
Dante Agent Architecture for
Force-On-Force Wargame Simulation and Training

Brian Hart, Derek Hart, Russell Gayle, Fred Oppel, Patrick Xavier, Jonathan Whetzel
Sandia National Laboratories

PO Box 5800 Albuquerque, New Mexico, USA 87185-1004
{bhart, derhart, rgayle, fjoppel, pgxavie, jhwhetz}@sandia.gov

Abstract
 Physical site security heavily relies on expert teams continually
examining and testing security profiles for discovering potential
vulnerabilities. These experts hypothesize scenario(s) of interest
and conduct “red versus blue” simulated exercises where they
execute tactics that might reveal possible dangers. Due to the
intensive manpower required, video-game environments have be-
come a widely-adopted mechanism for conducting these exercises
with virtual agents replacing many of the human roles for quicker
analyses. However, these agents either have limited capabilities or
require several engineers to develop realistic behaviors. This paper
documents an agent architecture and authoring suite that enables
subject matter experts to easily build complex attack/response
plans for agents to use within Dante, a 3D simulation platform for
video-game-based training/analysis of force-on-force engage-
ments. This work expands upon current trends in commercial
video-game artificial intelligence (AI) architectures to build agent
behaviors deemed qualitatively valid by security experts, with the
runtime of these algorithms best suited for turn-based, strategy
games.

Introduction

Wargaming, games of strategy that focus on military opera-
tions, remains as an effective tool for hypothesizing and
testing various conflict scenarios, while also enjoying popu-
larity in the commercial game market. Modern wargames
have evolved by moving from physical tabletop environ-
ments to video game platforms, improving their managea-
bility.

The complexity of these modern wargames can require
several hours of training to gain familiarity, causing a short-
age of well-trained operators to perform the exercise. Out-

Copyright © 2017, Association for the Advancement of Artifi-
cial Intelligence (www.aaai.org). All rights reserved.

comes from the exercise depend on how well each of the
operators can play the game, casting doubt on the results if
the sides have a mismatch in operator experience with the
game. To solve this issue, wargame developers have uti-
lized AI agents to replace human players. These agents
have been plagued with problems of predictability or inabil-
ity to effectively handle novel situations, leading to high
financial costs for engineers who must construct new agent
behaviors.

Sandia National Laboratories has engaged in research to-
ward developing an agent architecture for simulation and
training within the domain of physical site security war-
games; a strategy game where an opposition team attempts
to reach an objective within a secured area manned by a
defensive team. This research explores conflicting goals of:
1) developing agents with qualitatively-valid behaviors as
judged by subject matter experts, and 2) ease of constructing
agent behaviors by non-technical personnel. This paper
describes the agent architecture devised for Dante, a force-
on-force 3D simulation platform that can operate in closed-
loop simulations (agent v. agent) and human-in-the-loop
wargaming configurations (human v. agent, or human/agent
hybrid teams). This research expands upon popular agent
architecture designs within the entertainment sector for
building more realistic behaviors without compromising on
ease of development.

Umbra Simulation Framework
Dante is built on top of the modular Umbra Simulation
Framework (Gottlieb, Harrigan, McDonald, Oppel, &
Xavier, 2001), developed at Sandia National Laboratories
for modeling, analysis and deployment of robots and intelli-
gent system technologies for manufacturing, military, and
security systems. Since its initial development in 1997, Um-
bra has proven its utility in complex adaptive systems engi-
neering. In addition to representing a variety of intelligent
systems including robots, unmanned air and ground vehi-
cles, communications systems, and sensors, Umbra is being
used to address other issues of human behavior including

Proceedings, The Thirteenth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE-17)

200

nuclear physical security, other hazardous environments,
insider attacks, and active shooter events.

Umbra’s main strength is it allows engineers and analysts
to break complex system software problems into collections
of manageable pieces or modules that can be modeled inde-
pendently and then efficiently combined into a system. Um-
bra provides a software framework with a structured mod-
ule update, a variety of base classes, and an interactive
script-level interface that facilitates efficient and effective
code development, debugging, reuse, experimentation, and
deployment all within a 3D environment. In addition, Um-
bra includes an extensible core set of 3D graphical libraries
to enable a user to efficiently create, view, and interactively
interrogate entities from any viewing perspective within a
3D environment.

