
Fast Random Genetic Search for
Large-Scale RTS Combat Scenarios

Corey Clark, Anthony Fleshner
Guildhall

Southern Methodist University
Plano, TX, United States

Abstract

This paper makes a contribution to the advancement of ar-
tificial intelligence in the context of multi-agent planning
for large-scale combat scenarios in RTS games. This paper
introduces Fast Random Genetic Search (FRGS), a genetic
algorithm which is characterized by a small active popula-
tion, a crossover technique which produces only one child,
dynamic mutation rates, elitism, and restrictions on revisit-
ing solutions. This paper demonstrates the effectiveness of
FRGS against a static AI and a dynamic AI using the Port-
folio Greedy Search (PGS) algorithm. In the context of the
popular Real-Time Strategy (RTS) game, StarCraft, this pa-
per shows the advantages of FRGS in combat scenarios up to
the maximum size of 200 vs. 200 units under a 40 ms time
constraint.

Introduction and Background

Multi-agent planning is a part of RTS artificial intelligence.
This concept refers to the collective planning of many indi-
vidual units (a single entity in a video game. For example:
a single ‘Marine’ unit in StarCraft) belonging to a single AI
Commander (the overarching artificial intelligence system
that governs the behavior of a non-player character (NPC)
in a video game).

In the context of RTS games, multi-agent planning usually
involves all units, vehicles, structures, resources, etc. owned
by one player. An AI Commander controlling an NPC in an
RTS game regulates the actions of every unit at every step of
the game. Considering only units, a player character or NPC
in StarCraft can have up to 200 units to command at any
given time. Furthermore, each unit can have a widely vary-
ing degree of actions it can perform at any time including
movement, building, attacking, gathering, pathfinding, etc.

This paper addresses the problem of multi-agent planning
for combat scenarios in RTS games, scaling up to the largest
possible size of 200 vs. 200 units. A combat scenario con-
sists of two armies of equal initial size starting in separated
and symmetrical states. Each unit in the army (the collec-
tion of all units under the control of an AI Commander) can
move or attack an enemy unit. When a unit is attacked, the
attacked unit loses health points until its total health points
reaches zero. When a unit reaches zero health points, it is

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

considered “dead” and removed from the scenario. An AI
Commander “wins” a scenario when all of the enemy’s units
are removed from the combat scenario.

The retail version of StarCraft runs at 24 frames per sec-
ond, which means each frame refreshes after 41.67 ms. In
pursuit of a real-time solution, this paper explores an algo-
rithm capable of improving the combat state of a StarCraft
AI Commander in 40 ms or less.

Related Work

Churchill, D. et Buro, M. 2013, implemented Portfolio
Greedy Search (PGS), a hill climbing greedy search that cre-
ates a portfolio (a set of strategies available to the AI Com-
mander) of move possibilities and compared to the following
techniques:

• Alpha-beta – A search technique that involves removing
branches (pruning) of the search tree that do not influence
the final decision.

• UCT – A Monte Carlo Tree Search (MCTS) technique
that involves a balance between selecting the best move
found so far and exploring new moves.

• UCT Considering Durations (UCTCD) – An implementa-
tion of UCT search which considers simultaneous moves
with durative actions, instead of alternating moves with
identical durations.

PGS was shown to outperform Alpha-Beta, UCT, and
UCTCD for army sizes greater than 32 with a separated ini-
tial state. PGS achieved >90%-win percentage over Alpha-
beta and a 90%-win percentage over UCT for army sizes
32 and 50, when initialized with a separated state (Churchill
and Buro 2013).

Wang et al. 2016 developed Portfolio Online Evolution
(POE), which combined PGS with Online Evolution (Juste-
sen, Mahlmann, and Togelius 2016). POE utilizes evolution
with a static mutation rate rather than tree search to identify a
sequence of moves for a given portfolio. POE outperformed
PGS with an average win rate around 75%, but performed
slightly better with smaller army sizes. POE outperformed
UCT and UCTCD in large to moderate army sizes and had
near a 50% win rate for small size armies (Wang et al. 2016).

