the game world. In other worlds, bigger
weights can imply bigger payoffs or influence.

• Reputation A players reputation can be expressed as a
number for each NPC independently, i.e. each NPC has its
own perception for the player. A NPC computes players’
reputation upon every event. A NPC evaluates the events
according to its preferences about the world. Weighted ag-
gregation of all evaluated events for a player is expressed
as the NPC’s reputation to the player.

Non-Player Characters

Here, we describe NPCs to support our model. Every NPC
contains the following.

• like category: list of topics that the NPC likes

• hate category: list of topics that the NPC do not like

• memory: current knowledge about events of the NPC.
Memory degrades with time.

• unforgettable: the events in this category will never be for-
gotten. If a NPC becomes knowledgeable about an unfor-
gettable event, they will remember forever.

Obtaining Knowledge

The process of obtaining knowledge about events for NPCs
is simply an addition of the new event to its memory. Associ-
ated time and location of the event is also remembered when
the knowledge is obtained. The time and location are impor-
tant information to compute the value function of NPCs.

NPCs get knowledge about events in two ways: (1) Being
a witness of an event (Direct experience) and (2) Hearing
about an event from other NPCs (Indirect experience). The
first case is simple. NPCs add the event to his memory set.
In the next section, we discuss the second case (indirect ex-
perience) in detail.

Indirect Interactions: Obtaining Knowledge
Through Communications

When two NPCs meet, they share knowledge about events.
We assume that the knowledge transfer occurs in one direc-
tion at a time. This process can be described with the follow-
ing steps.

1. For every event in the memory, a NPC calculates the value
of the event according to the value function.

2. An event with the top value is picked for the current com-
munication.

3. The picked event is then shared among all NPCs who are
participating to the current communication. If some of the
NPCs already know about the event, they refresh the time
of the event as if they have just learned. If the NPCs did
not know about the event, they add it to their memory with
associated information.

Value Function and Spreading

All events are spread with respect to the value function.
Value function expresses the importance of an event to the
NPC. We believe that value function can model realistic in-
formation spreading since humans tend to discuss or com-
municate about topics which have more importance to them
in any given situations. We also introduce a time decaying
function as shown in Equation (1) which captures the decay
of importance of the event as time elapses.

fdecay(eu, T ) = 1− (t− teu)

T
(1)

where eu ∈ Eventu is an event in the memory of a NPC
u ∈ N , t is the current time, te is the time of e and T is a
constant which defines the memory. After T time is passed
the user forgets about the event.

In order to compute the value function, we need to count
categories of the event that the NPC like or hate.

likes(eu, u) = |C(lu) ∩ C(eu)| (2)

hates(eu, u) = |C(hu) ∩ C(eu)| (3)

where eu ∈ Event, u ∈ N , C(lu) is the set of categories
that u likes, C(hu) is the set of categories that u hates, and
C(eu) is the set of categories that are associated with eu.

Finally we define the value function as following.

fvalue(eu, u) =

fdecay(eu, T ) ∗ [(likes(eu, u)− hates(eu, u)) ∗ weu ]
(4)

where u ∈ Eventu, u ∈ N , weu is the weight of eu given
by the world and we use T = 1000 in this paper.

Reputation Updates

NPCs(u ∈ N ) have reputation values about players(p ∈
P ), reputationu(p). Reputation values are updated when
u learns about new events (e ∈ Events). Reputation is a
normalized sum of values of the events which a NPC has in
memory as defined in Equation (5).

The value function is applied to all the events that each
NPC has and then reputation is updated with the normalized
sum of the value functions.

reputationu(p) = normalize

( ∑
eu∈Eventsu

fvalue(eu, u)

)

(5)

Different normalization methods can be used depending
on the game environments. For example, The Elder Scrolls
4: Oblivion and Fallout 4 use normalized reputation scale of
[0,100]. The reputation levels from NPCs towards players
are useful in many game environments to adjust reactions of
NPCs to the players.
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Trust among NPCs

In the current proposed model there is no trust levels among
NPCs (there is reputation from NPCs to players). Therefore
when NPCs communicate they are assumed to trust each
other and the knowledge is transfered from one to another.
To make interactions more realistic we introduce a transmis-
sion probability of knowledge between NPCs which deter-
mines the probability that the knowledge will be transfered.
In other words, the more two NPCs trust each other the
higher the chances are to successfully transfer the knowl-
edge.

