
Evaluation of a Template-Based Puzzle Generator
for an Educational Programming Game

Yihuan Dong, Tiffany Barnes
North Carolina State University
Raleigh, North Carolina 27606

Abstract

Although there has been much work on procedural content
generation for other game genres, very few researchers have
tackled automated content generation for educational games.
In this paper, we present a template-based, automatic puz-
zle generator for an educational puzzle programming game
called BOTS. Two experts created their own new puzzles and
evaluated generator-generated puzzles for meeting the educa-
tional goals, the structural and visual novelty. We show that
our generator can generate puzzles with expert-designed edu-
cational goals while saving experts more than 80% of cre-
ation time, and these puzzles exhibit structural and visual
novelty compared to expert-created puzzles. The contribution
of this work is defined and implemented the first template-
based automatic puzzle generator that saves expert time while
incorporating expert-designed educational goals and enhanc-
ing puzzle creativity.

Introduction

Game-based learning has been shown to be nearly as ef-
fective as one-on-one human tutoring (Chaffin et al. 2009;
Eagle and Barnes 2009). A lot of educational games (Eagle
and Barnes 2008; Smith et al. 2012; Hicks 2013) choose to
use puzzles as educational content because, similar to doing
homework assignments, solving puzzles is a natural way for
players to learn and repeatedly practice an educational goal.
Most educational puzzle games rely on expert-created puz-
zles. Experts usually take care to create a linear sequence of
progressively more difficult puzzles to allow for learning.

Despite the intellectual benefit of having experts manually
create puzzles, it has several problems. Firstly, creating high-
quality game content often has a low production rate and re-
quires a great deal of developer and/or educator time. Mur-
ray (Murray 2003) estimated that it takes approximately 300
hours to create a single hour of educational content for an
intelligent tutoring system, without considering the time de-
voted to game design and player immersion that would be re-
quired to make an effective educational game. Secondly, the
low production rate leads to the challenge for experts to cre-
ate enough puzzles to provide replayable experience, which
is a key component of a successful educational game (Pren-
sky and Prensky 2007). There is often no way to replay the

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

same game to review or practice the skills learned, without
playing the exact same puzzles. Thirdly, designing puzzles
for educational games is tedious and requires considerable
effort to make a set of distinct puzzles with the same educa-
tional goal for players to practice, even for expert designers.
The puzzle designer has to consider both including educa-
tional goals and satisfying the structural constraints of good
puzzles, and this takes considerable expert time. Lastly, hu-
man imagination is limited (Togelius et al. 2011), making
it hard for experts to create a variety of interesting-looking
puzzles that meet the target educational goals.

To make the puzzle creation process for educational
games more efficient, we propose a template-based puzzle
generator. We define a template-based puzzle generator as
an automatic generator that reads in an user-written tem-
plate encoded with goal-oriented requirements and then gen-
erates different puzzles that meet the requirements defined
by the template. Using template provides experts a control-
lable and consistent way to design educational goals. The
generator frees experts from worrying about the puzzle’s
non-educational, structural constraints while helping gener-
ate new, novel structures for puzzles, which allows novice
players to practice the same concept repeatedly without hav-
ing to replay the same puzzle.

This work is a first step towards using a template-based
method in content generation for educational games. We im-
plemented a template-based puzzle generator (referred to as
puzzle generator or generator later) for an educational game
called BOTS (Hicks et al. 2015). The puzzle generator al-
lows designers to write a structural template encoded with
specific educational goals and generates different puzzles for
BOTS that satisfy the template. To test the benefit of the gen-
erator, we investigate three research questions:
RQ1-Time: Can the generator save expert time?
RQ2-Learning: Can the generator preserve learning goals?
RQ3-Novelty: Can the generator help experts enhance puz-
zle creativity?