Proceedings, The Thirteenth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE-17)

165

Static AI

A static AI Commander controls individual units according
to a single strategy (a set of rules that governs the behavior
of a unit). Any strategy may be unique or a combination of
other strategies, but the overall behavior of AI units is pre-
dictable and prone to exploitation (Churchill, Saffidine, and
Buro 2012). This research utilizes eight different strategies
from the SparCraft combat simulator (Churchill 2012) in-
cluding:

• AttackClosest: Attack the closest enemy in range. If no
enemies are in range, move toward the closest enemy.

• AttackWeakest: Attack the enemy in range with the low-
est health. If no enemies are in range, move toward the
closest enemy.

• AttackDPS: Attack the enemy in range with the highest
DPS (damage per second) / health value. If no enemies
are in range, move toward the closest enemy.

• NOKDPS: Attack the enemy in range with the highest
DPS / health value that has not been dealt lethal dam-
age. If no enemies are in range, move toward the closest
enemy. This behavior prevents other friendly units from
attacking enemy units that would die anyway, effectively
preventing “overkill”.

• Kiter: If this unit can currently attack, attack the clos-
est enemy. If this unit cannot currently attack and it is
in range of an enemy, move away. If this unit can attack
and no enemies are in range, move toward the closest en-
emy. This strategy attempts to move the unit away from
enemies while it cannot attack, to prevent enemies from
attacking it, effectively “kiting” the enemy.

• KiterDPS: Follows the same behavior as Kiter, except Ki-
terDPS targets the enemy in range with the highest DPS /
health value.

• KiterNOKDPS: Follows the same behavior as Kiter-
DPS, except KiterNOKDPS prevents overkill from other
friendly units. This strategy is effectively Kiter combined
with NOKDPS.

• Cluster: This strategy moves all units towards a central
position.

A static AI Commander commands all units to follow
the same strategy. For example, an AI Commander follow-
ing the ‘AttackClosest’ strategy will command each unit to
attack the closest enemy in range. The units belonging to
the AI Commander follow the same strategy throughout an
entire battle. A static AI does not have the adaptability of
a dynamic AI. In a dynamic system, the AI Commander
can change the strategy of its units as the combat scenario
evolves.

Dynamic AI

Evaluation Function

The evaluation function determines the score of a current
state of all units owned by the AI Commander. This eval-
uation function returns a single score as a numerical rep-
resentation of the value of any given state. A higher score
than the enemy score represents and advantageous state,

Figure 1: State search diagram for PGS and FRGS.

while a lower score than the enemy represents a disadvan-
tageous one. The evaluation function for RTS games used
by A. Kovarsky et M. Buro (Kovarsky and Buro 2005) is the
Life-Time-Damage-2 (LTD2) function. The LTD2 function
was also used by Churchill, D. et Buro, M. (Churchill and
Buro 2013) in experiments comparing PGS to Alpha-Beta,
UCT, and UCTCD. LTD2 is an evaluation function which
favors having many units over a single unit (all summed
health equal). LTD2 also favors keeping alive units which
deal the highest damage (damage per frame) (Erickson and
Buro 2014).

LTD2(s) = Σμ∈U1

√
hp(u) ∗ dpf(u)−

Σμ∈U2

√
hp(u) ∗ dpf(u) (1)

Where s, μ ∈ U1, μ ∈ U2, hp(u), and dpf(u) represent
state, every unit in the AI Commander’s army, every unit
in the simulated enemy army, health points of a unit, and
damage per frame of a unit, respectively. The LTD2 evalu-
ation function calculates a health-damage number for each
unit. For each unit, the square root of the unit’s health is
multiplied by its damage per frame value to find its health-
damage number. Each unit’s health-damage number is added
together to find a single summation of all health-damage
numbers for the AI Commander. A state score for the AI
Commander is given by its summation score subtracted from
the summation score of the enemy.

