
Single Believe State Generation for Handling
Partial Observability with MCTS in StarCraft

Alberto Uriarte, Santiago Ontañón
Computer Science Department

Drexel University
{albertouri,santi}@cs.drexel.edu

Abstract

A significant a mount of work exists on handling partial ob-
servability for different game genres in the context of game
tree search. However, most of those techniques do not scale
up to RTS games. In this paper we present an experimental
evaluation of a recently proposed technique, single believe
state generation, in the context of Star Craft. We evaluate the
proposed approach in the context of a Star Craft playing bot
and show that the proposed technique is enough to bring the
performance of the bot close to the theoretical optimal where
the bot can observe the whole game state.

Introduction

It has been shown that partially observable games are of-
ten exponentially harder than perfect information games.
Specifically, perfect information two-player unbounded-
length games have been shown to be EXPTIME (Fraenkel
and Lichtenstein 1981), while games where there is pri-
vate information have been shown to be 2-EXPTIME (Reif
1984). Thus, finding optimal strategies in partially observ-
able games is intractable. This paper extends our previ-
ous work on game tree search on partially observable real-
time strategy (RTS) games by analyzing the effectiveness of
single-believe state estimation techniques in the context of
game tree search in STARCRAFT.

Recent work on game tree search in RTS games has
been focused on handling the fact that RTS games have
huge branching factors (e.g., (Ontañón et al. 2013; Barriga,
Stanescu, and Buro 2015)), or the fact that they are real-time,
and thus there is very little time for performing search (e.g.,
(Churchill and Buro 2013)). However, the problem of par-
tial observability in RTS games has not received sufficient
attention, and good approaches to handle this problem still
do not exist.

Thus, specifically, this paper explores the idea of deter-
minization (from all the possible states that the game can be
in, given the player observation, just pick one or a few, and
then perform standard game tree search) in the context of
STARCRAFT. In our previous work, we proposed three dif-
ferent determinization techniques specifically designed for
RTS games, and evaluated them in a simplified RTS game

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(μRTS1). This paper extends upon such work, by evalu-
ating the performance of some of them in the context of
STARCRAFT. The key idea behind our approach is to use
a combination of memory of past knowledge (remember the
information we observed from the opponent in the past) and
an inference process (e.g., if we have seen the opponent to
have air units, then she must have a space port) to maintain
a single believe state. This believe state is an estimation of
actual game state given the current observations, memory
of past events and inference. We present experiments in the
context of Monte Carlo Tree Search (MCTS) in the domain
of STARCRAFT.

The remainder of this paper is organized as follows. First,
we introduce some basic concepts of RTS games and par-
tially observable games. Then, we present our believe state
estimation approach. After that, we report an empirical eval-
uation on STARCRAFT, showing very promising results, and
finally we present related work in the area of determinization
to handle partially observable games.

Background

This section briefly describes RTS games and then summa-
rizes the existing approaches to handle partial observability
in adversarial games.

Real-Time Strategy Games

RTS games are complex adversarial domains, typically sim-
ulating battles between a large number of military units, that
pose a significant challenge to both human and artificial in-
telligence (AI) (Buro 2003). Designing AI techniques for
RTS games is challenging because of three main reasons::

• Scale: they have huge decision spaces: the branching fac-
tor of a typical RTS game, StarCraft, has been estimated
to be on the order of 1050 or higher (Ontañón et al. 2013)
(for comparison, that of Chess is about 35, and that of
Go about 180). Moreover, the state space of StarCraft has
been estimated to be at least 101685 (Ontañón et al. 2013),
compared to about 1047(Chinchalkar 1996) for Chess and
10171(Tromp and Farnebäck 2006) for Go.

• Real-time nature: 1) RTS games typically execute several
decision cycles per second, leaving players with a fraction

1https://github.com/santiontanon/microrts

The AIIDE-17 Workshop on
Artificial Intelligence for Strategy Games

15

WS-17-18

Fog-of-war Observed
State

Figure 1: A screenshot of StarCraft, showing the area of the
game that the player can see, and that that is hidden due to
the fog-of-war. The right part of the screen is visible, since
there are three units (three SCVs). Since there are no player
units on the left side, the player cannot see what is there.

of a second to decide the next action, 2) players can issue
actions simultaneously, and 3) actions are durative.