Related Work

There have been a lot of studies on generating game con-
tent for entertainment games (Khalifa and Fayek 2015;
Togelius et al. 2011; Hendrikx et al. 2013). Smith (Smith,
Whitehead, and Mateas 2010) developed a mixed-initiative
design tool named Tanagra for 2D platformer games like

Proceedings, The Thirteenth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE-17)

172

Super Mario Bros. The tool allows level designers to place
constraints by manipulating exact geometry placement on
a continuously running level generator that automatically
fills the rest of the level while guaranteeing playability.
Antonova (Antonova and others 2015) applied Answer Set
Programming (ASP) to develop Portal game levels that sat-
isfy physics constraints. The generator can only be used as
a partial offline level creation tool since the generated puz-
zles need to be verified by a human designer. Mourato et
al. (Mourato, dos Santos, and Birra 2011) investigated in
using Genetic Algorithms for generating levels for a plat-
former game called Prince of Persia in the attempt to achieve
higher expressivity and less linearity than rhythm-based ap-
proaches. Dormans (Dormans 2010) used generative gram-
mar and shape grammar to generate mission and space for
adventure games.

Few studies focused on content generation for educational
games. Smith et al. (Smith et al. 2012) compared 6 imple-
mentations of a level generator for an online educational
game called Refraction. They demonstrated that hard con-
straints are easy to incorporate into suitably designed gen-
erative processes while yielding high-quality puzzles with
good expressive power. In their later work (Smith, Butler,
and Popovic 2013), they found that the distractor pieces
in the generated puzzles may introduce undesirable solu-
tions that do not demonstrate the target concept. They ad-
dressed this problem by making two design-oriented exten-
sions to answer set programming and offered a general way
to search for all possible solutions to high-complexity prob-
lems. Hicks (Hicks 2013) investigated generating puzzles
for an educational game called BOTS using player gener-
ated content. which can produce a variety of different puz-
zles. The limitation with this approach is that the majority
of BOTS players are novices, which makes it hard to ensure
the educational quality of the puzzles they create. Also, it is
hard even for experts to create puzzles with the build-in puz-
zle editors, as the expert needs to consider how to achieve
educational goals while satisfying structural constraints of
valid puzzles.

BOTS

BOTS1 is an educational puzzle game designed to introduce
fundamental programming concepts to players. It teaches
players handle repetitive patterns using loops and functions.

Figure 1 shows an example of BOTS game interface. On
the top right of the interface is the command panel. Players
can drag and drop commands into the program panel on the
left to create a program that controls a robot. The display
panel on the bottom right shows the physical appearance of
the puzzle to be solved. After creating a program, the player
can click the “play” button on the top left of the interface
to have the robot execute the program. The execution stops
with a warning message if an error occurs or with a congrat-
ulation message if the puzzle is solved.

A puzzle in BOTS consists of a robot that executes
player’s program, gray blocks where the robot can travel on,

1http://bots.game2learn.com/

Figure 1: A screenshot of the BOTS game interface.

and a number of yellow circle switches that serve as desti-
nations. Many puzzles also include blue boxes that the robot
can pick up, carry, and put down. To solve a puzzle, a player
needs to construct a program that guides the robot to press
all the switches at the same time, either by placing a box on
them or by standing on top of them.

The robot is capable of eight basic actions: move “for-
ward” and “backward” one block, “turn left” and “ turn
right”, “climb up” and “climb down” one block, “pick up”
and “put down” a box in front of the robot. These eight ba-
sic action commands suffice to solve any valid puzzles in
BOTS. In addition, there are two control flow operations for
repeating blocks of commands: the “repeat” command and
the named “function” command. The “repeat” command, as
shown in Figure 1, iterates through the actions it contains a
number of times set by players. BOTS provides players with
six empty functions with names from A to F. Players can
edit the content of these functions and make function calls
just like using the basic action commands.

The objective of the game is for players to solve the puz-
zle using a solution that has the least number of commands,
which is referred to as the optimal solution. The optimal so-
lution often contains the concept that the puzzle designer
wants the players to practice, primarily the use of “repeat”
and “function” commands. The game uses a point system to
encourage players to look for opportunities in the puzzles
to optimize their solutions with loops and functions in or-
der to have a minimal number of commands — the fewer
commands used, the higher the score.

Generator Design

Figure 2 provides an overview of the structure of the
template-based puzzle generator. The generator has four
components: a template Parser, a solution Generator, a con-
straint Checker, and a program file formatter. A while loop
and an array that stores generated puzzles are introduced into
the generator to control the number of puzzles to generate
and ensure uniqueness of generated puzzles.