Playouts

A playout is defined as a simulation from the current state
until a game-ending state is achieved. The LTD2 score of
the game-ending state represents the outcome of the play-
out. If a playout returns a higher LTD2 score than the cur-
rent state, then the playout state is better than the current
state. In order to reduce the total time spent running play-
outs, the number of simulated turns is limited to 100 during
each playout to match playout limitation in Churchill, D. et
Buro, M. (Churchill and Buro 2013).

Figure 1 represents the structure PGS and FRGS. Both al-
gorithms begin with an initial state that is seeded or random-
ized. Each algorithm has a unique state generation method.
At the end of each iteration, the state is evaluated after a 100
turn playout. When an evaluated state scores higher than the

166

Figure 2: State generation process for PGS. Blue represents
default strategy for unit, green is unit under test during eval-
uation state and orange represents units strategy has been
selected.

current best state, the current best state is updated. When the
40 ms time limit is reached, the current best state is returned
as the final state.

Portfolio Greedy Search

PGS is a hill climbing algorithm, presented in Churchill,
D. et Buro, M. (Churchill and Buro 2013), which consid-
ers each strategy for each combat unit and chooses the best
one based on its LTD2 score.

1. First, PGS calculates an initial seed state for both the AI
Commander and a simulated enemy Commander by se-
lecting a strategy from the portfolio [Algorithm 1, Lines
7-8, 19-24]. In this implementation of PGS, the initial
seed strategy is chosen randomly from the portfolio and
applied to all units belonging to the AI Commander. The
initial seed is chosen randomly to reduce the amount of
time spent calculating an initial seed. The calculation of
an initial seed used in Churchill, D. et Buro, M. (Churchill
and Buro 2013) requires M playouts and evaluations,
where M is the number of strategies in the portfolio.

2. After the initial seed is chosen, the algorithm enters the
improve cycle [Algorithm 1, Lines 10, 26-47]. During
each iteration of improvement, a single unit strategy is
changed and an LTD2 evaluation determines the score of
the new state. If the new state score is higher than the
previous state score, the unit’s new strategy improved the
state. Then, the execution considers the next strategy in
the portfolio. After all strategies are evaluated for a sin-
gle unit, the next unit is evaluated in the same way. The
algorithm then repeats the improvement process for I iter-
ations.

3. When the time limit (40 ms) is reached, the current evalu-
ation finishes and the algorithm returns the best state cal-
culated.

In Figure 2, the AI Commander has an army size of 3 units
and a portfolio of 3 strategies. States are generated by alter-
ing the strategy of a single unit. The algorithm creates N*M
states per iteration, where N is the number of units and M is

Algorithm 1 Portfolio Greedy Search
1: Portfolio P � Script Portfolio
2: Integer I � Improvement Iterations
3: Integer R � Improvement Responses
4: Script D � Default Script
5:
6: procedure PGS(State s, Player p)
7: enemy[s.numUnits(opponent(p)].fill(D)
8: self [] ← GetRandomSeedP layer(s, opponent(p),

9: self)

10: self ← Improve(s, p, self, enemy)

11: for r=1 to R do

12: enemy ← Improve(s, opponent(p), enemy,

13: self)

14: self ← Improve(s, p, self, enemy)

15: end for

16: return generateMoves(self)
17: end procedure

18:
19: procedure GETRANDOMSEEDPLAYER(State s, Player p, Script e[])
20: Script self[s.numUnits(p)]
21: randomScript ← rand(0, p.numScripts)

22: self.fill(randomScript)
23: return self
24: end procedure

25:
26: procedure IMPROVE(State s, Player p, Script self[], Script e[])
27: Script self[s.numUnits(p)]
28: for i=1 to I do

29: for u=1 to self.length do

30: if timeElapsed > timeLimit then

31: return

32: end if

33: bestV alue ← −∞
34: bestScript ← null

35: for Script c in P do

36: self [u] ← c

37: value ← Playout(s, p, self, e)

38: if value > bestValue then

39: bestV alue ← value

40: bestScript ← c

41: end if

42: self [u] ← bestScript

43: end for

44: end for

45: end for

46: return self
47: end procedure

the number of strategies in the portfolio. After M strategies
have been created for a single unit, the AI Commander picks
the highest scoring (LTD2) state and assigns the associated
strategy to the unit. The AI Commander continues in this
way until all units are evaluated. A state selection occurs N
times per iteration, effectively picking the current best strat-
egy for each unit. The final state of each iteration is used as
the initial state of the next iteration.