• Partial observability: due the fog-of-war, players cannot
observe the parts of the map that are out of the sight of
their units units.

Additionally, some RTS games are also non-
deterministic, but we will not deal with this problem
in this paper.

The reason for which the branching factor in RTS games
is so large is that players control many units, and players can
issue multiple unit-actions at the same time (one per unit).
Thus, the set of possible player-actions grows exponentially
with the number of units a player controls. Notice that al-
though when humans play these games, due to the limita-
tions of the interface, they cannot issue an arbitrary number
of actions per game cycle, when an AI plays these games,
the full combinatorics exists. The fact that these games are
real-time only exacerbates this problem.

Moreover, the focus of this paper is partial observabil-
ity. In order to illustrate the idea of the fog-of-war, Figure
1 shows a screenshot of StarCraft where we can see the area
that is visible to the player, and that that is hidden by the
fog-of-war, since there are no units nearby. In the rest of
this paper we will use the term observed state to refer to the
game state as observed by the player (which might no in-
clude some enemy units or part of the map, since they are
not visible). We will use the term actual game state to refer
to the underlying game state (which is not observable to the
player), and which includes all units in the game. Finally, we
will use the term believe state to any estimation of the actual
game state the a player makes given the observed state.

As in our previous work (Uriarte and Ontañón 2017),
we will use the following definition for a two player
partially-observable RTS game as a 9-tuple G =
(P, S, Z,O,A, L, T,W, s0), where:

• P = {max,min} is the set of players.

• S is the set of possible game states.
• Z is the set of possible observations (i.e., since the game

is partially observable, the only thing players can observe
are the states in Z).

• O(p, s) → Z, is the observation function. Given a player
p ∈ P and the current game state s ∈ S, returns the ob-
served state zp ∈ Z from a point of view of player p.

• A is the finite set of unit-actions (a) that units can execute.
Also remember that we defined α as the set of unit-actions
from the same player.

• L(p, α, s) → {true, false}, is a function that returns
whether player p can execute player-action α in state s.

• T (st, αmin, αmax) → st+1 is the deterministic transition
function, that given a state st ∈ S at time t, and the player-
actions of each player (αmin and αmax), returns the state
that will be reached at time t + 1 (i.e., T is the forward
model of the game).

• W : S → {maxwins,minwins, draw, ongoing} is a
function that determines the winner of the game, if the
game is still ongoing, or if it is a draw.

• s0 ∈ S is the initial state.
Additionally, we define Ip(z) ⊆ S as the information set

of player p given observation z, which is the set of all states
that are indistinguishable for player p given the current ob-
served state z, i.e., Ip(z) = {s ∈ S|O(p, s) = z}.

Game Tree Search in Partially Observable
Domains

Partially observable games are usually modeled as
extensive-form games, where the main difference with re-
spect to fully observable games is that instead of considering
states, we consider information sets, i.e. sets of states that
are indistinguishable to a player at the time she has to make
a decision. Moreover, the game tree complexity of imper-
fect information games tends to be very high even for simple
games, and approaches to compute the optimal randomized
strategy for them can require an exponential amount of time
as a function of the size of the game tree (Kuhn 1950) or
at least polynomial in the size of the game tree (Koller and
Pfeffer 1995).

For this reason most work on partially observable games
(or imperfect information games) requires making assump-
tions that do not hold true for RTS games. For example,
some of them assume opponents with fully observability
or require searching all the possible states, such as Best
Defence model (Frank and Basin 1998), Vector minimax-
ing (Frank, Basin, and Matsubara 1998), or Believe-state
AND-OR tree search (Russell and Wolfe 2005). Zinkevich
et al. (Zinkevich et al. 2007) proposed Counterfactual Re-
gret Minimization (CFR), an algorithm that converges to the
Nash equilibrium without assuming an opponent with full
observability, but still requiring sampling all the different
states. Lanctot et al. (Lanctot et al. 2009) improved over this
by avoiding having to explore the whole state space by using
Monte Carlo sampling (Monte Carlo CFR, MCCFR). MC-
CFR has been applied with great success in games with a

16

short game tree depth, compared to that in RTS games, and
where the disambiguation of the information sets only hap-
pens at the end, such as Poker or Liar’s Dice.

