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Abstract

Procedurally generating rich, naturally behaving AI-
controlled video game characters is an important open
problem. In this paper we focus on a particular aspect of
non-playable character (NPC) behavior, long favored by
science-fiction writers. Specifically, we study the effects
of self-knowledge on NPC behavior. To do so we adopt
the well-known framework of agent-centered real-time
heuristic search applied to the standard pathfinding task
on video-game maps. Such search agents normally use a
heuristic function to guide them around a map to the goal
state. Heuristic functions are inaccurate underestimates of the
remaining distance to goal. What if the agent somehow knew
how long it (the agent) would actually take to reach the goal
from each state? How would using such self-knowledge in
place of a heuristic function affect the agent’s behavior? We
show that similarly to real life, knowing of one’s irrational
behavior in a situation can deter the agent from getting into
that situation again even if it is, in fact, a part of an optimal
solution. We demonstrate the “fear” with a simple example
and empirically show that the issue is common in video-game
pathfinding. We then analyze the issue theoretically and
suggest that “fear” induced by self-knowledge is not a bug
but a feature and may potentially be used to develop more
naturally behaving NPCs.

1 Introduction

Non-playable characters (NPCs) are crucial to video games.
They fight against the player, cooperate with the player and
make the world feel alive. Common techniques for Artificial
Intelligence (AI) in NPCs include scripting (McNaughton
et al. 2004), finite state machines, behavior trees (Champan-
dard 2007) and, to a lesser degree, automated planning based
on heuristic search (Orkin 2006).

Regardless of the AI behind an NPC, players have been
conditioned to expect NPCs to act rationally. A hostile NPC
is expected to attack the player. A friendly NPC can be ex-
pected to co-operate with the player and join his/her quests.
Consequently, substantial effort is put into making the NPCs
more effective and competent in whatever tasks they are sup-
posed to perform within the game. In the words of Lem
(1983), we are building electronic slaves which have no de-
sires, feelings or fears of their own but robotically follow

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

their in-game roles. Real-life characters, whether human or
animal, often act irrationally, out of fear or desire. Consider
for instance, a character who entered a castle, got lost in it
and thus took a long time to get out. It would be natural for
a human to regret getting lost and therefore hesitate to enter
the castle in the future despite the fact that going through the
castle may be the shortest way. Instead, the human is likely
chose a path around the castle (Marcatto, Cosulich, and Fer-
rante 2015). To the best of our knowledge, no existing com-
mercial video-game AI would exhibit such regret-induced
non-adaptive choice switching, unless explicitly pre-scripted
for a specific context.

In this paper we propose a simple computational ap-
proach to having such “once bitten twice shy” behav-
iors emerge naturally, without any pre-scripting. To make
our presentation concrete, we adopt the real-time heuristic
search (RTHS) model but, unlike its existing applications,
we give our NPCs knowledge about their own behavior.
NPCs equipped with such self-knowledge tend to avoid cer-
tain areas of the map even if an optimal path to the goal
passes through such. As a result, they act irrationally from
the pathfinding perspective but arguably more human-like.
We conjecture that such behavior will appear more natural
and interesting to the player.

The rest of the paper is organized as follows. Section 2
formally introduces the heuristic search problem, presents a
common framework of RTHS algorithms, formalizes the no-
tion of self-knowledge and states our performance measures.
We then discuss related work in Section 3. Section 4 demon-
strates a simple search graph on which self-knowledge leads
an agent to acting irrationally. We then show that such irra-
tionality is actually common in the standard grid pathfinding
on video-game maps. We then theoretically prove that self-
knowledge does help RTHS algorithms that use stationary
policies (i.e., hill-climbing) and, in fact, repeated iterations
of self-knowledge can lead to convergence to optimal solu-
tion costs. Section 5 speculates on the ways the seemingly
irrational behavior can make an NPC appear more human-
like. We conclude the paper with a discussion of current
shortcomings and directions for future work.

