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Abstract 
 Physical site security heavily relies on expert teams continually 
examining and testing security profiles for discovering potential 
vulnerabilities.  These experts hypothesize scenario(s) of interest 
and conduct “red versus blue” simulated exercises where they 
execute tactics that might reveal possible dangers.   Due to the 
intensive manpower required, video-game environments have be-
come a widely-adopted mechanism for conducting these exercises 
with virtual agents replacing many of the human roles for quicker 
analyses.  However, these agents either have limited capabilities or 
require several engineers to develop realistic behaviors.  This paper 
documents an agent architecture and authoring suite that enables 
subject matter experts to easily build complex attack/response 
plans for agents to use within Dante, a 3D simulation platform for 
video-game-based training/analysis of force-on-force engage-
ments.  This work expands upon current trends in commercial 
video-game artificial intelligence (AI) architectures to build agent 
behaviors deemed qualitatively valid by security experts, with the 
runtime of these algorithms best suited for turn-based, strategy 
games. 

 
Introduction   

Wargaming, games of strategy that focus on military opera-
tions, remains as an effective tool for hypothesizing and 
testing various conflict scenarios, while also enjoying popu-
larity in the commercial game market.   Modern wargames 
have evolved by moving from physical tabletop environ-
ments to video game platforms, improving their managea-
bility.   

The complexity of these modern wargames can require 
several hours of training to gain familiarity, causing a short-
age of well-trained operators to perform the exercise.  Out-
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comes from the exercise depend on how well each of the 
operators can play the game, casting doubt on the results if 
the sides have a mismatch in operator experience with the 
game.  To solve this issue, wargame developers have uti-
lized AI agents to replace human players.  These agents 
have been plagued with problems of predictability or inabil-
ity to effectively handle novel situations, leading to high 
financial costs for engineers who must construct new agent 
behaviors.   

Sandia National Laboratories has engaged in research to-
ward developing an agent architecture for simulation and 
training within the domain of physical site security war-
games; a strategy game where an opposition team attempts 
to reach an objective within a secured area manned by a 
defensive team.  This research explores conflicting goals of: 
1) developing agents with qualitatively-valid behaviors as 
judged by subject matter experts, and 2) ease of constructing 
agent behaviors by non-technical personnel.  This paper 
describes the agent architecture devised for Dante, a force-
on-force 3D simulation platform that can operate in closed-
loop simulations (agent v. agent) and human-in-the-loop 
wargaming configurations (human v. agent, or human/agent 
hybrid teams).  This research expands upon popular agent 
architecture designs within the entertainment sector for 
building more realistic behaviors without compromising on 
ease of development.     

Umbra Simulation Framework 
Dante is built on top of the modular Umbra Simulation 
Framework (Gottlieb, Harrigan, McDonald, Oppel, & 
Xavier, 2001), developed at Sandia National Laboratories 
for modeling, analysis and deployment of robots and intelli-
gent system technologies for manufacturing, military, and 
security systems. Since its initial development in 1997, Um-
bra has proven its utility in complex adaptive systems engi-
neering. In addition to representing a variety of intelligent 
systems including robots, unmanned air and ground vehi-
cles, communications systems, and sensors, Umbra is being 
used to address other issues of human behavior including 
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nuclear physical security, other hazardous environments, 
insider attacks, and active shooter events. 

Umbra’s main strength is it allows engineers and analysts 
to break complex system software problems into collections 
of manageable pieces or modules that can be modeled inde-
pendently and then efficiently combined into a system. Um-
bra provides a software framework with a structured mod-
ule update, a variety of base classes, and an interactive 
script-level interface that facilitates efficient and effective 
code development, debugging, reuse, experimentation, and 
deployment all within a 3D environment. In addition, Um-
bra includes an extensible core set of 3D graphical libraries 
to enable a user to efficiently create, view, and interactively 
interrogate entities from any viewing perspective within a 
3D environment.  