Fast Random Genetic Search

Fast Random Genetic Search (FRGS) is characterized by a
small active population, a crossover technique which pro-
duces only one child, dynamic mutation rates, elitism, and

167

Algorithm 2 Fast Random Genetic Search
1: Portfolio P � Script Portfolio
2: Integer R � Improvement Responses
3: Script D � Default Script
4: procedure FRGS(State s, Player p)
5: enemy[s.numUnits(opponent(p)].fill(D)
6: self [] ← GetRandomSeedP layer(s, opponent(p),

7: self)

8: self ← Improve(s, p, self, enemy)

9: for r=1 to R do

10: enemy ← Improve(s, opponent(p), enemy,

11: self)

12: self ← Improve(s, p, self, enemy)

13: end for

14: return generateMoves(self)
15: end procedure

16: procedure GETRANDOMSEEDPLAYER(State s, Player p, Script e[])
17: Script self[s.numUnits(p)]
18: randomScript ← rand(0, p.numScripts)

19: self.fill(randomScript)
20: return self
21: end procedure

22: procedure IMPROVE(State s, Player p, Script self[], Script e[], Int evalsPerTier)
23: Map(Score, Script[s.numUnits(p)][]) population

24: score ← Playouts(s, p, self, e)

25: population[score].add(self)

26: while timeElapsed < timeLimit do

27: Script chromo[] ← self

28: currentMutateT ier ←
29: (evalCount/evalsPerT ier) + 1

30: numToMutate ←
31: Max(1, numUnits/currentMutateT ier)

32: if population.numScoreValues > 1 then

33: chromo ←
34: CreateChild(population[0][0], population[1][0])

35: end if

36: chromo ← Mutate(chromo, numToMutate)

37: score ← Playout(s, p, chromo, e)

38: population[score].add(chromo)
39: end while

40: self ← population[0][0]

41: return self
42: end procedure

43: procedure CREATECHILD(Script chromo1[], Script chromo2[])
44: Script child[]
45: child.randomHalfUnits ←
46: chromo1.randomHalfUnits

47: child.otherHalfUnits ←
48: chromo2.otherHalfUnits

49: return child
50: end procedure

51: procedure MUTATE(Script chromo, int numUnitsToMutate)
52: Script mutatedChromo
53: mutatedChromo ← chromo

54: for u=0 to numUnitsToMutate do

55: mutatedChromo[nextRandUnit] ←
56: randomScript

57: end for

58: return mutatedChromo
59: end procedure

restrictions on revisiting solutions. Given the need to com-
plete the heuristic search within a small fraction of a second,
the effective chromosome population size is limited in the
present case to only two solutions. As such, the crossover
rate is set to 1. The two solutions in the population are bred
at each step. Since solution evaluation is costly in terms of
CPU time, the crossover operation only produces one new
solution per evaluation. Dynamic mutation rates have shown
to increase convergence (Jun Zhang, Chung, and Hu 2004;
Bck 1992; Fogarty 1989; Hesser and Mnner 1991) and are
used to increase exploration early on and increase solution
refinement in the later iterations. During the initial gener-
ations, a large mutation rate is used to create a genetically
guided random search. In the later generations, the child so-
lution is composed primarily of the genes of the parents. The
child solution is retained in the population only if its fitness
value is superior to at least one parent. If so, the child solu-
tion replaces the lowest quality parent solution. This is ef-
fectively the same as an elitist strategy where the number
of elite solutions equals the population size. While having
such a high rate of elitist solutions usually limits the popula-
tion diversity, this is balanced by a high, but dynamic muta-
tion rate. Finally, the genetic search maintains a memory of
evaluated solutions and verifies the child is a new solution,
otherwise mutation is again applied.