We define the level of trust among NPCs based on the
common likes and hates categories.

trust(a, b) = m ∗
( |C(la) ∩ C(lb)|+ |C(ha) ∩ C(hb)|
|C(la) ∪ C(ha)|+ |C(lb) ∪ C(hb)| + ε

)
(6)

where a, b ∈ N , ε is a minimum trust level (that may
be imposed by the system) and m is mood parameter.
trust(a, b) computes the probability of knowledge transfer
between two NPCs, a and b. We further introduce a mood
parameter which affects probability of information transfer.
Mood is a value between 0 and 1 and the greater the mood
of the NPC, the more likely the NPC shares knowledge with
other NPCs.

An Example

This section presents a use case of the proposed model. Let
us introduce Alice who is a NPC. Alice likes cats, dogs, an-
imals and her job. Alice hates stupidity and spiders because
she has arachnophobia. Alice is represented as follows by
our model.

Alice :{l = {cats, dogs, animals, job},
h = {stupidity, spiders, arachnophobia},
memory = {},
unforgettable = {}|Alice ∈ N}

There is also another NPC, Bob. He likes spiders and tries
to help them if possible.

Bob :{l = {spiders, help},
h = {},
memory = {},
unforgettable = {}|Bob ∈ N}

Assume that a player finished a quest with id = 1 which
is related to spiders. For example, the quest is to save spiders
in a cave from extinction. Then an event is generated.

e : (id = 1, categories = {spiders, saving, help}, weight = 25)

Imagine that Alice have observed the player (p) completing
the quest. Then she updates her memory with the new event
and adjusts the reputation of the player.

fvalue(eid=1, Alice) = 1× (0− 1)× 25 = −25

reputationAlice(p) = fvalue(eid=1, Alice) = −25

Table 1: Graph Properties for Five Nodes

Graph Name Short Diameter k-regularity
Complete Graph K5 1 4

Linear Graph L5 4 1
Cycle Graph C5 4 2
Star Graph S5 2 1

The reputation of the player for Alice is the same as the
value of this event since this is the first event in her mem-
ory.

Now Alice wants to share her experience with Bob. We
assume Alice has the maximum mood, i.e. 1.0.

|C(lAlice) ∩ C(lBob)| = 0, |C(hAlice) ∩ C(hBob)| = 0,

|C(lAlice) ∪ C(hAlice)| = 7, |C(lBob) ∪ C(hBob)| = 2,

trust(Alice,Bob) = 1× ((0 + 0)/(2 + 7) + 0.5) = 0.5

Thus, the information is shared with Bob with the proba-
bility of 0.5. Assume that the communication was successful
and Bob has learned about the event from Alice. Now Bob
adjusts reputation of the player.

fvalue(eid=1, Bob) = 1× (2− 0)× 25 = 50

reputationBob(p) = fvalue(eid=1, Bob) = 50

In the example we assumed that no time has passed between
the actions and thus fdecay is 1.

Experimental Settings

A Simple Graph G(V,E) is a non-empty set V of vertexes
or nodes and a set E of unordered pairs of elements of V ,
called edges. Two distinct nodes, v1 and v2, are said to be
neighbours if (v1, v2) ∈ E. The number of edges in E which
contain a vertex is called the degree of the vertex. A graph is
connected if there is a pathway via the edges from any vertex
to any other vertex. If all the vertices in a graph have the
same degree, then the graph is said to be regular. A weaker
evaluation of regularity, a graph is said to be k − regular
for any k if there exists a degree of at least k on very node.
The diameter of a graph is the largest number of edges in
any shortest path between any two of the vertices.

Graphs of Size Five

In order to act as a verification of the method meeting with
developer expectations we examine a series of graphs of five
nodes. They are the fully connected graph (K5), a linear
graph (L5), a cyclic graph (C5), and a star graph (S5). The
properties of their connections are in Table 1. In order to
further test the propagation based on connection the starting
node is changed in the Linear and Star graphs. In the linear
graph we examine propagations happening on three start-
ing points, the first, second, and third node in the line. For
the star graph we examine one of the extremal nodes, and
the centre node. All other nodes in these graphs should have
similar properties due to isomorphisms. Though it should be
the case that information starting from extremal nodes will
take longer to propagate.
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Small World Graphs

We also test our knowledge transfer model on random
graphs. We generated three different sized small world
graphs using Watts-Strogatz model.

