
 
 

A Proposal for a Unified Agent Behaviour Framework 

Javier M. Torres 
Brainific SL 

javier.m.torres@brainific.com 
 
 
 

Abstract 
Games have used different mechanisms along its history to 
provide agent behavior: FSMs, utility systems, behavior 
trees and planning methods. In this paper, we present an ar-
chitecture that aims at incorporating all these approaches in-
to trees of event handling nodes with behaviours as leaves, 
using rules for combining actions akin to utility systems. 
This formalism aims to develop hybrid systems in an easier 
way. 

 Introduction   
Reactive NPCs in current games use techniques like Be-
haviour Trees (BTs) and Finite State Machines (FSMs), 
which keep a static structure however complex they may 
get, and are so specialised that interaction among them is 
difficult. We propose a formalism based on event-handling 
processes that can specialise into both techniques, and may 
naturally include other techniques like steering behaviours 
and planning algorithms. 

Related work 
Finite State Machines and Behaviour Trees are two of the 
most common formalisms used to describe the behaviour 
of agents in games. Whereas hierarchical state machines 
have a long history in video games, behaviour trees were 
introduced more recently by Damián Isla (Isla, 2005). The 
same structures are used in AND/OR search tree to solve 
nondeterministic planning tasks (Dechter and Mateescu, 
2004a); in fact, as explored previously (Colledanchise, 
2017), BTs are a generalization of several formalisms like 
the subsumption architecture (Brooks, 1986). In the last 12 
years, they have been the subject of many improvements 
and refinements over this basic idea. 

For example, Champandard and Dunstan (Champandard 
and Dunstan, 2013) present event driven behaviour trees, 
where only active behaviours are checked for changes in 
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the environment. Decorators are also a staple of BT im-
plementations, which modify the behaviour of a node; see 
(Epic Games 2017) as an example. 

The CERA Cranium architecture (Arrabales, Ledezma et 
al., 2009) from the Conscious Robots team at the 2K Bot 
Prize at CIG '10, on the other hand, has uses a layered 
approach, separating perceptions, atomic actions and more 
complex plans. 

Why yet another mechanism? 
After almost 12 years of behavior trees, and more of 
HFSMs, why another formalism? On the one hand, both 
BTs and HFSMs are bound in their configurations (the 
number of nodes is known and bound at runtime). On the 
other hand, computer games have tight resources that are 
seldom dedicated to AI, and tight design processes that 
leave little room for experimentation. If we make an analo-
gy with function calls, we would be programming AI with 
preallocated frames, even sometimes with several instan-
tiations of the same function call.  

A first change is to dynamically instantiate nodes in a 
BT instead of fixing the memory layout at design time. If 
we consider that a selector or sequence is far more com-
mon than a parallel node, and then we gray out the nodes, 
we can see that we can use a stack to store active nodes 
(see Figure 1). Every parallel node spawns a separate 
stack, but we can still restrict the depth of each stack. We 
can just make a “function call” to instantiate the nodes and 
even use more traditional constructs to obtain the next 
node, like creating a sequence of MoveTo nodes from a list 
of positions obtained at runtime, instead of resorting to 
decorators. We acknowledge that the current tools provide 
hooks for subtrees, for example, but we feel that an even 
much more dynamic approach should be taken. 

However, this flow only concerns node creation. In a 
BT, Success and Failure (at least) events are handled from 
the leaves upwards and modify which nodes become ac-
tive. It may be argued that, since the state is only reported 
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once, it is a true function call, although it would run across 
frames. 

We can now develop each node in the tree completely 
decoupled from the rest. It is true that we cannot see the 
complete tree anymore, though, and we need to develop 
the nodes in a written language and not on a visual tool. As 
such, each node is subject to reuse, just like a function 
definition. Note that this also allows us to insert subtrees 
on the fly, even generated subtrees via planning, since 
nodes are data structures. 

Figure 1 Traditional Behaviour Tree and its view as a 
function stack 

A second improvement is to decouple node creation and 
lifecycle from event handling, so once created a node can 
react to events from its children, process them and send 
events upwards, and not just a single “return” event. A 
suitable formalism to express these systems can be Com-
municating Sequential Processes (Hoare, 1985). Event 
driven behavior trees work in a similar way, but by relax-
ing the conditions on event types and event processes we 
can approach formalisms like HFSMs. Also, separating the 
frame-by-frame aspect in a behavior (e.g. a steering behav-
ior) from the node in a behavior tree representing it should 
allow the designer to focus on immediate reactive behavior 
vs. more complex behavior. 

A final aspect is to separate behaviors from the final set 
of actions taken. Take a parallel node that activates Cover 
and FireEnemy behaviours. It would be very simple and 
natural to decide which one to finally perform by combin-
ing them in a utility-based selector. This would be inde-
pendent of where in our tree the actions have been activat-
ed: whether taking cautious approach or cautious retreat, or 
whether we use fire to take down or suppress an enemy, 
the balance between cover and exposure would feel similar 
in all situations. 

Architecture 
The proposed Action Framework architecture comprises 
the following elements, featured in Figure 2: 

Figure 2 Elements in the Action Framework 

Behaviours, that output actions reactively every time 
frame and send events upwards the action tree; they are 
percepts as much as actions. Some behaviours do not 
output actions but perform some algorithm on internal 
data over a series of time frames. 

