

A Proposal for a Unified Agent Behaviour Framework

Javier M. Torres
Brainific SL

javier.m.torres@brainific.com

Abstract
Games have used different mechanisms along its history to
provide agent behavior: FSMs, utility systems, behavior
trees and planning methods. In this paper, we present an ar-
chitecture that aims at incorporating all these approaches in-
to trees of event handling nodes with behaviours as leaves,
using rules for combining actions akin to utility systems.
This formalism aims to develop hybrid systems in an easier
way.

 Introduction
Reactive NPCs in current games use techniques like Be-
haviour Trees (BTs) and Finite State Machines (FSMs),
which keep a static structure however complex they may
get, and are so specialised that interaction among them is
difficult. We propose a formalism based on event-handling
processes that can specialise into both techniques, and may
naturally include other techniques like steering behaviours
and planning algorithms.

Related work
Finite State Machines and Behaviour Trees are two of the
most common formalisms used to describe the behaviour
of agents in games. Whereas hierarchical state machines
have a long history in video games, behaviour trees were
introduced more recently by Damián Isla (Isla, 2005). The
same structures are used in AND/OR search tree to solve
nondeterministic planning tasks (Dechter and Mateescu,
2004a); in fact, as explored previously (Colledanchise,
2017), BTs are a generalization of several formalisms like
the subsumption architecture (Brooks, 1986). In the last 12
years, they have been the subject of many improvements
and refinements over this basic idea.

For example, Champandard and Dunstan (Champandard
and Dunstan, 2013) present event driven behaviour trees,
where only active behaviours are checked for changes in

Copyright © 2017, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the environment. Decorators are also a staple of BT im-
plementations, which modify the behaviour of a node; see
(Epic Games 2017) as an example.

The CERA Cranium architecture (Arrabales, Ledezma et
al., 2009) from the Conscious Robots team at the 2K Bot
Prize at CIG '10, on the other hand, has uses a layered
approach, separating perceptions, atomic actions and more
complex plans.

Why yet another mechanism?
After almost 12 years of behavior trees, and more of
HFSMs, why another formalism? On the one hand, both
BTs and HFSMs are bound in their configurations (the
number of nodes is known and bound at runtime). On the
other hand, computer games have tight resources that are
seldom dedicated to AI, and tight design processes that
leave little room for experimentation. If we make an analo-
gy with function calls, we would be programming AI with
preallocated frames, even sometimes with several instan-
tiations of the same function call.

A first change is to dynamically instantiate nodes in a
BT instead of fixing the memory layout at design time. If
we consider that a selector or sequence is far more com-
mon than a parallel node, and then we gray out the nodes,
we can see that we can use a stack to store active nodes
(see Figure 1). Every parallel node spawns a separate
stack, but we can still restrict the depth of each stack. We
can just make a “function call” to instantiate the nodes and
even use more traditional constructs to obtain the next
node, like creating a sequence of MoveTo nodes from a list
of positions obtained at runtime, instead of resorting to
decorators. We acknowledge that the current tools provide
hooks for subtrees, for example, but we feel that an even
much more dynamic approach should be taken.

However, this flow only concerns node creation. In a
BT, Success and Failure (at least) events are handled from
the leaves upwards and modify which nodes become ac-
tive. It may be argued that, since the state is only reported

The AIIDE-17 Workshop on
Experimental AI in Games

WS-17-19

141

once, it is a true function call, although it would run across
frames.

We can now develop each node in the tree completely
decoupled from the rest. It is true that we cannot see the
complete tree anymore, though, and we need to develop
the nodes in a written language and not on a visual tool. As
such, each node is subject to reuse, just like a function
definition. Note that this also allows us to insert subtrees
on the fly, even generated subtrees via planning, since
nodes are data structures.

Figure 1 Traditional Behaviour Tree and its view as a
function stack

A second improvement is to decouple node creation and
lifecycle from event handling, so once created a node can
react to events from its children, process them and send
events upwards, and not just a single “return” event. A
suitable formalism to express these systems can be Com-
municating Sequential Processes (Hoare, 1985). Event
driven behavior trees work in a similar way, but by relax-
ing the conditions on event types and event processes we
can approach formalisms like HFSMs. Also, separating the
frame-by-frame aspect in a behavior (e.g. a steering behav-
ior) from the node in a behavior tree representing it should
allow the designer to focus on immediate reactive behavior
vs. more complex behavior.

A final aspect is to separate behaviors from the final set
of actions taken. Take a parallel node that activates Cover
and FireEnemy behaviours. It would be very simple and
natural to decide which one to finally perform by combin-
ing them in a utility-based selector. This would be inde-
pendent of where in our tree the actions have been activat-
ed: whether taking cautious approach or cautious retreat, or
whether we use fire to take down or suppress an enemy,
the balance between cover and exposure would feel similar
in all situations.

Architecture
The proposed Action Framework architecture comprises
the following elements, featured in Figure 2:

Figure 2 Elements in the Action Framework

Behaviours, that output actions reactively every time
frame and send events upwards the action tree; they are
percepts as much as actions. Some behaviours do not
output actions but perform some algorithm on internal
data over a series of time frames.

Action nodes, that help select behaviours. They are very
similar to nodes in behaviour trees and states in FSMs,
with the following properties:
They send events of a certain type to their parent and

handle events of another type from their active chil-
dren. In the case of behaviour trees, these events are
often Success and Failure. FSMs can recognise other
events.

They use a transition function that takes the current sub-
tree whose root is itself, together with its children and
its state, and a list of upcoming events, and replaces it
with another potentially new subtree with a new state,
whose only requirement is to send upwards the same
type of events as the previous subtree.