The first graph (small world graph 1 as shown in Figure
1) contains 50 nodes and has an average degree of 4. Ver-
tex 1 is chosen as a starting node for propagation. The di-
ameter of small world graph 1 is 6 and so is the required
number of steps to fully propagate, i.e. every node becomes
aware of the knowledge which was started from the vertex
1 (when transmission probability is 1), as shown in Table 3.
As the transmission probability decreases, we observe that
the number of steps needed to transfer information to every
node increases.

Small world graph 2 has 100 nodes and an average degree
of 5. We started propagating information from node 8 and
the required number of steps for the full propagation was
5.0 on average.

Small world graph 3 has 150 nodes with average degree of
7. It is very dense graph and its diameter is 4. We start infor-
mation transmission from vertex number 8. In Table 3, we
show summarized results with different transmission proba-
bilities. As expected, the denser the graph is the shorter the
required steps are to fully transfer knowledge on the graph.

Graphs from Games

We created two graphs from real games. These games are
from Bethesda Softworks - The Elder Scrolls 4: Oblivion
and Fallout 4. We created the same set of NPCs again, now
connecting them into a big game world. You can see that
graphs in Figures 4 and 5.

Experimental Setups

In the following sections, we show our experimental results
on various types of graphs. In order to produce non-biased
and comparable results on different graphs, we create a set of
NPCs (according to the size of the graphs) who like and hate
exactly the same categories. Then the probability of transfer-
ring (trust between two NPCs as defined in Equation (6))
the information is 1. Therefore we can adjust mood parame-
ter, m, to assign exact transmission probabilities for the ex-
periments. Lastly, we connect NPCs to form graphs and run
each simulation at least thirty times to observe the spread of
information throughout the graphs.

Results

Graphs of Size Five

The graphs of size five gives us a good estimate of local in-
teractions which will be seen in larger graphs. As expected
when the transmission probability is unity, a fully reliable
transfer of information on the graph, the number of interac-
tions in order to saturate the knowledge is related to trans-
fer is bounded by the diameter of the graph. Though in C5
or middle position of L5 and S5 the propagation is made
much faster. Further, starting information transfer from the
extremal nodes in a graph extends the transmission time as
seen in L5 and S5.

Figure 1: Small world graph 1

Figure 2: Small world graph 2

Figure 3: Small world graph 3

As the transmission channel becomes less reliable the
time till a full transfer to everyone in the graph increases. K5
shows little effect of this change, it is also the most regular
graph, meaning there are more opportunities for a successful
transmission action.

This gives proof of the expectation that the diameter and
regularity and node degree of graphs is able to determine
the maximum length of the transmission time and the affect
of reducing transmission probabilities before information is
saturated in the graph. A developer can therefore use these
graph parameters as controls.
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Figure 4: Graph from The Elder Scrolls 4: Oblivion

Abstract Small World Graphs

We created the same set of NPCs. The only change is that
we connected NPCs according to the graph generated.

The event started to propagate from different nodes. You
can see the results of the runs in Table 3. In these cases there
is a statistically significant increase, using a t-test between
means, in all three graphs between all transmission prob-
abilities. The denser the graph the faster the saturation, as
seen with Graph 3 as apposed to Graph 1.

Graphs from Games

The results for the graphs from Oblivion and Fallout 4 are in
Table 4. For both the stating location of the information has
a significant effect on the propagation rates. However, As
transmission probabilities decrease however the difference
begins to decline, for example there is no statistically de-
tectable difference at the transmission probability of .25 be-
tween information spread from Skingrad than from Kvatch,
see Figure 4 for the city locations in the graph of NPC con-
nections. This could be due to the ability of the smaller
cities to press their information into the core, if the trader is

Table 2: Mean and standard deviation of the number of itera-
tions of communications until the information is fully prop-
agated across the graphs of size five with N=1000 runs.