Figure 1:  Umbra Simulation Framework & Applications

Related Work 
Many research efforts in game AI have sought a balance 
between providing complex, realistic behaviors while 
providing ease of authoring.   Traditional architectures such 
as finite state machines (FSMs) and behavior trees provide 
intuitive structures for designing agents, yet have difficulties 
in scaling the agents to handle more tasks and are too pre-
dictable in their behavior execution.   Cognitive modeling 
solutions such as SOAR (Laird, 2012), ACT-R (Anderson & 
Lebiere, 1998), and Sandia’s Cognitive Runtime Engine 
with Active Memory (SCREAM) (Djordjevich, et al., 
2008), provided new architectures mimicking psychological 
models of human-decision making, with demonstrations of 
these models used as agents within various games (Laird, 
2001) (Best, Lebiere, & Scarpinatto, 2002).  These ap-
proaches have not met wide acceptance due to their compli-
cated structure for authoring new behaviors.  Dante’s agent 
architecture has been inspired by our past efforts in cogni-

tive modeling by improving the extensibility of an agent 
across novel environments. 
 Other commercial game AI structures have also been 
developed to make agent’s more robust in both their behav-
iors and ease of authoring.  Goal-Oriented Action Planning 
(Orkin, 2004) enables an agent to both determine its next 
goal and how to achieve it through planning a sequence of 
actions to execute.  Other solutions have employed utility 
theory (Dill & Mark, 2010), selecting an action to perform 
by calculating every action’s expected benefit value at any 
moment.    These solutions improve upon traditional meth-
ods by allowing more flexibility in the agent’s behavior 
selection with little effort needed to expand their capabili-
ties.  Yet, these architectures make it difficult for designers 
to manipulate agent behavior since the agents dynamically 
plan action sequences throughout their execution.    

Machine learning-based approaches have seen considera-
ble success recently across a wide spectrum of game types. 
With respect to tactical wargaming, successes have revolved 
around optimizing localized components (e.g., optimizing 
utility functions for a character in a skirmish) or for limited 
numbers of agents (McPartland & Gallagher, 2011). It re-
mains to be seen how these approaches would scale to in-
clude more complex domains.  Furthermore, with machine 
learning approaches, it is difficult to design or edit any gen-
erated behaviors (e.g. to be more human-like).   

Dante’s agent architecture handles these conflicting de-
sires between realistic behaviors and ease of authoring by 
reducing the level of detail for an agent’s planning.   Deci-
sion-making for Dante agents resembles a utility theory 
approach, with the individual actions being replaced by 
FSMs that handle common behavior sequences.  Other re-
searchers have proposed search algorithms for behavior 
selection in real-time strategy games with success, such as 
the alpha-beta search for scripted behaviors (Churchill, 
Saffidine, & Buro, 2012) and goal-driven autonomy 
(Munoz-Avila, Aha, Jaidee, Klenk, & Molineaux, 2010).  
This paper builds upon these efforts by documenting the 
Dante agent architecture and how our users can construct 
agent teams for developing complex wargaming scenarios 
within our 3D simulation engine. 

Dante Behavior Architecture 
Characters in Dante simulations attempt to execute com-
mands issued to them by human users or by a virtual Com-
mander system that dynamically issues commands to char-
acters during runtime.  The execution of these commands by 
the character is done via a set of behaviors.  Characters can 
participate in the execution of commands with other charac-
ters with coordination occurring between them.  Commands 
have conditions that indicate their completion in either a 
success or failure state, which can trigger subsequent com-
mands that formulate a long-term plan for the characters. 
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Behaviors in Dante are packages of actions (FSMs) that 
accomplish a specific goal.  For example, the Move behav-
ior contains the ability to plan a path to a goal location, the 
movement to that goal location via the path, and an orient at 
the end to ensure the character is facing the desired direc-
tion.  Another example would be the Engage behavior,
which includes the steps necessary to engage a threat using 
a weapon.  In Engage, the character ensures the best 
weapon is equipped, aims that weapon, and fires that weap-
on.  If the behavior continues, they can choose to reload the 
weapon as necessary and reevaluate the situation. 

When a character is issued a command, they execute a 
priority queue of behaviors.  The queue is sorted on the pri-
ority and activation of the behaviors available, calculated 
through a utility-theory AI approach.  Behaviors can run 
concurrently or preempt other behaviors to take control of 
the character.  Later, preempted behaviors can be restarted 
to accomplish the specified command. 