To generate puzzles, an expert first determines the educa-
tional goals, and considers what solution program structures
achieve those goals. Once the educational goals are set, the
expert encodes the structure of the solution program into a

173

Figure 2: The structure of the template-based puzzle gener-
ator

template file as the input of the template-based puzzle gener-
ator. Upon receiving the template, the template parser checks
the template’s validity, creates a template object, and passes
this object to the solution generator. The solution generator
generates valid solution programs that meets the template
structure, and then passed the solution programs to the con-
straint checker to make sure all of the constraints for good
puzzles are satisfied. If any constraint is violated, the Con-
straint Checker will abandon the solution and ask the solu-
tion generator to generate a new one. Otherwise, the solution
program is sent to the puzzle formatter where it is converted
to a puzzle file for the BOTS game. The generator stops if it
cannot generate a puzzle after a certain number of attempts
and suggests that the expert should adjust the template. More
detailed design decisions for each component are explained
in the following subsections.

Template Parser

The template parser determines if the template file is valid,
parses the template file into a template object and passes the
template object to the Solution Generator.

The template is a file that encodes the expert-desired ed-
ucational goals and requirements. Experts can use two types
of statements to compose a template easily: action state-
ments and control statements. The action statements are the
names of the eight basic action in BOTS. The control state-
ments, including function statement, repeat statement and
wildcard statement, are for experts to design control struc-
tures and missing pieces in the template. The function state-
ment defines a function with a specified function name and
function content. Once defined, a function can be called
without rewriting its content. The repeat statement defines
a loop structure with the number of times to repeat and the
repeat content. The wildcard statement is a placeholder for a
sequence of random basic action commands for the Solution
Generator to generate.

Figure 3 shows an example of finished template file. This
template first defines a function named “A” that has the robot
do 4 expert-specified actions. Then the template defines a
repeat statement that iterates 4 times doing a sequence of 5
unspecified actions. Finally, it calls function “A” again.

Figure 3: An example of a template file

Solution Generator

The solution generator takes in a template object, generates
content for all the wildcard statements to produce a valid
solution program.

The generation of wildcard statement content uses a check
and simulate fashion. The solution generator uses a 3D ar-
ray of boolean values to represent the presence of game el-
ements inside each cubic space in the BOTS game environ-
ment. We call this 3D array the world and each cubic space
in the world a cube. When generating wildcard contents, the
solution generator first simulates each statement in the tem-
plate in the world (recursively if the statement is a control
statement). Upon seeing a wildcard statement, it follows the
following procedure to generate the wildcard content:

1. Get all valid next-step actions given the world state.

2. Randomly pick a valid next-step action, simulate the ac-
tion in the world, and append it to the wildcard content.

3. The generator repeats step 1 until the number of actions
reaches the specified length.

If an action could not be performed due to violating puz-
zle structural constraints or if no valid next-step action is
available during the generation process, the Solution Gen-
erator will abandon the whole program and start a new at-
tempt. The successfully generated solution program is then
sent to the Constraint Checker for quality assurance.

Constraint Checker

The constraint checker is responsible for enforcing the qual-
ity constraints on the generated solution programs.

A good puzzle in BOTS needs to meet several require-
ments. First, the puzzle needs to be solvable, with at least
one straightforward solution consisting of only the 8 basic
actions. Second, the puzzle should not have game elements
that aren’t needed to solve the puzzle, as those are consid-
ered distractions to the students in an educational setting.
Thirdly, the solution for an expert-created puzzle needs to
be optimizable with loops and/or functions. Here, optimiz-
able means that the solution program can be made short with
the use of loop and/or function statements. Lastly, expert-
created puzzles should also have affordances for students —
the educational goal should be easily visible in the puzzle
layout.