1. First, FRGS calculates an initial seed state for both the
AI Commander and a simulated enemy by selecting a
strategy from the portfolio. The initial seed is chosen ran-
domly from the portfolio and applied to all units belong-
ing to the AI Commander. An initial evaluation is com-
puted and a <score, state> pair (chromosome) is added to
the population of potential solutions [Algorithm 2, Lines
6-8, 16-21].

2. After the initial seed is chosen and evaluated, the algo-
rithm enters the improve cycle. During each iteration of
improvement, a new state is generated by combining the
top two states in the population [Algorithm 2, Lines 8, 22-
42]. The crossover method forms a new state from a ran-
dom 50% of the first state and the complementary 50%
from the second state [Algorithm 2, Lines 33, 43-50].

3. After the crossover, a random mutation is applied to a
variable number of units [Algorithm 2, Lines 36, 51-59].
The number of units mutated is inversely correlated with
the number of iterations. The first iteration has the high-
est mutation chance, up to 100% of the units are mutated.
The number of mutated units decreases as the number of
iterations increases. The number of units chosen for muta-
tion is the number of units divided by the current mutation
tier. The current mutation tier is calculated by dividing
the number of evaluations completed by the evalsPerTier
number. The evalsPerTier number is an arbitrary number
which was set at ‘10’ for this paper [Algorithm 2, Lines
28-30, 36]. If the mutated state is identical to a chromo-
some already in the population, the mutation process is
applied again until a unique solution is created. This pro-
cess promotes a high variation chance in the initial gener-
ation of the population and a low variation chance in the

168

Figure 3: State generation process for FRGS. Blue and or-
ange indicates strategies selected from Chromosome 1 and 2
respectively for child state, while green represents randomly
mutated strategies of child

later iterations. The mutation process also prevents dupli-
cate entries in the population.

4. When the time limit (40 ms) is reached, the current state
finishes evaluation and the algorithm returns the best state
calculated.

Figure 3 shows the state generation method of FRGS. In
Figure 3, chromosome 1 and chromosome 2 represent the
two highest LTD2 scoring states in the population. The two
states are combined by selecting a random half of the first
state and the complementary half from the second state.
Then, a variable number of units’ strategies are randomly
changed during the mutation step.

Explanation of Experiments

Hardware / Software

All experiments were performed on an Intel Core i7-
4810MQ CPU @2.80GHz. Experiments ran in a single
thread only. Experiments were programmed in C++ using
Visual Studio 2013.

SparCraft Scenarios and Units

Each scenario simulated in SparCraft consisted of two AI
Commander with a varying number of units. In this 1v1 (1
Commander vs. 1 Commander) scenario, each Commander
controlled the same number of units, ranging from 5 – 200
(maximum allowed in StarCraft). A total of 100 battles were
simulated for each army size of 5, 10, 20, 40, 60, 80, 100,
120, 140, 160, and 200. For all experiments, each army con-
sisted of entirely ‘Marine’ units from the ‘Terran’ faction of
StarCraft. The Marine unit is a basic ranged combat unit.

Each unit was generated symmetrically about a midpoint
in the battle arena, then translated some distance towards
opposing sides of the arena (Churchill 2012). The starting
positions of both armies were symmetrical about the mid-
point of the arena, but separated by a random distance. The
separated starting positions closely simulated the meeting of
two opposing StarCraft armies in an actual game.

Figure 4: Results of KiterDPS strategy vs. KiterDPS strat-
egy.

The SparCraft arena consisted of an open map with a
fixed boundary. All units could move freely while remain-
ing within the bounds of the arena. The SparCraft simulator
restricted unit movement to four directions (forward, back-
ward, left, right) to reduce the number of possible unit ac-
tions (Churchill and Buro 2013).