Figure 1: Umbra Simulation Framework & Applications

Related Work
Many research efforts in game AI have sought a balance
between providing complex, realistic behaviors while
providing ease of authoring. Traditional architectures such
as finite state machines (FSMs) and behavior trees provide
intuitive structures for designing agents, yet have difficulties
in scaling the agents to handle more tasks and are too pre-
dictable in their behavior execution. Cognitive modeling
solutions such as SOAR (Laird, 2012), ACT-R (Anderson &
Lebiere, 1998), and Sandia’s Cognitive Runtime Engine
with Active Memory (SCREAM) (Djordjevich, et al.,
2008), provided new architectures mimicking psychological
models of human-decision making, with demonstrations of
these models used as agents within various games (Laird,
2001) (Best, Lebiere, & Scarpinatto, 2002). These ap-
proaches have not met wide acceptance due to their compli-
cated structure for authoring new behaviors. Dante’s agent
architecture has been inspired by our past efforts in cogni-

tive modeling by improving the extensibility of an agent
across novel environments.
 Other commercial game AI structures have also been
developed to make agent’s more robust in both their behav-
iors and ease of authoring. Goal-Oriented Action Planning
(Orkin, 2004) enables an agent to both determine its next
goal and how to achieve it through planning a sequence of
actions to execute. Other solutions have employed utility
theory (Dill & Mark, 2010), selecting an action to perform
by calculating every action’s expected benefit value at any
moment. These solutions improve upon traditional meth-
ods by allowing more flexibility in the agent’s behavior
selection with little effort needed to expand their capabili-
ties. Yet, these architectures make it difficult for designers
to manipulate agent behavior since the agents dynamically
plan action sequences throughout their execution.

Machine learning-based approaches have seen considera-
ble success recently across a wide spectrum of game types.
With respect to tactical wargaming, successes have revolved
around optimizing localized components (e.g., optimizing
utility functions for a character in a skirmish) or for limited
numbers of agents (McPartland & Gallagher, 2011). It re-
mains to be seen how these approaches would scale to in-
clude more complex domains. Furthermore, with machine
learning approaches, it is difficult to design or edit any gen-
erated behaviors (e.g. to be more human-like).

Dante’s agent architecture handles these conflicting de-
sires between realistic behaviors and ease of authoring by
reducing the level of detail for an agent’s planning. Deci-
sion-making for Dante agents resembles a utility theory
approach, with the individual actions being replaced by
FSMs that handle common behavior sequences. Other re-
searchers have proposed search algorithms for behavior
selection in real-time strategy games with success, such as
the alpha-beta search for scripted behaviors (Churchill,
Saffidine, & Buro, 2012) and goal-driven autonomy
(Munoz-Avila, Aha, Jaidee, Klenk, & Molineaux, 2010).
This paper builds upon these efforts by documenting the
Dante agent architecture and how our users can construct
agent teams for developing complex wargaming scenarios
within our 3D simulation engine.

Dante Behavior Architecture
Characters in Dante simulations attempt to execute com-
mands issued to them by human users or by a virtual Com-
mander system that dynamically issues commands to char-
acters during runtime. The execution of these commands by
the character is done via a set of behaviors. Characters can
participate in the execution of commands with other charac-
ters with coordination occurring between them. Commands
have conditions that indicate their completion in either a
success or failure state, which can trigger subsequent com-
mands that formulate a long-term plan for the characters.

201

Behaviors in Dante are packages of actions (FSMs) that
accomplish a specific goal. For example, the Move behav-
ior contains the ability to plan a path to a goal location, the
movement to that goal location via the path, and an orient at
the end to ensure the character is facing the desired direc-
tion. Another example would be the Engage behavior,
which includes the steps necessary to engage a threat using
a weapon. In Engage, the character ensures the best
weapon is equipped, aims that weapon, and fires that weap-
on. If the behavior continues, they can choose to reload the
weapon as necessary and reevaluate the situation.

When a character is issued a command, they execute a
priority queue of behaviors. The queue is sorted on the pri-
ority and activation of the behaviors available, calculated
through a utility-theory AI approach. Behaviors can run
concurrently or preempt other behaviors to take control of
the character. Later, preempted behaviors can be restarted
to accomplish the specified command.

Figure 2: Diagram of the top-down Dante Behavior Engine

Commands, Roles, and Tasks
A Command accepts a set of characters to accomplish a
specific goal. A Command can be issued to a single charac-
ter or multiple characters. A Command is responsible for
configuring the team of characters to suit its own needs. For
some commands that configuration is trivial and requires no

work, but others must divide the team into specific jobs to
accomplish the command’s goal. Commands also determine
what success means and who must accomplish the goal be-
fore the command is complete.