A behaviour composer, that resolves conflicts between
behaviours. In this layer, compatible actions like steering
behaviours are combined and incompatible actions are
selected according to their utility.

SeqA

FireEnemy

MoveTo(p0)

SelB

MoveTo(p1)

SeqA

MoveTo(p0)
SelB

SeqA

MoveTo(p1)
SelB

SeqA (String arg) {
 return FireEnemy(enm1) &&
 SelA; }
SelB (Int arg) {
 return MoveTo(p0) ||
 MoveTo(p1); }

Action Node Behaviour

Behaviour Composer Table

Cover U = K1*HP*BulletsInFlight

FireEnemy U = K2/BulletsInFlight

142

Action Tree
The action tree is composed of the hierarchical structure of
currently action nodes and behaviours. Every time an event
arrives at the action tree from a behavior node, it traverses
the tree upwards, possibly causing changes in the action
tree.

Note that there is no global and total description of all
the configurations that the tree of active nodes and behav-
iours may take, as in a programming language there is no
global and total description of all the possible function
expansions. Instead, we can inspect the currently running
tree of action nodes and behaviours. Debugging is made
possible by inspecting traces of incoming and emitted
events, and the current action tree.

Events that are not handled in lower layers are passed
upwards to be handled by higher order nodes. The action
tree changes potentially every tick. Figure 3 shows an
example of an action tree. It should not be mistaken as a
fully specified Behaviour Tree, but rather as the tree of
currently active nodes in a Behaviour Tree.

Figure 3 - Action Tree example

Action nodes
Action nodes in a tree are defined by some internal state,
their children nodes, and a transition function. Note this
specification is a generalization of both behaviour trees and
HFSMs: whereas in _BTs the state and the children nodes
are updated (e.g., a Sequence node updates the current
children by taking a node from its list of actions, as well as
this same list by removing its head), in FSMs the active
“node” itself is turned into another “node” (note that state
nodes with children can be used to model hierarchical
FSMs). In the following textbox a sequence node and an
FSM are described in a Java-like pseudocode.

Note that the onEvent functions may handle any type of
event, notably an event containing a subtree that then gets
returned and inserted into the action tree.

 Implementation
There is an ongoing and preliminary open source imple-
mentation of this architecture in Haskell 1 being integrated
in the Windows platforms using the Haskell FFI. It is used
to explore and prototype new concepts. It currently imple-
ments common BT nodes and an FSM.

Conclusion
The Action Framework defines common concepts that

can be specialized and combined to form some of the exist-
ing mechanisms for agent AI in games, like FSMs, behav-
ior trees or planning algorithms; mainly, arbitrary event
definitions and event handling trees. We aim at easily re-
formulating existing mechanisms, but also creating inter-
esting new possibilities that can be obtained by assembling
variations of these concepts.

https://bitbucket.org/brainific/action-fw

class Sequence extends Node
 def Sequence ([Factory<Node>] seqList):
 [head | tail] = seqList
 currentNode = head.new()
 self.next = tail
 return (self, [currentNode])
 def (Optional<(Node, [Node])>, [SuccType]) onEvent
(Node n, [Factory<Node>] next, SuccType evt):
 case evt of:
 Failure: return (Nothing, [Failure])
 Success: case self.next of:
 []: return (Nothing, [Success])
 [head | tail]: ((self, [head.new()]), [])
 end
 end
class StateA extends Node
 def StateA ():
 return (self, [])
 def (Optional<(Node, [Node])>, [OutEvtType])
onEvent (Node n, [Factory<Node>] next, InEvtType evt):
 case evt of:
 inEvtA: return ((StateB.new(), []), [outEvtA])
 inEvtB: return ((self, []), [])
 end
class StateB extends Node
 def StateB ():
 return (self, [])
 def (Optional<(Node, [Node])>, [OutEvtType])
onEvent (Node n, [Factory<Node>] next, InEvtType evt):
 case evt of:
 inEvtA: return ((self, []), [])
 inEvtB: return ((StateA.new(), []), [outEvtB])
 end

Parallel

Sequence
list = p1,p2,p3

FireEnemy
enemy = <id>

MoveTo
pos = p0

AvoidAcidPools

143

References
Arrabales, Raúl, Agapito Ledezma, and Araceli Sanchis. "To-
wards conscious-like behavior in computer game characters."
Computa-tional Intelligence and Games, 2009. CIG 2009. IEEE
Symposium on. IEEE, 2009.
Brooks, R. (1986). "A robust layered control system for a mobile
robot". Robotics and Automation, IEEE Journal of [legacy, pre-
1988]. 2 (1): 14–23. doi:10.1109/JRA.1986.1087032. Retrieved
2008-04-14.
Champandard, Alex J., and Philip Dunstan. "The Behavior Tree
Starter Kit." Game AI Pro: Collected Wisdom of Game AI
Profes-sionals (2013): 73.
Colledanchise, Michele. Behavior Trees in Robotics. PhD diss.
KTH Royal Institute of Technology, 2017.
Dechter, R., & Mateescu, R. (2004a). Mixtures of deterministic-
probabilistic networks and their AND/OR search space.
Epic Games. 2017. “Unreal engine documentation”
https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTre
es/NodeReference/Decorators/.
Graham, David. "An Introduction to Utility Theory." Game AI
Pro (2014): 113-126.
Hoare, C. A. R.: “Communicating Sequential Processes”, Prentice
Hall, 1985, ISBN 0-13-153289-8.
Isla, D. “Handling complexity in the Halo 2 AI.” Game Develop-
ers Conference, 2005.

144