We separate the constraint checker from the solution gen-
erator for two reasons. First, the solution generator does not

174

guarantee the overall quality and may include undesirable
action sequence like meaningless cancellation of actions in
generated solution program (e.g. “forward” action immedi-
ately followed by “backward” action). Secondly, unlike the
action constraints in the solution generator, which can be ob-
tained directly from BOTS, the constraints in the constraint
checker are customized with the expert knowledge of game
content. Separating the solution generator and the constraint
checker makes a better modular design.

The constraint checker uses a set of expert predefined
hard constraints that can be applied to all generated puzzles.
We classified these constraints into three categories: pro-
gram constraints, world constraints and educational con-
straints. Each category contains 2 constraints. The program
constraints look for undesirable action sequences in the solu-
tion program, such as immediate cancellation of actions. The
world constraints look for undesirable structures or states
in simulated worlds, for example if the generated puzzle
initializes with all switches pressed. The educational con-
straints ensure the educational quality of the generated puz-
zles, for example no unintentional loops and functions in-
troduced into the generated solution program and no unused
game elements that distract the player. Note that this is not
a sufficient set of constraints that guarantees the generation
of good puzzles. However, these constraints already yield a
high success rate, which will be discussed later.

If any constraint is not satisfied, the constraint checker
will abandon the program and ask the solution generator to
generate another solution program. Otherwise, it sends the
solution program to the puzzle file formatter.

Puzzle File Formatter

The puzzle file formatter is responsible for converting solu-
tion programs into usable puzzle files for BOTS. The for-
matting process goes through three steps. First, the puzzle
file formatter executes the solution program to get a final
state of the world. Then, it normalizes the world to the min-
imum cubic space needed for the generated puzzle. Finally,
it extracts game elements from the world and encodes them
into a puzzle file that meets the BOTS requirements.

Method

This section describes the two experiments we did to answer
our three research questions.

Experiment 1: Puzzle Creation

The first experiment investigates how much time the puz-
zle generator can save for experts when generating puzzles,
regardless of the educational requirements (RQ1-Time).

First, two experts created puzzles following given re-
quirements using the program-based puzzle editor, and they
recorded time used to create each puzzle. One of the ex-
perts is the first author and the other expert is experienced
with creating educational puzzles for BOTS. They each cre-
ated 12 puzzles with the following constraints: three of the
puzzles needed to have short loops of 6 actions that iterate 4
times; three needed to have long loops of 12 actions that iter-
ate 4 times; three needed to have short functions of 6 actions

called 3 times; and three needed to have long functions of 12
actions called 3 times each. One expert created puzzles for
loops first and the other expert created puzzles for functions
first. All created puzzles needed to have box interactions be-
cause box interaction is an important component that high-
lights the puzzle goals and increases both the difficulty to
create and to solve those puzzles. Then, the two experts cre-
ated puzzles following the same requirements and order us-
ing our template-based puzzle generator, and recorded time
they used to write the templates, run the puzzle generator
and ensure the puzzles files contain valid puzzles that can
be opened in BOTS.We compared the time the experts used
to hand-author the puzzles and the time they took to do the
same task using the generator.

In addition, we evaluated the performance of the puzzle
generator. We recorded the average time of 100 runs for the
generator to generate 1, 3, 5, 10, 15 and 20 different puzzles
respectively for the 4 requirements described above. We also
manually checked the good puzzle rate in the last run of the
20-puzzle group (a total of 80 puzzles) as an estimate of the
success rate using the constraints described above.

Experiment 2: Expert Puzzle Rating

The second experiment evaluated how effective the gen-
erator is at generating puzzles for the desired educational
goal (RQ2-Learning) and how novel the generator-generated
puzzles are (RQ3-Novelty).

In this experiment, we asked the same two experts to in-
dependently rate the 12 puzzles the puzzle generator gener-
ated in experiment 1 for them respectively, by filling out an
evaluation questionnaire for each puzzle. Below we list the
9 questions asked in the questionnaire. All questions except
for Q3 - Q5 were on a 4-point Likert scale, “Not at all xxx”,
“Not xxx”, “xxx”, “Extremely xxx”. Q1 - Q3 focused more
on the experts’ opinions about the physical appearance of
the generated puzzles and the rest of the questions focused
more on the educational aspects.

Q1. How complex does the structure of the puzzle look?