Graph Transmission Probability
p 1 0.75 0.5 0.25

K5 1.0 1.716 (0.50) 2.264 (0.64) 4.016 (1.55)
L5(Vertex 1) 4.0 5.308 (1.28) 8.068 (2.85) 15.845 (6.78)
L5(Vertex 2) 3.0 4.064 (1.19) 6.046 (2.42) 12.191 (5.77)
L5(Vertex 3) 2.0 3.08 (1.11) 5.07 (2.23) 10.638 (5.34)

C5 2.0 2.887 (0.78) 4.254 (1.44) 8.099 (3.34)
S5(edge) 2.0 3.08 (1.04) 5.155 (2.14) 10.752 (5.31)

S5(centre) 1.0 2.011 (0.92) 3.456 (1.67) 7.87 (4.52)

Figure 5: Graph from Fallout 4

not making the transmission between the smaller cities (Sk-
ingrad and Kvatch) to the central hub of Imperial City, then
this causes a delay. Note that information for example that
begins in Imperial City with even traders loosing half of the
messages, is still able to be propagated across the network
as quickly as information started in these small towns with
perfect transmission.

This transmission property continues in Fallout 4, see Fig-
ure 5 for the city defined graph, where information starting
in Arcadia takes significantly longer than that started in Di-
amond City, the largest city in the game. In terms of game
narrative, the major cities would become information hubs
as much as they are trading and quest central hubs. Players
would be rewarded in the monitoring of their reputation in
the central cities as a method of seeing how they are per-
ceived throughout the game world.

Conclusions

Though these examination on some graphs with known
properties of size five, it was shown that this cascade method
of reputation can be controlled via the construction of the
graph. Graphs with low k-regularity show messages passed
slower than those with high values. This provides a con-
trol for the designer and developer on how information is

Table 3: Mean and standard deviation of the number of itera-
tions of communications until the information is fully prop-
agated across the small world graphs with N=30 runs.

Graph Transmission Probability
p 1 0.75 0.5 0.25

Small world 1 6.0 7.3 (0.702) 11.1 (1.999) 22.3 (6.36)
Small world 2 5.0 6.733 (0.944) 9.9 (2.04) 17.2 (5.51)
Small world 3 4.0 4.5 (0.57) 6.43 (1.278) 12.666 (4.197)
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Table 4: Mean and standard deviation of the number of itera-
tions of communications until the information is fully propa-
gated across the graph for the graphs developed from digital
games with N=30 runs.

Graph (City:Initial Node) Transmission Probability
p = 1 0.75 0.5 0.25

Oblivion (Skingrad:27) 9 10.1 (0.89) 13.0 (1.89) 19.867 (3.12)
Oblivion (Imperial city:116) 5 6.367 (0.56) 9.3 (1.622) 16.6 (2.80)

Oblivion (Kvatch:4) 11 12.8 (0.97) 15.167 (1.60) 21.633 (3.46)
Fallout 4 (Acadia:12) 10 12.667 (1.06) 15.567 (2.596) 29.07 (5.57)

Fallout 4 (Diamond city:26) 7 9.63 (0.89) 13.13 (1.87) 22.97 (2.97)

passes within the game space. Graphs developed from cur-
rent games demonstrate a larger levels of connection in-
side of cities and villages, with few connections between
these nodes mostly via traveling traders.The datasets for the
graphs, including those for the real games, are made publicly
available at: <https://github.com/nikitakraev/innothesis>.

In our current study we did not examine the trust model,
in future work we aim to examine the role of trust within
the graph in order to determine the effect. Our hypothesis is
that trust models will slow down propagations and if based
on factional cities can even block information from being
passed into entire towns. The Key aspects being the linkages
between traders.

The model tests have not demonstrated the decay func-
tionality to represent the interactions as agent based events -
and our analysis is not taking to account the movement in the
game space of the agents before a transaction is made. This
is particularly important given that the game has a physi-
cal representation of each NPC agent moving about in the
space. Traders do not teleport between cities - they move in
the game world between cells of the game world over time
in predefined trading routes. Meaning that while our analy-
sis may show that there is a connection between Arcdia and
Diamond city, it will not be as heavily utilized. This relates
back to the special/temporal issues of our idealized model.
This could be expanded upon by placing our NPC model
into the game space and observing the interactions in the
world based on time, though this analysis will allow for de-
velopers to examine how the graphs chosen effect transfers
of information on connections of one time step between all
actors.
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