The most common approach to handle partial observabil-
ity is known as determinization (see the related work below
for an overview of work in this area). The key idea of deter-
minization is to sample a state from the current information
set and proceed with a perfect information game tree algo-
rithm. This is usually repeated several times, and the action
to perform is determined via voting. This has been described
as “averaging over clairvoyance” (Russell and Norvig 2009)
and as Frank et al. (Frank and Basin 1998) pointed out, it
raises several problems:

• Strategy fusion: players must behave the same way in
states from the same information set,

• Non-locality: the search can be “fooled” to pursue a
highly rewarded state that cannot actually be reached un-
der some information, and

• Fake omniscience: when the player never tries to hide or
gain information because she believes that she has perfect
information.

Despite these problems, determinization works very well
in some domains. Long et al. (Long et al. 2010) explained
why by defining three properties of game trees that can lead
to strategy fusion and non-locality: 1) probability of another
terminal node with the same payoff value (leaf correlation),
2) probability that the game will favor a particular player
over the other (bias), and 3) how quickly the states in an
information set shrinks with regard to the depth of the tree
(disambiguation factor). They found that determinization
will perform well in games with a very high disambigua-
tion factor or with a very high leaf correlation combined
with a polarized bias (i.e., a very low or very high bias).
In our previous work (Uriarte and Ontañón 2017), we ana-
lyzed whether RTS games satisfied these properties by an-
alyzing them in a simplified RTS game (μRTS (Ontañón
2013)), and found that: 1) leaf correlation is really high as
expected, since the last player’s moves usually do not change
the outcome of the game, 2) the bias is balanced, and 3) the
disambiguation factor is really low or even negative, this is
because in RTS games we can lose information (specially
toward the end of a game a losing player will start losing
units, thus losing her ability to see the board). So, based on
this analysis, it seems that determinization should not work
well on RTS games. However, our experiments showed that
it indeed worked very well in μRTS. In this paper, we will
show that it also works very well in STARCRAFT.

Believe State Generation

Previous work on sampling believe states from the cur-
rent information set (Parker, Nau, and Subrahmanian 2005;
Richards and Amir 2012) requires search processes that
could be too computationally expensive for real-time games.
Thus, our proposed approach focuses on generating a sin-
gle believe state that hopefully resembles the actual game
state. Our hypothesis is that due to the complexity of RTS
games (and due to the fact that decisions need to be made

in every single frame), finding the optimal move at every
game frame might not be necessary. Therefore, sampling a
believe state that approximates the actual game state suffi-
ciently well might be enough to achieve strong gameplay
(with respect to the current state of the art). In our previous
work (Uriarte and Ontañón 2017) we proposed three tech-
niques to sample such believe state, one of which clearly
outperformed the others when evaluated in μRTS. Thus, in
this paper, we focused on evaluating the performance of the
best of those three techniques in STARCRAFT. This section
summarizes such approach.

Let us assume that the initial state is fully observable, i.e.,
both players know the actual game state for the very first
game frame. This assumption is true for board games like
Kriegspiel where the initial board configuration is known
for both players, or for RTS games where for a given map
the initial base locations are known for both players (like
in μRTS). It is also true for 2-player StarCraft maps where
there are only 2 possible starting locations, and thus each
player knows where the other player is starting. For other
games like Poker this is not true since the opponent hand is
unknown, but those are out of the scope of this work.

With this assumption, our believe state generation strategy
called Perfect memory (PM) works as follows:

• PM keeps a record Uo of the location of all opponent units
that have been observed at any time during the game (in-
cluding all of those in the fully observable initial game
state s0), but at not currently visible.

• Then, given the current observation z, if the location
where a unit u in Uo was last seen is visible but the unit
is not there anymore, the location of u is updated to the
nearest not observable location (i.e., it assumes the unit
has moved, but just the minimum amount as for making
the unit not observable).