Q2. How interesting does the puzzle look?

Q3. Does the puzzle have a novel structure that you didn’t
think of when creating puzzles?

Q4. How long does it take you to solve the puzzle with only
basic actions (in minutes and seconds)?

Q5. How much time does it take for you to solve the puzzle
using loops/functions (in minutes and seconds)?

Q6. How visually apparent is the loop/function structure in the
puzzle layout?

Q7. How hard do you think it is for a novice to solve the puzzle
with only basic actions?

Q8. How hard do you think it is for a novice to solve the puzzle
with loops or functions?

Q9. How valuable is the puzzle w.r.t. learning how to use
loops/functions?

175

Results and Discussion

Results for Experiment 1

Table 1 shows the total time the experts took to create the
puzzles for each requirement in the first experiment. The
“validation” in the third and fourth column refers to the time
needed for the experts to open the puzzle in BOTS to verify
if the puzzle is a valid, playable puzzle (though not neces-
sarily a good, educational puzzle).

Table 1: Two experts average total time cost (in seconds) to
create the 3 puzzles for each educational goal.

Require-
ment

Expert
by Hand

Generator w/
Validation

Generator w/o
Validation

S Loop 203 58 22
L Loop 625 68 23
S Func 373 109 63
L Func 734 113 52
Total 1935 348 160

Looking at each educational goal, we found that experts
took more than twice the time to finish the “long” puz-
zle groups , indicating that larger puzzles are more time-
consuming and presumably more difficult to create than
smaller puzzles. Comparing the expert times between the
two educational goals, we found that puzzles teaching func-
tions took longer for the experts to create than puzzles teach-
ing loops, even though the number of function calls is one
less than the number of loop iterations. We think this is be-
cause creating puzzles for functions requires time to make
additional design decisions, such as what actions to put in
between function calls. The experts showed the same pattern
when writing templates for the generator: writing templates
for functions took about 35 seconds longer than writing tem-
plates for loops, where the former took about 55 seconds on
average and the latter took about 20 seconds.

In general, experts took an average of 1935 seconds
(about 32 minutes) to create twelve puzzles. In contrast,
our template-based puzzle generator greatly reduced the
time needed to create twelve educational puzzles under the
same requirements to only 348 seconds (about 6 minutes)
including puzzle validation and reduced to only 160 sec-
onds (about 3 minutes) without the validation process. This
shows that the template-based puzzle generator is able to
save more than 80% of the expert time needed for puzzle
generation and validation. Moreover, if experts have access
to pre-defined templates, the work that used to take 30 min-
utes could potentially be done in merely seconds.

Table 2 shows the results of the performance evaluation on
a laptop with Intel Core i5 1.3 GHz processor. A Wilcoxon
signed-rank test shows that the time needed to generate one
puzzle for short loops and short functions is significantly
shorter than that for long loops and long functions (Both
Z = 2.2014, p = 0.03125). The time does not change much
with the increase of the number of distinct puzzles to gener-
ate, possibly because the number of puzzles required is far
less than the whole solution space of the template. However,
generating 20 distinct puzzles is already enough for one tem-
plate. After evaluating the 80 puzzles from the 20 puzzles

group, 93.75% puzzles were good puzzles. All the bad puz-
zles, which had several unnecessary blocks, were had the
Long Loop group, indicating additional constraints needed
for the group.

Table 2: The average time (in seconds) used to generate one
puzzle for each experiment.

of Puzzles 1 3 5 10 15 20

S Loop 0.29 0.26 0.26 0.28 0.28 0.31
L Loop 0.40 0.38 0.45 0.44 0.39 0.46
S Func 0.29 0.22 0.26 0.26 0.27 0.22
L Func 0.41 0.41 0.38 0.35 0.38 0.37

Results for Experiment 2

Table 3 shows the distribution of the expert evaluation re-
sponses. Note that the ratings of Q1 - Q8 do not necessarily
mean the generated puzzles were good or bad. The distri-
bution presents the expressive range of the puzzle generator
from the experts’ point of view.