2 Problem Formulation

Heuristic search is a core subfield of AI and is frequently
used for path-finding in video games as well as other
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types of planning (Orkin 2006). Real-time heuristic search
algorithms are often used in the agent-centered environ-
ment (Koenig 2001) where the agent has a local view of the
world and needs to make decisions before computing a com-
plete solution. In searching for a path on the graph from a
start state to a goal state, they occupy a single (current) state
and change it by traversing edges. To decide which edge to
traverse next, RTHS algorithms conduct a constant-bounded
amount of planning, accessing the graph and any informa-
tion within a constant-bounded neighborhood of the agent’s
current state. In making the decision they use a heuristic
function – an estimate of the cost to-go from a given state
to the goal state. The initial heuristic supplied to the agent is
usually substantially inaccurate leading to suboptimal deci-
sions made by the agent. Since the seminal work on LRTA*
by Korf (1990), many researchers have designed and evalu-
ated approaches to dealing with errors in the heuristic.

Note that while an RTHS agent such as LRTA* does learn
as it traverses the search space, it does not exhibit the type of
irrational “fear” we discussed in the previous section. That
is because LRTA* and similar algorithms update the heuris-
tic in a state based only on the heuristic values of the state’s
neighbors, ignoring how they got to that state in the first
place. In the castle example, an LRTA* agent would raise
the estimated distance-to-exit of a castle location in the same
way whether it got to that location after getting lost or walk-
ing straight to it.1

But what if the agent is aware of its own behavior in
an arbitrary state? How would such self-knowledge affect
its behavior? In this paper we introduce the idea of self-
knowledge into RTHS algorithms and investigate the effects
such self-knowledge can have on the agent’s behavior. We
represent self-knowledge as knowing the precise solution
cost of running the agent (self) starting in an arbitrary state
while being guided by a heuristic. We then use such self-
knowledge in place of the heuristic and observe the resulting
behavior. We show that using self-knowledge in this man-
ner can lead to worse paths being found but arguably more
human-like behavior.

2.1 Search Graph and Performance Measures

We adopt the problem formulation of Bulitko (2016b)
and modify it as follows. A search problem is a tuple
(S,E, c, sstart, sgoal, h) where S is a finite set of states and
E ⊂ S × S is a set of edges between them. S and E
jointly define the search graph. The search graph is station-
ary, undirected and safely explorable (i.e., the goal state can
be reached from any state reachable from the start state).
Each edge (sa, sb) ∈ E is weighted by the cost c(sa, sb) =
c(sb, sa) > 0. The agent begins in the start state sstart and
changes its current state by traversing edges (i.e., taking ac-
tions) until it arrives at the goal state. In deciding on its ac-
tions, the agent has access to a heuristic h which is an es-
timate of the remaining cost to the goal. We do not assume
the heuristic to be admissible or consistent. The agent is free

1It is possible, however, that all the previous wandering would
affect heuristic values of the state’s neighbors and subsequently the
heuristic value of the state itself upon its update.

to update it in any way as long as h(sgoal) = 0.
The cumulative cost of all edges traversed by a search

algorithm A guided by a heuristic h is the solution cost,
denoted by CA[h](sstart). Note that the search algorithm A
starts with the heuristic h but can modify it as it traverses
the search graph. The suboptimality of a solution, α(sstart),
is the ratio of the solution cost produced by an agent to
the cost of the shortest possible path, h∗(sstart). Formally:
αA[h](sstart) = CA[h](sstart)/h∗(sstart). Lower values are desired;
the value of 1 indicates solution optimality. If the algo-
rithm A fails to reach sgoal from sstart (even though it is
possible due to the safely explorable graph), we say that
CA[h](sstart) = ∞. RTHS literature usually focuses on com-
plete algorithms which guarantee arriving at the goal state
in a safely explorable graph. In this paper we consider in-
complete algorithms as well. Given a goal state sgoal, define
S+ as the set of all states in S from which the goal state is
theoretically reachable. Then consider the solution cost for
all states in S+. The average suboptimality of such solution
costs is βA[h] = avgs∈S+ αA[h](s).

2.2 Real-time Heuristic Search Algorithm

While numerous RTHS algorithms have been proposed, we
will demonstrate our self-knowledge experiments primarily
on the seminal algorithm, LRTA* (Korf 1990), that started
the field and serves as a base for many modern RTHS al-
gorithms (Algorithm 1). As long as the goal state is not
reached (line 4) the agent interleaves updating the heuris-
tic with the simple mini-min rule (line 5) and moving to the
most promising immediate neighbor (line 6). Ties in argmin
are broken in an arbitrary order, fixed per state.