• Inference mechanism: Additionally, if there is any enemy
unit that we have never seen but that is required to explain
part of the observation (i.e., if in order for the opponent
to have units of a certain type t1, the opponent must have
first build a unit of type t2, if we observe a unit of type
t1, then for sure we know the opponent has a unit of type
t2), then such units are also added to Uo. Inferred units are
added in the closest non-observable location to the oppo-
nent’s unit that caused the inference.

• Given the current observation z, the believe state is gen-
erating by adding all the units of Uo into z.

Intuitively, this strategy just takes the current observation,
adds units that we had seen in the past and also adds units
that we cannot observe, but that must be there in order to
explain the current observation. In order to implement the
inference mechanism in STARCRAFT, we exploit the tech-
nology tree of the game. And if a unit of a certain type t1
is observed, all the units that are required for this unit to be
produced according o the tech tree are added to Uo.

From a point of view of game theory, this strategy resem-
bles the idea of memory of past knowledge (Bonanno 2004).

Finally, notice that in its current form, this strategy can
only handle 2-player STARCRAFT maps, since 3+ player

17

maps would require either maintaining a probability distri-
bution over possible unit locations, or consider multiple be-
lieve states and do information set game tree search (White-
house, Powley, and Cowling 2011). We plan to explore this
possibility in our future work.

Incorporating Believe State Generation into

MCTS

The base MCTS approach used in this work is the In-
formed MCTSCD approach of Uriarte and Ontañón 2016a,
implemented in the Nova STARCRAFT bot. Specifically this
MCTS approach works as follows:

• The underlying bot is Nova, which controls every as-
pect of the game, except for military units. Informed
MCTSCD controls the movement of all military units in
the game.

• Rather than working using the low-level game state of
STARCRAFT, Informed MCTSCD uses an abstracted
game state. The map is represented as a graph of regions
and chokepoints (generated using BWTA2 (Uriarte and
Ontañón 2016b)), and instead of considering each unit in-
dividually, units are grouped by type and by area. So, all
the units in the same area of the same type are issued the
same action by informed MCTSCD.

• The specific configuration we used is to use the Informed
MCTSCD algorithm, using a best informed ε-greedy sam-
pling as the tree policy (ε = 0.2); a Squad Action Naive
Bayes Model for the default policy (Uriarte and Ontañón
2016a), and Alt policy in nodes where both players can
move (Churchill, Saffidine, and Buro 2012); a limit of
2,880 frames for the length of playouts (or simulations);
and a Decreasing DPF model for the forward model.

Since RTS games are real-time, we perform a search pro-
cess periodically (each 400 frames), and after each search,
the action associated with each unit is updated with the re-
sult of the search.

Experimental Evaluation

In order to evaluate our approach, we experimented with
executing informed MCTSCD with a computational budget
from 1 to 10,000 playouts. We compared three scenarios:

• Full Observability (cheating): in this configuration, we
deactivate the fog-of-war, and the game state given to
informed MCTSCD is the actual fully observable game
state. This configuration is used just for testing, since de-
activating the fog-of-war would be considered cheating,
in a real STARCRAFT match.

• Partial Observability: in this configuration, the game state
given to informed MCTSCD is just what the player can
observe. So, for example, at the beginning of the game,
the player will not see any opponent units.

• Partial Observability with Believe State Generation: in
this configuration, the proposed Perfect Memory strategy
is used to generate a believe state, which is passed on to
informed MCTSCD.

Figure 2: Comparison of Win % and 95% CI using informed
MCTSCD with perfect information (cheating) or imperfect
information with and without a Perfect Memory single be-
lieve state against the STARCRAFT built-in AI.

For each scenario, we ran 100 games against the built-in
AI. All games were performed in the Benzene STARCRAFT
tournament map. A general timeout for all the games was set
to 28,800 frames. Games going longer than this timeout are
considered a draw.