There are several observations from Table 3. First, if we
split the 4-likert scale options in the middle into positive
ratings (right side) and negative ratings (left side), the ex-
perts had fairly even numbers of positive ratings and neg-
ative ratings for Q1, Q6, Q7 and Q8. This indicates that
the generator can generate puzzles with varying visual com-
plexity, apparentness of the educational goal, and difficulty
to construct both straightforward and optimal solutions. In-
terestingly, people would normally consider that construct-
ing a straightforward solution to a puzzle is not very dif-
ficulty. However, both the experts felt it would be difficult
to construct straightforward solutions for half of the gener-
ated puzzles. This is because it becomes harder to mentally
track the robot’s status (location, facing direction, etc) as the
length of the straightforward solution grows. One usually
needs to have the robot execute the solution several times
while constructing a long straightforward solution.

Moreover, results for Q2 and Q9 show that all but one
generator-generated puzzles were rated at least interesting
and valuable at teaching targeted educational goal. This
means the puzzle generator is capable of generating inter-
esting looking puzzles and preserve expert-designed learn-
ing goals in generated puzzles. A Wilcoxon signed-rank test
on the responses of Q4 and Q5 shows that it took signif-
icantly longer for the experts to construct straightforward
solutions than optimal solutions for the generator-generated
puzzles (Z = 4.2859, p = 1.192e − 07). While this does
not necessarily mean the puzzle will lead to learning, the
significant time difference between the two solutions may
encourage players to construct optimal solutions instead of
using straightforward solutions when playing the puzzles.

Lastly, we evaluated novelty of the generator-generated
puzzles. The puzzles in the top row of Figure 4 are not novel
because of the similar spiral structure, while the puzzles in
the bottom row are novel because they have very different
visual structure. According to the responses to Q3, 8/12 and
9/12 generated puzzles had novel structures compared to the
puzzles the experts created themselves, indicating that the

176

Table 3: Results from expert puzzle evaluation questionnaire. The bar chart presents with “Not at all xxx” on the left and
“Extremely xxx” on the right, except for Novelty (Q3) which has “No” on the left and “Yes” on the right.

Complexity
(Q1)

Interestingness
(Q2)

Novelty
(Q3)

Apparrentness
(Q6)

Difficulty
Straightforward

(Q7)

Difficulty
Optimal

(Q8)

Educational
Value
(Q9)

Expert
1

Expert
2

Figure 4: Expert-created puzzles (top) and generator-
generated puzzles (bottom) for short loop requirement.

template-based puzzle generator can help experts discover
novel puzzle structures.

We had two interesting observations when comparing the
generator-generated puzzles with expert hand-authored puz-
zles. The first interesting finding is that, as shown in Figure
4, the experts created different puzzles with very similar vi-
sual structures for some educational goals. A possible expla-
nation is that the experts’ imaginations may be bounded by
their mental set on how to present the educational goal. This
mindset may limit experts’ imaginations and make it hard to
think of puzzles with very different appearances. From this
perspective, the template-based puzzle generator can help
experts discover new ideas and new puzzle structures.

Another interesting finding is that, unlike the generator-
generated puzzles, no expert-created puzzles used reverse
patterns, such as “backward” action or turn-around-and-go-
back in their puzzles. Similarly, experts also never interacted
with two or more boxes in the loop/function content of their
solution program. However, these are important components
that may make the puzzles more fun and more challenging
to solve by creating alternative solution programs for play-
ers to discover the optimal one. The reason may be that de-
signing these components requires additional cognitive load
for experts to memorize previously traveled paths to append
corresponding actions. In contrast with expert-created puz-
zles, 5/12 and 3/6 generator-generated puzzles had reverse

patterns and multiple box interactions (only the 6 puzzles
with long content length are long enough to have multiple
box interactions), indicating that the template-based puzzle
generator can help expert design novel puzzles with these
patterns.

Limitation

One limitation to this study is that only two experts partici-
pated in the experiments, making it hard to claim statistical
significance from the results. Secondly, we only focused on
how satisfy the experts were with the generator-generated
puzzles and did not have the expert rate the puzzles they
created by themselves. Thus, we do not know if the experts’
expectations for the generator are the same to their expecta-
tions for themselves.