Algorithm 1: Basic Real-time Heuristic Search
input : search problem (S,E, c, sstart, sgoal, h)
output: solution (sstart, s1, . . . , sgoal)

1 t ← 0
2 st ← sstart
3 ht ← h
4 while st �= sgoal do

5 ht+1(st) ← max

{
ht(st), min

s∈N(st)
[c(st, s) + ht(s)]

}

6 st+1 ← arg min
s∈N(st)

[c(st, s) + ht(s)]

7 t ← t+ 1

2.3 Using Self-Knowledge as the Heuristic

Given a state s, the heuristic h(s) is an estimate of the re-
maining solution cost. It is provided as a part of the search
problem and guides the agent as it selects its next state (line 6
in Algorithm 1). Instead of using a domain-provided heuris-
tic h for guidance, an algorithm can use the knowledge of its
solution cost (with a given heuristic). Such self-knowledge
can guide the agent in selecting its next state in the same
fashion as the usual heuristic. Note that the self-knowledge
is the solution cost for the same algorithm but guided by
a different heuristic. So the “self-” in the self-knowledge
refers only to the algorithm and not the heuristic.
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Formally, given the solution cost CA[h] for all states from
which the goal state is reachable, we can use it as a heuris-
tic within the RTHS algorithm A. The resulting solution
cost CA[CA[h]] is self-knowledge of the second order and
can again be used to guide the agent in place of the regular
heuristic. To simplify the notation we define the following
iterative process (Algorithm 2).

Algorithm 2: Orders of Self-Knowledge
input : search problem (S,E, c, sstart, sgoal, h), RTHS

algorithm A
output: suboptimalities (β1, β2, . . . )

1 C0 ← h

2 S+ ← {s ∈ S | sgoal is reachable from s}
3 i ← 0
4 while not converged do
5 i ← i+ 1

6 for s ∈ S+ do
7 run A from s to sgoal using Ci−1 as the heuristic
8 Ci(s) ← CA[Ci−1](s)

9 βi ← avg
s∈S+

Ci(s)
h∗(s)

On the iteration i = 1 the algorithm A is run with
Ci−1 = C0 = h as its heuristic (line 7 in Algorithm 2). The
resulting solution cost for each state in S+ is C1 = CA[h]

(line 8). The average suboptimality of all such costs is β1

(line 9). On iteration i = 2, we use the self-knowledge C1

as the heuristic and compute C2 = CA[C1] = CA[CA[h]].
Its average suboptimality is β2. The process repeats until Ci

converge to a fixed point C� defined as the cost function that
induces itself when used with the algorithm: CA[C�] = C�.
For instance, the perfect heuristic h∗ constitutes a fixed point
for LRTA*: CLRTA*[h∗] = h∗. We will prove convergence for
a specific simple RTHS algorithm (hill-climbing) and eval-
uate it empirically for other algorithms. In our experiments
we detect convergence by computing the change |βi−βi+1|.
If the change remains below ε for I iterations, we declare
that the process converged (line 4).

Another question we consider in this paper is whether the
average suboptimalities βi monotonically decrease with i.
Informally, does using (self-)knowledge of A’s performance
(i.e., solution cost) help A improve its performance? The an-
swer may depend on the search problem, the initial heuristic
h and the algorithm A and we will evaluate it empirically in
the domain of video-game pathfinding.

Informally, the latter question asks whether knowing
about one’s behavior may cause one to act less optimally
(due to the irrational “fear” of some parts of the search
space). The former question asks whether such “fear” can
be overcome via higher-order self-knowledge (i.e., knowing
about one’s behavior with the knowledge of one’s behavior).

3 Related Work
While Korf (1990) proved that given enough learning tri-
als LRTA* will converge to an optimal solution, the con-
vergence process can be non-monotonic. Specifically, an

LRTA*-controlled agent will often follow a short solu-
tion found on a trial with a much longer one on the next
trial (Shimbo and Ishida 2003, Figure 2). This is due to the
fact that the initial heuristic is typically admissible and thus
underestimates the true distances to the goal. The learning
rule (line 5 in Algorithm 1) raises the heuristic in the states
visited by the agent which consequently makes the states not
yet visited look more appealing (line 6) and thus guides the
agent away from a good path already found.