Figure 2 shows the win % average and the 95% confi-
dence interval of informed MCSTCD using perfect infor-
mation (cheating) or using imperfect information (with and
without the proposed Perfect Memory single believe state
approach) in STARCRAFT. As expected, when we enable
the fog-of-war, informed MCTSCD algorithm without a be-
lieve state is not aware of the enemy and it loses most of the
games. But once we use the Perfect Memory single believe
state approach, the win % is similar than when we have per-
fect information of the game. Although the results seem to
show that with less playouts the single believe state performs
slightly better than the cheating version, and the opposite for
a large number of playouts, the differences are not statisti-
cally significant. Thus, we can conclude that the proposed
Perfect Memory believe state estimation approach seems to
be enough to bring the performance of the STARCRAFT
playing bot used in our experiments to the same level of per-
formance as if it could observe the whole map. We hypoth-
esize that the slight difference in performance for the larger
number of playouts is due to a “disconnection” between the
real game state and the abstract game state, which manifests
itself more prominently when we give the bot a larger com-
putation budget. An interesting line of future work is to as-
sess whether these results generalize to other bots as well.

Moreover, we would like to emphasize that our system
did not lose any game, and the small percentage of games
it did not win were ties, where our system could not locate
the last remaining enemy units. This happens because some
of the regions that BWTA2 divides the map on are larger
than the sight range of the units in the region, and thus, there
might be unseen areas of a region unbeknownst to the MCTS
algorithm. To address this issue, BWTA2 actually generates

18

a list of points of visibility for each region. if we place a unit
in each of these points, then we can ensure we are seeing
the whole region. Our current implementation of Informed
MCTSCD does not exploit this information though.

Related Work

Determinization is by far the most common technique to
handle partial observability in game tree search. This sec-
tion provides a brief overview of the work in this area.

Monte Carlo Sampling (Corlett and Todd 1986): Also
known as Perfect Information Monte Carlo Sampling
(PIMCS), it randomly samples states to apply a perfect in-
formation search algorithm like alpha-beta and it returns the
best average move of all sampled states. This technique have
been applied in games like Bridge (Levy 1989), but it have
been shown that the error to find the optimal strategy rapidly
approaches to 100% as the depth of the game tree increases
(depth = 13) (Frank, Basin, and Matsubara 1997).

Statistical Sampling (Parker, Nau, and Subrahmanian
2005): Parker et al. proposed a statistical sampling for large
believe state games like Kriegspiel. More specifically they
proposed 4 different samplings: Last Observation Sampling
(LOS), All Observation Sampling (AOS), All Observation
Sampling with Pool (AOSP) and Hybrid Sampling (HS). For
each sample state (world) it uses alpha-beta and decides the
move that maximizes the score.

Information-set search (Parker, Nau, and Subrahmanian
2010) is game-tree search approach using information sets
and computing the expected utility (EU) of each information
set. The EU is computed as the weighted sum of the EUs
for each possible move, weighted by the probabilities of a
move given all the previous moves (perfect recall) times the
EU of applying the move. To make the problem tractable in
Kriegspiel, they used the following simplifications:

• The states in each information set are sampled using
Monte Carlo sampling.

• The search is limited to a depth and a heuristic evaluation
function is used for the EU.

• The probabilities of choosing moves for our opponent
(strategy of a player, a.k.a. player modeling) are limited
to two options: the opponent knows our pure strategy and
chose moves that minimize our EU (paranoia); the oppo-
nent does not know anything and uses a uniform random
distribution of our actions (overconfidence).

In their experiments, overconfident opponent model outper-
formed the paranoid model.

Monte Carlo Tree Search (MCTS) with Simulation Sam-
pling (Ciancarini and Favini 2009): Ciancarini et al. pro-
posed to delay the determinization until the simulation phase
of MCTS, showing that they got better results using a heuris-
tic function to get the probability of each type of world.

Determinized MCTS (Whitehouse, Powley, and Cowling
2011): It uses root parallelization where each root is a dif-
ferent determinization.

Single Observer Information Set MCTS (SO-
ISMCTS) (Cowling, Powley, and Whitehouse 2012):
The idea is that on each iteration of MCTS, a random root

determinization is made to get the set of legal actions. and
information sets as are used as nodes in the game tree. This
algorithm makes several assumptions: 1) the same action
applied to all the states of an information set transition to
the same information set, 2) opponent uses a random move
selection on the moves that are not observed, and 3) at each
real player turn (i.e., after executing an action in the game
state), we can generate the information sets from the current
observations. Unfortunately this last assumption is not true
for RTS games because the presence of durative actions.