Figure 2:  Diagram of the top-down Dante Behavior Engine 

Commands, Roles, and Tasks  
A Command accepts a set of characters to accomplish a 
specific goal.  A Command can be issued to a single charac-
ter or multiple characters. A Command is responsible for 
configuring the team of characters to suit its own needs. For 
some commands that configuration is trivial and requires no 

work, but others must divide the team into specific jobs to 
accomplish the command’s goal. Commands also determine 
what success means and who must accomplish the goal be-
fore the command is complete.  

Commands are notified when the characters working on 
them either succeed or fail. This gives the command a 
chance to deal with each character’s completion. In the case 
of a character reporting success, it could mean that the job is 
now done and the plan can move forward. In the case of a 
character reporting failure, it means the command might 
need to adjust the team to compensate for the character who 
just failed (e.g., character has been killed and no longer 
available).  Commands also have the option of completing 
even when all characters executing the command have not 
finished.   

Roles determine how a character translates a Command 
into a set of behaviors to execute.  Roles allow Dante char-
acters to differentiate how they react to the same Command.  
When a Role receives a command, it translates the Com-
mand into a Task, with a Role having only one Task associ-
ated with it. A Task represents a collection of behaviors 
(FSMs) that can be executed, with the underlying Behavior 
Selector determining which behavior(s) should execute. 

 

 

Figure 3:  Example of MechanicalBreach command issued to team 

Figure 3 provides an example of a team receiving the 
command MechanicalBreach, where the goal is to 
make a hole in a physical barrier via a mechanical device 
(crowbar, wire cutters, etc.).  MechanicalBreach con-
sists of two distinct jobs.  The first job is to do the work of 
the breach, but this requires only one character to perform 
the work.  The second job is to provide cover for the 
breacher by engaging threats.  The MechanicalBreach 
puts the character chosen to breach into the Breacher-
Role and everyone else into the CoverRole.  The 
BreacherRole signifies the character should do the Me-
chanicalBreachTask which includes the Breach 
behavior.  The other characters using the CoverRole exe-
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cute the CoverBreachTask, which includes the Engage
behavior.  That means we get one character doing the breach 
work, while the others are free to engage threats as neces-
sary.  Characters providing cover to the breacher may react 
to potential threats by finding a defensive position to safely 
return fire.  

Behavior Selectors 
Behavior Selectors determine the utility for each possible 
behavior based upon two values configured for each task: 
priority and triggers. The priority of a behavior is simply its 
natural propensity to be the top behavior. Each behavior 
within a Task is assigned a priority, usually between 0.0 and 
1.0, with higher value meaning the behavior is more im-
portant to have run. The second competing factor involves 
the triggers assigned to the behavior. Triggers determine if 
the behavior should run, represented as floating-point val-
ues. 

The activation of a behavior, A, is represented as: 

 

where  represents the set of triggers associated with the 
behavior and p representing the priority value for the behav-
ior, with the result being a single numerical value.  Triggers 
may have positive evidence or negative evidence (inverse) 
for a behavior to run.   Triggers can be organized hierarchi-
cally and are logically combined as noted below: 

 = OR operator 
  = AND operator 

Triggers are generated by modules outside of the behav-
ior engine.  Trigger examples include: ”Is the character in a 
vehicle?” or ”Has the character been granted permission to 
engage threats?”.  Character perception produces many 
triggers including ones that note the presence of threats.  
Triggers can have any value between 0.0 and 1.0, creating 
more nuance in behavior activation than simply true/false.   

Trigger values are stored in the TriggersManager, 
which essentially acts as a blackboard between the behavior 
engine and the modules that publish trigger values.  The 
behavior engine will query the TriggersManager to ask 
for values when it goes to evaluate the activation level for 
behaviors within a Task.  Publishing modules write to the 
TriggersManager with updated Trigger values.  For 
example, when a new threat is detected, the Charac-
terMemory module will publish trigger values to indicate 
the threat, enabling the FindCover and EngageBehav-
ior behaviors to run. Because those behaviors have been 
configured with a higher priority and are now activated, 
they will preempt the Move behavior and one of them will 
begin executing. 