Search Parameters

The following parameters were used for both search tech-
niques:

• Time limit: 40 ms
• Improvement Iterations: No limit
• Response Iterations: 0
• Portfolio: AttackClosest, AttackWeakest, AttackDPS,

NOKDPS, Kiter, KiterDPS, KiterNOKDPS, Cluster

The search algorithms were not limited by a pre-defined
number of iterations. The only restriction on improvement
was the 40 ms time limit. For both search techniques, there
was no time spent calculating an initial seed. The seed was
chosen for both Commanders before-hand or selected ran-
domly to ensure that no extra time was spent initially seed-
ing either algorithm. Experiments were run for an arbitrary
starting seed (KiterDPS) and a random seed. In these exper-
iments, the number of responses was set to 0. A response
involves running the improvement algorithm on the simu-
lated enemy and subsequently improves the final solution. A
response value of 0 was chosen to show the baseline perfor-
mance of both algorithms and was also used in Churchill, D.
et Buro, M. (Churchill and Buro 2013).

Results

Figure 4 is included to demonstrate the validity of the un-
derlying system. In this test, both armies simply chose the
KiterDPS strategy at every stage of execution. Since both
armies were seeded with separated and symmetrical states,
the outcome (win percentage) at all army sizes was 50%.
With all factors equal, a fair system is expected to yield a
50%-win percentage for both armies. These results verify
the validity and integrity of the combat simulation system.

Additional test were executed between PGS and FRGS
against the KiterDPS strategy. In both experiments, the dy-
namic AIs were seeded with KiterDPS. PGS and FRGS
maintained a 100%-win ratio for all army sizes against the
static AI. This result was expected as both dynamic AI are
seeded with KiterDPS and any improvement made by PGS
or FRGS produced a win.

169

Figure 5: Results of FRGS vs. PGS with KiterDPS seed for
both algorithms. Error bars show 95% confidence interval.

Figure 6: Results of FRGS vs. PGS with random seed for
both algorithms. Error bars show 95% confidence interval.

FRGS vs. PGS

Figure 5 and Figure 6 show results of the FRGS against PGS
when seeded with a single strategy (KiterDPS) and with a
random seed for army sizes ranging from 5 – 200. In both
instances, FRGS outperformed PGS in terms of win percent-
age. The win percentage of FRGS vs. PGS is correlated log-
arithmically to the size of the armies.

As shown in the above graphs, Figure 5 and Figure 6,
FRGS achieved a 100%-win percentage over PGS at max-
imum and near-maximum size armies. Even at small size
armies down to 5 units, FRGS won more than 50% of the
time. As the number of strategies in the portfolio and num-
ber of units increased, FRGS further outperformed PGS.

The following graphs, Figure 7 and Figure 8, show the re-
lationship between score and time for both algorithms. Each
graph shown is a single frame of a single battle. Every point
on the graph represents time at which a new state is selected
(x-axis) and the score of that state (y-axis) for that frame.

In Figure 7 & 8, FRGS completed more state selections
than PGS. This does not mean that FRGS completed more
evaluations. PGS completed roughly the same number of
evaluations, but PGS’ evaluations were spent analyzing sin-
gle changes to single units. In the experiment with 20 units,
PGS was able to analyze 5 units (25%) and in the experi-
ment with 80 units, PGS was able to analyze 2 units (2.5%).
Further analysis of the PGS algorithm shows the following
attributes.

Figure 7: LTD2 score and time (ms) graph for FRGS and
PGS with an army size of 20 units over a single frame (40
ms).

Figure 8: LTD2 score and time (ms) graph for FRGS and
PGS with an army size of 80 units over a single frame (40
ms).

Attributes of PGS A.)PGS evaluations reflect a change to
a single unit. B.)Searches a small portion of the total search
space with a large number of strategies (8) and a large num-
ber of units (up to 200). C.)N*M evaluations and M state
selections for one full pass over all units where N is the num-
ber of units and M is the number of strategies. D.)When time
runs out, PGS has only analyzed a small percentage of units
out of a potential of 200.

Attributes of FRGS A.)FRGS changes the strategy for up
to 100% of units and then evaluates the entire state based
on that change. The number of units changed per evalua-
tion decreases as more iterations are completed. B.)Portfolio
size does not affect search time. C.)FRGS evaluations reflect
entire army changes, instead of per unit changes. D.)When
time runs out, FRGS has analyzed a diverse set of states and
picked the current best state.