The phenomenon studied in this paper is only superfi-
cially similar. Indeed, in Korf’s multi-trial learning pro-
cess the heuristic LRTA* receives on a trial is the heuris-
tic LRTA* used and updated in some states on the pre-
vious trial. The non-monotonicity of solution suboptimal-
ity over subsequent learning trials is partly due to updat-
ing the heuristic in some but not all states. In contrast, self-
knowledge used by LRTA* on an iteration (trial) is com-
puted on the previous iteration for all states (line 6 in Al-
gorithm 2). Furthermore, the heuristic of each state is com-
puted by running LRTA* from it to the goal, independently
of LRTA* runs originating in other states. In other words,
for any two states s1, s2 ∈ S+, Ci(s1) is computed inde-
pendently from Ci(s2). Furthermore, any heuristic updates
LRTA* made when launched from state s1 are discarded be-
fore it is launched again from the state s2. In fact, our imple-
mentation computes Ci(s) in a parallel loop over s.

Using solution costs Ci to guide an agent is superficially
connected to influence maps (Tozour 2001). There are sev-
eral key differences. We do not seed the influence map at
certain cells and then propagate/blur it to neighboring cells.
We compute each cell’s value completely independently of
the others. We also do not use Ci of a state as its desirability
for the agent. Instead Ci are used as heuristic values which
are then combined with edge costs and used to select deci-
sions in an arbitrarily complex fashion, as determined by a
given heuristic search algorithm. Finally, by treating Ci as a
heuristic, the agent itself can update it during a single trial.

The first iteration of Algorithm 2 (i.e., using C1 in place
of the heuristic h) can be viewed as a special case of rollout-
based approaches such as UCT (Kocsis and Szepesvári
2006). Such approaches usually use a randomized rollout
policy to estimate the value of a state from multiple roll-
outs launched from that state. In our case, the solution cost
C1 = CA[h] gives the value of any state from a single run of
the deterministic rollout policy A[h]. There are two differ-
ences in our approach: we compute Ci for i > 1 and we use
a single run of an arbitrarily complex rollout policy A[Ci−1].

Another area of related work is lookahead in heuristic
search. Korf (1990) built a fixed-depth lookahead tree from
the agent’s current state and backed up heuristic values of
the leaf states. Subsequent research experimented with dif-
ferent lookahead tree shapes and backup rules (Koenig and
Sun 2009; Koenig and Likhachev 2006) as well as state-
adaptive lookahead (Bulitko et al. 2008; O’Ceallaigh and
Ruml 2015). Our approach is different. First, our backed
up value of a state is determined from a single complete
path from it to the goal. Second, we build a sequence of
Ci for i ≥ 1. Third, CA[h] is computed for each state in-
dependently using the “clean” heuristic h, whereas backed
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up value from a lookahead tree can depend on the previous
updates to the heuristic. Interestingly, lookahead pathologies
where deeper lookahead leads to worse moves have been ob-
served (Luštrek and Bulitko 2006).

Finally, most existing RTHS research has focused on
finding high-performance algorithms, either crafted by
hand (Ishida 1992; Shue and Zamani 1993a; 1993b;
Shue, Li, and Zamani 2001; Bulitko 2004; Hernández and
Meseguer 2005; Bulitko and Lee 2006; Rayner et al. 2007;
Bulitko et al. 2007; Koenig and Sun 2009; Sturtevant, Bu-
litko, and Björnsson 2010; Sturtevant and Bulitko 2011;
Hernández and Baier 2012; Sharon, Sturtevant, and Fel-
ner 2013; Rivera, Baier, and Hernández 2015; O’Ceallaigh
and Ruml 2015) or found by an automated search through
the space of algorithms (Bulitko 2016a; 2016c). Our work
is complimentary as it evaluates impact of using self-
knowledge and can be done with any RTHS algorithm.

4 Policy Improvement/Degradation

In Section 2.3 we formulated our first question as whether
the average suboptimalities βi monotonically decrease with
i. In other words, does using the self-knowledge Ci as a
heuristic reduce the solution cost Ci+1 (on average)?