If the current behavior is replaced at the top of the priori-
ty queue by another behavior, then the current behavior is 

stopped and the new top behavior is started.  Mechanisms 
exist to allow behaviors to latch on and prevent preemption, 
reducing behavior “jitter” when sensory inputs change.

 
Figure 4:  BehaviorSelector updating behavior activations 

Behavior Selectors have a concept of termination behav-
iors. A termination behavior is one that, when complete, 
signals that the Task is done.  Completion of the Task caus-
es a signal to be sent to the originating Command to let it 
know that this character has completed the requested work, 
advancing to the next Command in the character/team’s 
plan.   In Figure 3, the Breach behavior is the terminating 
behavior for the MechanicalBreachTask.  When the 
breacher finishes that behavior, they signal the Breach 
command ended with success, at which point the overall 
command is complete. For the shooter characters executing 
CoverBreachTask, their Move behavior is their termi-
nation behavior, and when it completes they let the Me-
chanicalBreach command know they are done.  

Completion of a termination behavior does not mean that 
all behaviors stop. The behaviors can continue to compete 
so the characters can remain responsive. When a shooter 
indicates they have finished the Move behavior for a 
CoverBreachTask, the Move goes inactive and the oth-
er behaviors will compete until the MechanicalBreach 
command is considered done. That means these characters 
can engage threats that they detect even after they have 
completed the move to their cover location. 

State Graph Behaviors 
As was mentioned earlier, a Behavior is a package of related 
actions that accomplish a specific goal.  The Behavior base 
class manages the state of a behavior, like whether it is cur-
rently running or has been initialized properly. It also stores 
the Triggers that it will use for computing its activation.  
The Behavior class includes calls to start work, stop work, 
and reset state.  

Dante behaviors are currently all implemented as finite 
state machines. This allows reuse of behavior action states 
across many behaviors.  StateGraphBehavior is the 
base class for these types of behaviors.  This class holds the 
state machine mechanism for properly moving between 
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states as those states complete their work.  It also creates 
success and failure action states that derived behaviors can 
move to when they complete their work in either a success 
or failure condition.  

Path Planning 
Often the result of running a behavior is that the character 
moves from one location to another.  This movement likely 
fulfills a purpose such as executing a command or reacting 
to something in the environment like finding cover from a 
threat.  The path planning system in Dante extends the A* 
algorithm, providing a rich framework with which to gener-
ate paths that give variation to Dante movement behaviors. 

The path planning system provides flexibility in the com-
putation via two key mechanisms: costers and goal predi-
cates.  Costers define the shape that a path will take through 
the environment.  For example, a character can define its
path by only considering the distance to the goal meaning 
the path will be short and relatively direct.  A character can 
use visibility avoidance costers to stay stealthy and generate 
paths that might take significantly longer to traverse but will 
keep the character out of sight.  Other costers that can avoid 
tight spaces, vehicles, or even the potential firing lanes of 
friendly characters.  Goal predicates define the goal location 
for paths.  Usually, the goal location is known before plan-
ning begins, that is, it is a fixed location.  With goal predi-
cates, the goal becomes a function that must be satisfied.   

 

 

Figure 5:  Character using goal predicate to find cover location 

A key example in Dante is the act of finding cover to re-
turn fire.  In Figure 5, the character does not know where to 
go, but dynamically searches for a location that will provide 
cover from a detected threat.  Once the path is computed
(showed as the line in Figure 5), it is handed to the mobility 
system.  That system is responsible for moving the character 
along the computed path.  It can accept a range of move-
ment styles the character should use, such as running, walk-
ing, crawling, etc.  It can also be configured with speed. 

There are several behavior action states devoted to con-
figuring path planning specifically to meet the needs of a 

given behavior.  Other action states are devoted to working 
with the mobility system to move the character along those 
paths. 