Action nodes, that help select behaviours. They are very 
similar to nodes in behaviour trees and states in FSMs, 
with the following properties: 
They send events of a certain type to their parent and 

handle events of another type from their active chil-
dren. In the case of behaviour trees, these events are 
often Success and Failure. FSMs can recognise other 
events. 

They use a transition function that takes the current sub-
tree whose root is itself, together with its children and 
its state, and a list of upcoming events, and replaces it 
with another potentially new subtree with a new state, 
whose only requirement is to send upwards the same 
type of events as the previous subtree. 

A behaviour composer, that resolves conflicts between 
behaviours. In this layer, compatible actions like steering 
behaviours are combined and incompatible actions are 
selected according to their utility. 

SeqA 

FireEnemy 

MoveTo(p0) 

SelB 

MoveTo(p1) 

SeqA 

MoveTo(p0) 
SelB 

SeqA 

MoveTo(p1) 
SelB 

SeqA (String arg) { 
 return FireEnemy(enm1) && 
  SelA; } 
SelB (Int arg) { 
 return MoveTo(p0) || 
  MoveTo(p1); } 

Action Node Behaviour 

Behaviour Composer Table 

Cover U = K1*HP*BulletsInFlight 

FireEnemy U = K2/BulletsInFlight 
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Action Tree 
The action tree is composed of the hierarchical structure of 
currently action nodes and behaviours. Every time an event 
arrives at the action tree from a behavior node, it traverses 
the tree upwards, possibly causing changes in the action 
tree. 

Note that there is no global and total description of all 
the configurations that the tree of active nodes and behav-
iours may take, as in a programming language there is no 
global and total description of all the possible function 
expansions. Instead, we can inspect the currently running 
tree of action nodes and behaviours. Debugging is made 
possible by inspecting traces of incoming and emitted 
events, and the current action tree. 

Events that are not handled in lower layers are passed 
upwards to be handled by higher order nodes. The action 
tree changes potentially every tick. Figure 3 shows an 
example of an action tree. It should not be mistaken as a 
fully specified Behaviour Tree, but rather as the tree of 
currently active nodes in a Behaviour Tree. 

Figure 3 - Action Tree example  

Action nodes 
Action nodes in a tree are defined by some internal state, 
their children nodes, and a transition function. Note this 
specification is a generalization of both behaviour trees and 
HFSMs: whereas in _BTs the state and the children nodes 
are updated (e.g., a Sequence node updates the current 
children by taking a node from its list of actions, as well as 
this same list by removing its head), in FSMs the active 
“node” itself is turned into another “node” (note that state 
nodes with children can be used to model hierarchical 
FSMs). In the following textbox a sequence node and an 
FSM are described in a Java-like pseudocode. 

Note that the onEvent functions may handle any type of 
event, notably an event containing a subtree that then gets 
returned and inserted into the action tree. 

 Implementation 
There is an ongoing and preliminary open source imple-
mentation of this architecture in Haskell 1 being integrated 
in the Windows platforms using the Haskell FFI. It is used 
to explore and prototype new concepts. It currently imple-
ments common BT nodes and an FSM. 

Conclusion 
The Action Framework defines common concepts that 

can be specialized and combined to form some of the exist-
ing mechanisms for agent AI in games, like FSMs, behav-
ior trees or planning algorithms; mainly, arbitrary event 
definitions and event handling trees. We aim at easily re-
formulating existing mechanisms, but also creating inter-
esting new possibilities that can be obtained by assembling 
variations of these concepts. 
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class Sequence extends Node 
 def Sequence ([Factory<Node>] seqList): 
  [head | tail] = seqList 
  currentNode = head.new() 
  self.next = tail 
  return (self, [currentNode]) 
 def ( Optional<(Node, [Node])>, [SuccType] ) onEvent 
(Node n, [Factory<Node>] next, SuccType evt): 
  case evt of: 
   Failure: return (Nothing, [Failure]) 
   Success: case self.next of: 
    []: return (Nothing, [Success]) 
    [head | tail]: ( (self, [head.new()]), [] ) 
   end 
  end 
class StateA extends Node 
 def StateA (): 
  return (self, []) 
 def ( Optional<(Node, [Node])>, [OutEvtType] )  
onEvent (Node n, [Factory<Node>] next, InEvtType evt): 
  case evt of: 
   inEvtA: return ( (StateB.new(), []), [outEvtA] ) 
   inEvtB: return ( (self, []), [] ) 
  end 
class StateB extends Node 
 def StateB (): 
  return (self, []) 
 def ( Optional<(Node, [Node])>, [OutEvtType] )  
onEvent (Node n, [Factory<Node>] next, InEvtType evt): 
  case evt of: 
   inEvtA: return ( (self, []), [] ) 
   inEvtB: return ( (StateA.new(), []), [outEvtB] ) 
  end 

Parallel 

Sequence 
list = p1,p2,p3

FireEnemy 
enemy = <id> 

MoveTo 
pos = p0 

AvoidAcidPools 
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