Commands are notified when the characters working on
them either succeed or fail. This gives the command a
chance to deal with each character’s completion. In the case
of a character reporting success, it could mean that the job is
now done and the plan can move forward. In the case of a
character reporting failure, it means the command might
need to adjust the team to compensate for the character who
just failed (e.g., character has been killed and no longer
available). Commands also have the option of completing
even when all characters executing the command have not
finished.

Roles determine how a character translates a Command
into a set of behaviors to execute. Roles allow Dante char-
acters to differentiate how they react to the same Command.
When a Role receives a command, it translates the Com-
mand into a Task, with a Role having only one Task associ-
ated with it. A Task represents a collection of behaviors
(FSMs) that can be executed, with the underlying Behavior
Selector determining which behavior(s) should execute.

Figure 3: Example of MechanicalBreach command issued to team

Figure 3 provides an example of a team receiving the
command MechanicalBreach, where the goal is to
make a hole in a physical barrier via a mechanical device
(crowbar, wire cutters, etc.). MechanicalBreach con-
sists of two distinct jobs. The first job is to do the work of
the breach, but this requires only one character to perform
the work. The second job is to provide cover for the
breacher by engaging threats. The MechanicalBreach
puts the character chosen to breach into the Breacher-
Role and everyone else into the CoverRole. The
BreacherRole signifies the character should do the Me-
chanicalBreachTask which includes the Breach
behavior. The other characters using the CoverRole exe-

202

cute the CoverBreachTask, which includes the Engage
behavior. That means we get one character doing the breach
work, while the others are free to engage threats as neces-
sary. Characters providing cover to the breacher may react
to potential threats by finding a defensive position to safely
return fire.

Behavior Selectors
Behavior Selectors determine the utility for each possible
behavior based upon two values configured for each task:
priority and triggers. The priority of a behavior is simply its
natural propensity to be the top behavior. Each behavior
within a Task is assigned a priority, usually between 0.0 and
1.0, with higher value meaning the behavior is more im-
portant to have run. The second competing factor involves
the triggers assigned to the behavior. Triggers determine if
the behavior should run, represented as floating-point val-
ues.

The activation of a behavior, A, is represented as:

where represents the set of triggers associated with the
behavior and p representing the priority value for the behav-
ior, with the result being a single numerical value. Triggers
may have positive evidence or negative evidence (inverse)
for a behavior to run. Triggers can be organized hierarchi-
cally and are logically combined as noted below:

 = OR operator
 = AND operator

Triggers are generated by modules outside of the behav-
ior engine. Trigger examples include: ”Is the character in a
vehicle?” or ”Has the character been granted permission to
engage threats?”. Character perception produces many
triggers including ones that note the presence of threats.
Triggers can have any value between 0.0 and 1.0, creating
more nuance in behavior activation than simply true/false.

Trigger values are stored in the TriggersManager,
which essentially acts as a blackboard between the behavior
engine and the modules that publish trigger values. The
behavior engine will query the TriggersManager to ask
for values when it goes to evaluate the activation level for
behaviors within a Task. Publishing modules write to the
TriggersManager with updated Trigger values. For
example, when a new threat is detected, the Charac-
terMemory module will publish trigger values to indicate
the threat, enabling the FindCover and EngageBehav-
ior behaviors to run. Because those behaviors have been
configured with a higher priority and are now activated,
they will preempt the Move behavior and one of them will
begin executing.

If the current behavior is replaced at the top of the priori-
ty queue by another behavior, then the current behavior is

stopped and the new top behavior is started. Mechanisms
exist to allow behaviors to latch on and prevent preemption,
reducing behavior “jitter” when sensory inputs change.

Figure 4: BehaviorSelector updating behavior activations

Behavior Selectors have a concept of termination behav-
iors. A termination behavior is one that, when complete,
signals that the Task is done. Completion of the Task caus-
es a signal to be sent to the originating Command to let it
know that this character has completed the requested work,
advancing to the next Command in the character/team’s
plan. In Figure 3, the Breach behavior is the terminating
behavior for the MechanicalBreachTask. When the
breacher finishes that behavior, they signal the Breach
command ended with success, at which point the overall
command is complete. For the shooter characters executing
CoverBreachTask, their Move behavior is their termi-
nation behavior, and when it completes they let the Me-
chanicalBreach command know they are done.