Multi Observer Information Set MCTS (MO-
ISMCTS) (Cowling, Powley, and Whitehouse 2012):
To solve the second assumption of the previous algorithm,
they proposed a search using two ISMCTS simultaneously,
one for each player or “point of view”. The traversing is
done simultaneously but the action is considered from the
point of view of each player. In their tests a Determinized
MCTS works better for games with low probability of
strategy fusion while MO-ISMCTS works better when there
is a high chance of strategy fusion.

Although all of these techniques use determinization at
some degree, those that compact tree nodes by informa-
tion sets do not usually have the problem of strategy fusion
or non-locality; and only SO-ISMCTS partially avoids fake
omniscience since none of the players have perfect infor-
mation but there is not a mechanism to detect and exploit
gathering/hiding information actions.

Conclusions
In this paper, we have focused on the problem of perform-
ing game tree search in partially observable RTS games. In
order to address this problem, we have explored a simple
and fast approach to generate a single believe state given
the current information set, and experimented with it in
the context of STARCRAFT. Our results show that our ap-
proach achieves the same performance of having access to
the whole game state in STARCRAFT. Therefore, despite the
evidence shown in previous work, determinization is able
to handle RTS games with partially observable game states
with without any statistical significant penalty in large do-
mains (STARCRAFT).

This paper is a natural continuation of our previous work
(Uriarte and Ontañón 2017), where we showed similar good
performance in a different RTS game (μRTS). Thus, we can
conclude that single believe state generation is a viable ap-
proach for a large class of RTS games.

One aspect that our approach still cannot handle are
games where the initial state is not fully observable. For ex-
ample, when playing on a 3 or 4 player map in STARCRAFT,
the initial position of the enemy is unknown. Therefore, we
would not be able to add their locations to Uo. We would
like to extend out approach to handle a probability distribu-
tion of the possible locations of the units in Uo, so that we
could account for the fact that we know the enemy started in
one of the possible initial base locations. When generating
the believe state, these probabilities would be used to sam-
ple a single believe state. Moreover, observations should be
used to update these probabilities in order to reduce those
for positions that are unlikely, and increase the probability

19

for those positions that are more likely. Moreover, notice
that because of the determinization approach used in this
paper, this would not result on the system actively explor-
ing to resolve the ambiguity in the information set. In or-
der to do that, we would need to move away from deter-
minization approaches. Additionally, we would like to ex-
plore the possibility of applying MCTS to control more tasks
than just moving the military units, such as production, and
study whether performance decreases. Finally, given that at
this point our approach would finally allow for comparing
our MCTS approach against other competition bots under
STARCRAFT AI competition settings with fog-of-war acti-
vated, we would like to evaluate the performance of MCTS-
based bots against the top hardcode bots that are currently
dominating the competition.