Conclusion and Future Work

This paper presented the FRGS algorithm for large-scale
RTS combat scenarios. Experiments were designed and ex-
ecuted to test the performance of a PGS and FRGS with
a large portfolio (8 strategies) and up to maximum size
(200 units) armies allowed in StarCraft using 1000 simu-
lations. Results have shown that FRGS outperforms PGS
when armies start in separated states. FRGS achieves 100%-
win percentage as low as 100 units when the starting strate-

170

gies are seeded randomly. For a large number (8) of strate-
gies in the portfolio, FRGS achieves >50%-win percentage
over PGS at an army size as low as 5 units.

While the results have shown that FRGS outperforms
PGS under certain conditions, FRGS emphasizes early ex-
ploration. Due to early exploration, FRGS spends time ex-
ploration a wide variety of states in the early stages of ex-
ecution. While one of the early states has a chance of out-
scoring the initial state, FRGS does not quickly refine any
state. FRGS quickly finds a wide variety of states and slowly
lowers its mutation rate and subsequently increases the re-
finement rate in the later iterations.

FRGS struggles to find a better solution when the initial
state is seeded with a high-scoring state. Given its high early
exploration, the chances of improving a high-scoring state
are low. In the case of a high-scoring initial state, FRGS
will likely explore much weaker states while making no im-
provement. Although, as the mutation rate decreases, FRGS
will be able to refine the initial state.

A potential improvement to FRGS involves limiting the
early exploration phase when a high-scoring (LTD2) state
is found. After a high scoring is generated, ending the ex-
ploration phase allows FRGS to enter a refinement phase.
This improvement will increase the performance of FRGS
for smaller sized armies (<100 units).

Knowing the strengths and weaknesses of FRGS al-
lows future works to incorporate a hybrid solution between
FRGS, PGS, and other search algorithms.

References

Bck, T. 1992. Self-Adaptation in Genetic Algorithms. In
Proceedings of the First European Conference on Artificial
Life, 263–271. MIT Press.
Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in starcraft. 1–8.
IEEE.
Churchill, D.; Saffidine, A.; and Buro, M. 2012. Fast heuris-
tic search for RTS game combat scenarios. In In Proceed-
ings of the AIIDE Conference, 112–117.
Churchill, D. 2012. SparCraft: Open Source StarCraft Com-
bat Simulation.
Erickson, G. K. S., and Buro, M. 2014. Global State Evalu-
ation in StarCraft. In AIIDE.
Fogarty, T. C. 1989. Varying the Probability of Mutation in
the Genetic Algorithm. In Proceedings of the Third Inter-
national Conference on Genetic Algorithms, 104–109. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Hesser, J., and Mnner, R. 1991. Towards an Optimal Muta-
tion Probability for Genetic Algorithms. In Proceedings of
the 1st Workshop on Parallel Problem Solving from Nature,
PPSN I, 23–32. London, UK, UK: Springer-Verlag.
Jun Zhang; Chung, H.; and Hu, B. 2004. Adaptive probabil-
ities of crossover and mutation in genetic algorithms based
on clustering technique. 2280–2287. IEEE.
Justesen, N.; Mahlmann, T.; and Togelius, J. 2016. On-
line Evolution for Multi-action Adversarial Games. Cham:
Springer International Publishing. 590–603.

Kovarsky, A., and Buro, M. 2005. Heuristic Search Ap-
plied to Abstract Combat Games. In Hutchison, D.; Kanade,
T.; Kittler, J.; Kleinberg, J. M.; Mattern, F.; Mitchell, J. C.;
Naor, M.; Nierstrasz, O.; Pandu Rangan, C.; Steffen, B.; Su-
dan, M.; Terzopoulos, D.; Tygar, D.; Vardi, M. Y.; Weikum,
G.; Kgl, B.; and Lapalme, G., eds., Advances in Artificial In-
telligence, volume 3501. Berlin, Heidelberg: Springer Berlin
Heidelberg. 66–78. DOI: 10.1007/11424918 9.
Wang, C.; Chen, P.; Li, Y.; Holmgrd, C.; and Togelius, J.
2016. Portfolio online evolution in starcraft.

171