Conclusion and Future Work

In this paper, we defined, implemented and tested a
template-based puzzle generator on an educational game
called BOTS. The generator allows experts to write educa-
tional goals into a template and uses the template to generate
a number of puzzles with different appearances but with the
same intended educational goal.

We compared the time needed for two experts to hand-
author puzzles and use the puzzle generator to generate puz-
zles under the same requirements. We also asked the experts
to evaluate the quality of the generator-generated puzzles.
Our results show that our generator saved more than 80% of
time for experts on puzzle generation; it generally generated
good puzzles with expert-designed educational goals incor-
porated; it can help experts discover novel puzzle structures
that they otherwise may not have been able to.

For future work, we would like to make the generated puz-
zle difficulty customizable in the template-based puzzle gen-
erator. Although the generator allows experts to specify edu-
cational goals with templates, the experts do not have control
over the difficulty and/or complexity of the puzzles that the
generator generates. However, this is an important require-
ment for creating a progressive learning experience auto-
matically (Dewey 2007). We plan to apply machine learning
technologies to generate puzzles with adjustable difficulty.

177

References

Antonova, E., et al. 2015. Applying answer set program-
ming in game level design.
Chaffin, A.; Doran, K.; Hicks, D.; and Barnes, T. 2009. Ex-
perimental evaluation of teaching recursion in a video game.
In Proceedings of the 2009 ACM SIGGRAPH Symposium on
Video Games, 79–86. ACM.
Dewey, J. 2007. Experience and education. Simon and
Schuster.
Dormans, J. 2010. Adventures in level design: generating
missions and spaces for action adventure games. In Proceed-
ings of the 2010 workshop on procedural content generation
in games, 1. ACM.
Eagle, M., and Barnes, T. 2008. Wu’s castle: teaching arrays
and loops in a game. In ACM SIGCSE Bulletin, volume 40,
245–249. ACM.
Eagle, M., and Barnes, T. 2009. Experimental evaluation of
an educational game for improved learning in introductory
computing. In ACM SIGCSE Bulletin, volume 41, 321–325.
ACM.
Hendrikx, M.; Meijer, S.; Van Der Velden, J.; and Iosup, A.
2013. Procedural content generation for games: A survey.
ACM Transactions on Multimedia Computing, Communica-
tions, and Applications (TOMM) 9(1):1.
Hicks, D.; Dong, Y.; Zhi, R.; Cateté, V.; and Barnes, T. M.
2015. Bots. In CEUR-WS.
Hicks, A. 2013. Bots: Harnessing player data and player
effort to create and evaluate levels in a serious game. In
Educational Data Mining 2013.
Khalifa, A., and Fayek, M. 2015. Literature review of pro-
cedural content generation in puzzle games.
Mourato, F.; dos Santos, M. P.; and Birra, F. 2011. Au-
tomatic level generation for platform videogames using ge-
netic algorithms. In Proceedings of the 8th International
Conference on Advances in Computer Entertainment Tech-
nology, 8. ACM.
Murray, T. 2003. An overview of intelligent tutoring system
authoring tools: Updated analysis of the state of the art. In
Authoring tools for advanced technology learning environ-
ments. Springer. 491–544.
Prensky, M., and Prensky, M. 2007. Digital game-based
learning, volume 1. Paragon house St. Paul, MN.
Smith, A. M.; Andersen, E.; Mateas, M.; and Popović, Z.
2012. A case study of expressively constrainable level de-
sign automation tools for a puzzle game. In Proceedings of
the International Conference on the Foundations of Digital
Games, 156–163. ACM.
Smith, A. M.; Butler, E.; and Popovic, Z. 2013. Quantify-
ing over play: Constraining undesirable solutions in puzzle
design. In Proceedings of the International Conference on
the Foundations of Digital Games, 221–228.
Smith, G.; Whitehead, J.; and Mateas, M. 2010. Tanagra:
A mixed-initiative level design tool. In Proceedings of the
Fifth International Conference on the Foundations of Digital
Games, 209–216. ACM.

Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2011. Search-based procedural content generation: A
taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games 3(3):172–186.

178