One may think that the answer is Yes due to Sutton
and Barto (1998). Ported from Markov decision processes
(MDP) used in reinforcement learning (RL) to the determin-
istic shortest path problem on graphs, the result becomes:

Theorem 1 (Policy improvement). Given a complete sta-
tionary agent-control policy π : S → S which de-
terministically maps any state s to one of its imme-
diate neighbors π(s) ∈ N(s), the control policy π′
greedy with respect to the solution cost of π: ∀s ∈
S+

[
π′(s) = argmins′∈N(s) [c(s, s

′) + Cπ(s′)]
]

is at least

as good as π: ∀s ∈ S+
[
Cπ′

(s) ≤ Cπ(s)
]
.

Proof. Adapting the proof by Sutton and Barto (1998), for
any state s ∈ S+ we have Cπ(s) = c(s, π(s))+Cπ(π(s)) ≥
mins′∈N(s) [c(s, s

′) + Cπ(s′)] ≥ c(s, π′(s)) +
Cπ(π′(s)) ≥ c(s, π′(s)) + c(π′(s), π′(π′(s))) +

Cπ(π′(π′(s))) ≥ · · · ≥ Cπ′
(s).�

Despite the theorem, there is no guarantee of mono-
tonic solution-cost improvement with even basic RTHS al-
gorithms, as shown below.

4.1 Counter Example

The example in Figure 1 shows that self-knowledge can ac-
tually hurt LRTA* solution cost. This is an eight-connected
grid with the goal shown in green (and marked with 0 in it).
Blocked cells are shown in dark grey. The intensity of red
and the labels in all non-goal cells show Ci. The left most
plate lists the initial heuristic h values (octile distance). With
the initial heuristic LRTA* makes a mistake in the state with
a dotted blue frame, resulting in a high solution cost of 10.4
(second plate). This means that LRTA* run with CLRTA*[h]

as its heuristic will avoid that state because it thinks it would

behave badly in it.2 This is the “bitten” part of “once bitten
twice shy”. Note that this “fear” of the state is irrational in-
somuch as the state lies on the only optimal path to the goal
for all states below it and thus must be visited.

As the third plate shows, the irrational avoidance of the
framed state leads to higher solution costs for the states be-
low it than they were when LRTA* used the vanilla h. For
instance, 5.41 becomes 10.8. Even averaged over all states,
the solution cost of LRTA* using self-knowledge is higher
than the solution cost of LRTA* using h: average subopti-
mality β2 = βLRTA*[CLRTA*[h]] = 1.394 while average subop-
timality β1 = βLRTA*[h] = 1.253.3

There are two ways to think about this degradation
of LRTA* performance due to self-knowledge. First, the
knowledge that LRTA* does poorly when launched from a
state can mean two things: (i) the state is bad and should in-
deed be avoided or (ii) the state is good but an inaccurate
heuristic resulted in an inflated solution cost from that state.
LRTA* using self-knowledge as its heuristic is unable to dis-
tinguish between these two cases and thus can be “shy” of
any state where it was “bitten”.

The second way of thinking about the performance degra-
dation lies with the notion of heuristic depressions (Ishida
1997) which has been subject of recent research (Hernández
and Baier 2014; Sturtevant and Bulitko 2016; Bulitko and
Sampley 2016). Viewed in terms of heuristic depressions,
the degradation of LRTA* with self-knowledge can be
viewed as follows. The initial heuristic had a depression with
the local minimum of h = 2 (left-most plate). The solution
cost C1 = CLRTA*[h] also has a depression with the local
minimum in the same state but the rim of the depression
is now higher: 10.4 instead of 2.41. Thus, the LRTA* with
self-knowledge spends more time filling its heuristic depres-
sion before it can escape it. Consequently, LRTA* performs
worse with the self-knowledge C1 than it did with the initial
octile distance heuristic C0.

4.2 Generality of the Problem

Perhaps the example in the previous section is pathological
and self-knowledge normally does help RTHS algorithms?
We will now show that this does not seem to be the case.

LRTA*. We ran the basic LRTA* (Algorithm 1) on 8 maps
from the MovingAI repository (Sturtevant 2012). Figure 2
shows the average suboptimality of the solution cost βi as a
function of the iteration i, run until convergence.The aver-
ages and standard deviations are computed over 512 goals.4

2Note that a high CLRTA*[h](s) means merely that LRTA* will
behave poorly when launched from s. It does not necessarily mean
that LRTA* will behave poorly in s when it comes to it launched
from another state. Indeed, by the time LRTA* reaches s after being
launched from another state, it may have updated its heuristic to
preclude poor behavior in s.