Completion of a termination behavior does not mean that
all behaviors stop. The behaviors can continue to compete
so the characters can remain responsive. When a shooter
indicates they have finished the Move behavior for a
CoverBreachTask, the Move goes inactive and the oth-
er behaviors will compete until the MechanicalBreach
command is considered done. That means these characters
can engage threats that they detect even after they have
completed the move to their cover location.

State Graph Behaviors
As was mentioned earlier, a Behavior is a package of related
actions that accomplish a specific goal. The Behavior base
class manages the state of a behavior, like whether it is cur-
rently running or has been initialized properly. It also stores
the Triggers that it will use for computing its activation.
The Behavior class includes calls to start work, stop work,
and reset state.

Dante behaviors are currently all implemented as finite
state machines. This allows reuse of behavior action states
across many behaviors. StateGraphBehavior is the
base class for these types of behaviors. This class holds the
state machine mechanism for properly moving between

203

states as those states complete their work. It also creates
success and failure action states that derived behaviors can
move to when they complete their work in either a success
or failure condition.

Path Planning
Often the result of running a behavior is that the character
moves from one location to another. This movement likely
fulfills a purpose such as executing a command or reacting
to something in the environment like finding cover from a
threat. The path planning system in Dante extends the A*
algorithm, providing a rich framework with which to gener-
ate paths that give variation to Dante movement behaviors.

The path planning system provides flexibility in the com-
putation via two key mechanisms: costers and goal predi-
cates. Costers define the shape that a path will take through
the environment. For example, a character can define its
path by only considering the distance to the goal meaning
the path will be short and relatively direct. A character can
use visibility avoidance costers to stay stealthy and generate
paths that might take significantly longer to traverse but will
keep the character out of sight. Other costers that can avoid
tight spaces, vehicles, or even the potential firing lanes of
friendly characters. Goal predicates define the goal location
for paths. Usually, the goal location is known before plan-
ning begins, that is, it is a fixed location. With goal predi-
cates, the goal becomes a function that must be satisfied.

Figure 5: Character using goal predicate to find cover location

A key example in Dante is the act of finding cover to re-
turn fire. In Figure 5, the character does not know where to
go, but dynamically searches for a location that will provide
cover from a detected threat. Once the path is computed
(showed as the line in Figure 5), it is handed to the mobility
system. That system is responsible for moving the character
along the computed path. It can accept a range of move-
ment styles the character should use, such as running, walk-
ing, crawling, etc. It can also be configured with speed.

There are several behavior action states devoted to con-
figuring path planning specifically to meet the needs of a

given behavior. Other action states are devoted to working
with the mobility system to move the character along those
paths.

Results

Our goal for enabling non-technical personnel to quickly
author Dante agents required devising a toolset for generat-
ing plans that red, blue, and/or neutral characters follow.
The Dante Scenario Editor provides users the ability to im-
port physical site models, including entities containing trig-
ger publications to provide key information to the agents
(e.g., intrusion sensors, vehicles, etc.). Users construct an
agent’s team plan by chaining together commands, with the
completion of one command leading to the execution of the
next. When the scenario is executed, this chain of com-
mands is executed by the RunManager. As those com-
mands are completed, it will determine whether the com-
mand completed successfully or not and then select the next
command(s) to execute. The RunManager is also respon-
sible for telling unassigned characters to go into the Idle
command and for detecting when characters have been in-
terrupted by a new command and properly notify their old
command that they will not be completing it.

Figure 6: Dante Scenario Editor

Commands in Dante can be chained based on either suc-
cess or failure. If a command completes successfully, then
subsequent commands on the success path are signaled that
they should consider running. If the command that just
completed was the only command the next one was waiting
for, then it will begin to execute. Commands, however,
might have multiple input commands. If that’s the case,
then the next command could be configured to wait for all
previous commands (AND) or just one (OR). If it should

204

wait for all previous commands, then it will not execute
until all previous commands have reported completion.

In the case when a command has failed, the RunManag-
er will look for any chained commands that should be
called on failure. This mechanism allows Dante scenario to
branch when things are not going according to the original
plan. There is a special mechanism in Dante called “fail
forward.” If there is not a failure branch for a failed com-
mand to follow, then it still signals the success branch ac-
tions. This allows the plan to continue forward, but likely it
will encounter further problems that eventually result in a
Terminate action. “Fail forward” aids users in not having to
provide explicit detail how agents should respond if any
portion of the plan fails, and safeguard against faulty user-
defined plans where failed commands may not be necessary
in accomplishing the scenario goal(s).