References

Barriga, N. A.; Stanescu, M.; and Buro, M. 2015. Puppet
search: Enhancing scripted behavior by look-ahead search
with applications to real-time strategy games. In AIIDE.
Bonanno, G. 2004. Memory and perfect recall in extensive
games. Games and Economic Behavior 47(2):237–256.
Buro, M. 2003. Real-time strategy games: a new AI re-
search challenge. In IJCAI, 1534–1535. Morgan Kaufmann
Publishers Inc.
Chinchalkar, S. 1996. An upper bound for the number of
reachable positions. ICCA Journal 19(3).
Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in StarCraft. In CIG,
1–8. IEEE.
Churchill, D.; Saffidine, A.; and Buro, M. 2012. Fast heuris-
tic search for RTS game combat scenarios. In AIIDE. AAAI
Press.
Ciancarini, P., and Favini, G. P. 2009. Monte carlo tree
search techniques in the game of kriegspiel. In IJCAI, vol-
ume 9, 474–479.
Corlett, R. A., and Todd, S. J. 1986. A monte-carlo ap-
proach to uncertain inference. In Artificial intelligence and
its applications. John Wiley & Sons, Inc. 127–137.
Cowling, P. I.; Powley, E. J.; and Whitehouse, D. 2012. In-
formation set monte carlo tree search. IEEE Transactions on
Computational Intelligence and AI in Games 4(2):120–143.
Fraenkel, A. S., and Lichtenstein, D. 1981. Computing a
perfect strategy for n×n Chess requires time exponential in
n. Combinatorial Theory, Series A 32(2):199–214.
Frank, I., and Basin, D. A. 1998. Search in games with
incomplete information: A case study using bridge card play.
Artif. Intell. 100(1-2):87–123.
Frank, I.; Basin, D.; and Matsubara, H. 1997. Monte-carlo
sampling in games with imperfect information: Empirical
investigation and analysis. In Game Tree Search Workshop.
Frank, I.; Basin, D. A.; and Matsubara, H. 1998. Find-
ing optimal strategies for imperfect information games. In
AAAI/IAAI, 500–507.
Koller, D., and Pfeffer, A. 1995. Generating and solving
imperfect information games. In IJCAI, 1185–1193.

Kuhn, H. W. 1950. A simplified two-person poker. Contri-
butions to the Theory of Games 1:97–103.
Lanctot, M.; Waugh, K.; Zinkevich, M.; and Bowling, M.
2009. Monte carlo sampling for regret minimization in ex-
tensive games. In Advances in Neural Information Process-
ing Systems, 1078–1086.
Levy, D. N. 1989. The million pound bridge program.
Heuristic Programming in Artificial Intelligence 95–103.
Long, J. R.; Sturtevant, N. R.; Buro, M.; and Furtak, T.
2010. Understanding the success of perfect information
monte carlo sampling in game tree search. In AAAI.
Ontañón, S. 2013. The combinatorial multi-armed bandit
problem and its application to real-time strategy games. In
AIIDE. AAAI Press.
Ontañón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A survey of real-
time strategy game AI research and competition in StarCraft.
TCIAIG 5(4):293–311.
Parker, A.; Nau, D.; and Subrahmanian, V. 2005. Game-tree
search with combinatorially large belief states. In IJCAI,
254–259.
Parker, A.; Nau, D. S.; and Subrahmanian, V. S. 2010. Para-
noia versus overconfidence in imperfect information games.
In Dechter, R.; Geffner, H.; and Halpern, J. Y., eds., Heuris-
tics, Probability and Causality: a Tribute to Judea Pearl.
College Publications. 63–87.
Reif, J. H. 1984. The complexity of two-player games of
incomplete information. Journal of computer and system
sciences 29(2):274–301.
Richards, M., and Amir, E. 2012. Information set generation
in partially observable games. In AAAI.
Russell, S., and Norvig, P. 2009. Artificial Intelligence: A
Modern Approach. Prentice Hall Press, 3rd edition.
Russell, S., and Wolfe, J. 2005. Efficient belief-state AND-
OR search, with application to Kriegspiel. In IJCAI, vol-
ume 19, 278.
Tromp, J., and Farnebäck, G. 2006. Combinatorics of Go. In
International Conference on Computers and Games, 84–99.
Springer.
Uriarte, A., and Ontañón, S. 2017. Single believe state gen-
eration for partially observable real-time strategy games. In
Proceedings of CIG 2017.
Uriarte, A., and Ontañón, S. 2016a. Improving monte
carlo tree search policies in StarCraft via probabilistic mod-
els learned from replay data. In AIIDE.
Uriarte, A., and Ontañón, S. 2016b. Improving terrain anal-
ysis and applications to RTS game AI. In AIIDE.
Whitehouse, D.; Powley, E. J.; and Cowling, P. I. 2011. De-
terminization and information set monte carlo tree search for
the card game dou di zhu. In Computational Intelligence and
Games (CIG), 2011 IEEE Conference on, 87–94. IEEE.
Zinkevich, M.; Johanson, M.; Bowling, M. H.; and Piccione,
C. 2007. Regret minimization in games with incomplete
information. In NIPS, 1729–1736.

20