Results 

Our goal for enabling non-technical personnel to quickly 
author Dante agents required devising a toolset for generat-
ing plans that red, blue, and/or neutral characters follow.  
The Dante Scenario Editor provides users the ability to im-
port physical site models, including entities containing trig-
ger publications to provide key information to the agents 
(e.g., intrusion sensors, vehicles, etc.).  Users construct an 
agent’s team plan by chaining together commands, with the 
completion of one command leading to the execution of the 
next.  When the scenario is executed, this chain of com-
mands is executed by the RunManager.  As those com-
mands are completed, it will determine whether the com-
mand completed successfully or not and then select the next 
command(s) to execute.  The RunManager is also respon-
sible for telling unassigned characters to go into the Idle
command and for detecting when characters have been in-
terrupted by a new command and properly notify their old 
command that they will not be completing it. 

 

Figure 6:  Dante Scenario Editor 

Commands in Dante can be chained based on either suc-
cess or failure.  If a command completes successfully, then 
subsequent commands on the success path are signaled that 
they should consider running.  If the command that just 
completed was the only command the next one was waiting 
for, then it will begin to execute.  Commands, however, 
might have multiple input commands.  If that’s the case, 
then the next command could be configured to wait for all 
previous commands (AND) or just one (OR).  If it should 
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wait for all previous commands, then it will not execute 
until all previous commands have reported completion. 

In the case when a command has failed, the RunManag-
er will look for any chained commands that should be 
called on failure.  This mechanism allows Dante scenario to 
branch when things are not going according to the original 
plan.  There is a special mechanism in Dante called “fail 
forward.”  If there is not a failure branch for a failed com-
mand to follow, then it still signals the success branch ac-
tions.  This allows the plan to continue forward, but likely it 
will encounter further problems that eventually result in a
Terminate action.  “Fail forward” aids users in not having to 
provide explicit detail how agents should respond if any 
portion of the plan fails, and safeguard against faulty user-
defined plans where failed commands may not be necessary 
in accomplishing the scenario goal(s).  

 

 

Figure 7:  Example of a plan formed within Dante Scenario Editor 

Figure 7 provides a snapshot from a Dante Scenario Edi-
tor displaying a red-team plan for breaking into a building 
within a secured facility, requiring the team to demolish 
multiple barriers between their start point and the building 
door.  Each box represents a command issued to the team, 
with the yellow box indicating the current command being 
followed by the team. The arrows connecting the commands 
indicate what command(s) to run next if the command suc-
ceeds (green) or fails (red).  In this case, the plan has not 
specified a failure branch for any command; the Terminate 
action is reached if the team cannot perform the Mechani-
calBreach to open the door.  This example shows how 
commands may run concurrently, with the team splitting 
into two groups (breach & support) after succeeding in the 
second ExplosiveBreach.   

Through Dante Scenario Editor, a user does not specify 
any details on how to achieve their strategic plans, leaving 
those decisions to the underlying architecture to determine 
each team member’s role and handle the underlying behav-
ior to successfully complete any issued command. 

Future Research 
The success of Dante’s agent architecture stems from its 
ability to handle a wide range of situations and simplify the 
process of considering a wide variety of behaviors.  Howev-
er, they are limited by the experiences and/or imagination of 
the developer or analyst who designed it, ignoring potential 
behaviors that could expose new vulnerabilities.  Further-
more, these systems require a degree of hand-tuning and 
subsequent user testing that makes it restrictive. Advances 
in planners, particularly path and route planning, also give 
the appearance of advanced behaviors and reasoning while 
being flexible. Planning-based AIs exist though are fre-
quently driven by complex heuristics that require additional 
tweaking and tuning, are backed by yet another decision-
making technology, or suffer from the overhead of re-
planning should the inputs to the plan change.  To address 
this drawback, subsequent research will explore applying 
evolutionary algorithms for generating novel behaviors, and 
comparing their success to expert-based behavior designs. 

As capabilities for building new, more complex agents 
grow, new methods for validating the realism of these be-
haviors will be required.   To test character behaviors, we 
suggest the option of using automated online experimenta-
tion to rapidly, and in a fully online manner, test character 
behavior with real human subjects. These subjects can be 
drawn from general online subject pools or from specific 
domains. The goal will be to rapidly evaluate the realism of 
character behavior in isolation – thus reducing the likeli-
hood of character behavior deviating significantly from real-
ism.  Furthermore, these interactions can help train and 
adapt the behaviors.  
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