Figure 7: Example of a plan formed within Dante Scenario Editor

Figure 7 provides a snapshot from a Dante Scenario Edi-
tor displaying a red-team plan for breaking into a building
within a secured facility, requiring the team to demolish
multiple barriers between their start point and the building
door. Each box represents a command issued to the team,
with the yellow box indicating the current command being
followed by the team. The arrows connecting the commands
indicate what command(s) to run next if the command suc-
ceeds (green) or fails (red). In this case, the plan has not
specified a failure branch for any command; the Terminate
action is reached if the team cannot perform the Mechani-
calBreach to open the door. This example shows how
commands may run concurrently, with the team splitting
into two groups (breach & support) after succeeding in the
second ExplosiveBreach.

Through Dante Scenario Editor, a user does not specify
any details on how to achieve their strategic plans, leaving
those decisions to the underlying architecture to determine
each team member’s role and handle the underlying behav-
ior to successfully complete any issued command.

Future Research
The success of Dante’s agent architecture stems from its
ability to handle a wide range of situations and simplify the
process of considering a wide variety of behaviors. Howev-
er, they are limited by the experiences and/or imagination of
the developer or analyst who designed it, ignoring potential
behaviors that could expose new vulnerabilities. Further-
more, these systems require a degree of hand-tuning and
subsequent user testing that makes it restrictive. Advances
in planners, particularly path and route planning, also give
the appearance of advanced behaviors and reasoning while
being flexible. Planning-based AIs exist though are fre-
quently driven by complex heuristics that require additional
tweaking and tuning, are backed by yet another decision-
making technology, or suffer from the overhead of re-
planning should the inputs to the plan change. To address
this drawback, subsequent research will explore applying
evolutionary algorithms for generating novel behaviors, and
comparing their success to expert-based behavior designs.

As capabilities for building new, more complex agents
grow, new methods for validating the realism of these be-
haviors will be required. To test character behaviors, we
suggest the option of using automated online experimenta-
tion to rapidly, and in a fully online manner, test character
behavior with real human subjects. These subjects can be
drawn from general online subject pools or from specific
domains. The goal will be to rapidly evaluate the realism of
character behavior in isolation – thus reducing the likeli-
hood of character behavior deviating significantly from real-
ism. Furthermore, these interactions can help train and
adapt the behaviors.

Acknowledgments

Sandia National Laboratories is a multi-mission laboratory
managed and operated by National Technology and Engi-
neering Solutions of Sandia, LLC., a wholly owned subsidi-
ary of Honeywell International, Inc., for the Department of
Energy’s National Nuclear Security Administration under
contract DE-NA-0003525.

References
Anderson, J., & Lebiere, C. (1998). The Atomic Components
ofThought. New York, NY: Psychology Press.
Best, B., Lebiere, C., & Scarpinatto, K. C. (2002). Modeling
synthetic opponents in MOUT training simulations using the ACT-
R cognitive architecture. 11th Conference on Computer Generated
Forces and Behavior Representation, (p. 33).
Churchill, D., Saffidine, A., & Buro, M. (2012). Fast Heuristic
Search for RTS Game Combat Scenarios. Artificial Intelligence for
Interactive Digital Entertainment, (pp. 112-117).
Dill, K., & Mark, D. (2010). Improving AI Decision Modeling
Through Utility Theory. AI Summit at the Game Developers
Conference. San Francisco, CA.

205

Djordjevich, D., Xavier, P., Bernard, M., Whetzel, J., Glickman,
M., & Verzi, S. (2008). Preparing for the aftermath: Using
emotional agents in game-based training for disaster response.
IEEE Symposium on Computation Intelligence in Games, (pp. 266-
275). Perth, Australia.
Gottlieb, E., Harrigan, R., McDonald, M., Oppel, F., & Xavier, P.
(2001). The Umbra Simulation Framework. Albuquerque, NM:
Sandia National Laboratories.
Laird, J. (2001). Using a computer game to develop advanced AI.
Computer, pp. 70-75.
Laird, J. (2012). The Soar Cognitive Architecture. MIT Press.
McPartland, M., & Gallagher, M. (2011). Reinforcement learning
in first person shooter games. IEEE Transactions on
Computational Intelligence and AI in Games 3, pp. 43-56.
Munoz-Avila, H., Aha, D., Jaidee, U., Klenk, M., & Molineaux,
M. (2010). Applying Goal Driven Autonomy to a Team Shooter
Game. Florida Artificial Intelligence Research Society Conference,
(pp. 465-470).
Orkin, J. (2004). Applying goal oriented action planning to games.
AI Programming Wisdom 2, pp. 217-227.

206