3Note that C2 = CLRTA*[CLRTA*[h]], while high, has only a single
minimum at the goal state. This means that LRTA* ran with C2 as
its heuristic is optimal and indeed C3 = CLRTA*[C2] = h∗ (right-
most plate in the figure). Consequently, β3 = 1.

4The maps were 012, 014, 307, 603, 701 from the game
Baldurs Gate II and darkforest, divideandconquer,
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Figure 1: Self-knowledge hurts LRTA*.

The peak in the averages suggests that self-knowledge hurts
suboptimality on early iterations.
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Figure 2: Effects of self-knowledge with LRTA*.

Generalized LRTA*. But perhaps the simple LRTA* is
somehow a pathological algorithm and its more modern
descendants are not subject to the harmful effects of self-
knowledge? To answer this question we repeated the ex-
periment above but averaged βi over algorithms randomly
sampled from a generalization of the recently introduced
space of RTHS algorithms (Bulitko 2016c). We added a step
size parameter to the learning rule, randomly generated such
algorithm specifications and ran each of them in place of
LRTA* in a similar setup. As with LRTA*, the values of βi

thecrucible from the game Warcraft III. We capped subopti-
mality of any run at 103. We deemed the process to converge when
βi did not change more than ε = 10−3 over I = 10 consecutive
iterations. The 64 goal states on each of the 8 maps were chosen
randomly but so that β1 ∈ [10, 20] for each goal.

averaged over the random algorithms rise on early iterations,
indicating that the phenomenon is not restricted to LRTA*.

4.3 Policy Improvement with Hill Climbing

The reason that policy iteration may not necessarily improve
policy value Cπ , seemingly in contradiction to Theorem 1, is
that LRTA* and other LRTA*-like algorithms are not a (sta-
tionary) policy π as defined in the theorem. While LRTA*-
like algorithms do act greedily with respect to its heuristic
function and the edge costs (line 6 in Algorithm 1), they also
change the heuristic over time (line 5). Thus, an LRTA*-
controlled agent may not follow any one policy π as defined
in the theorem.

Conversely, LRTA* without learning (i.e., with line 5 dis-
abled) does implement a stationary policy – greedy with re-
spect to its now stationary heuristic – and is therefore a sub-
ject to Theorem 1:
Corollary 1 (Policy improvement with hill climbing).
Define a hill-climbing control policy HC[h] greedy with re-
spect to a heuristic h as: 5

∀s ∈ S

[
HC[h](s) = arg min

s′∈N(s)
[c(s, s′) + h(s′)]

]
. (1)

Suppose the search graph is such that an agent follow-
ing HC[h] reaches the goal state starting from any state
s: ∀s ∈ S+

[
CHC[h](s) < ∞]

. Then the hill-climbing
policy HC can be improved via policy iteration: ∀s ∈
S+

[
CHC[CHC[h]](s) ≤ CHC[h](s)

]
.

Proof. Define π(s) = argmins′∈N(s) [c(s, s
′) + h(s′)].

Then the desired inequality follows directly from Theo-
rem 1. �

Informally, this result means that self-knowledge allows a
hill-climbing agent to improve. Note that the proof of The-
orem 1 required finite solution costs which means that the

5Such a policy is called hill climbing as the agent (down-)
climbs the surface of h until it reaches a local optimum.
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agent must be able to hill-climb to a goal state from any
state in S+. In other words, the heuristic surface should be
fully devoid of local optima which is unrealistic for any non-
trivial search graph and a reasonable heuristic.

4.4 Convergence to Optimal Cost

We will now consider the more realistic case where a hill-
climbing agent cannot reach the goal state from some states
in S+ given its initial heuristic: ∃s ∈ S+

[
CHC[h](s) = ∞]

.
Functionally this means that hill-climbing from such a state
s the agent reaches a local minimum in the heuristic surface
and stays there forever without ever reaching the goal (since
HC does not modify heuristic). Can self-knowledge help? To
answer this question we first generalize hill-climbing to infi-
nite heuristic values. Specifically, if all neighbors of the cur-
rent state have infinite values of h then the argmin operator
in Equation (1) considers them tied and uses a deterministic
tie-breaking schema. We can now prove:

Theorem 2 For any initial heuristic satisfying the condi-
tions of Section 2, after a finite number of iterations of Al-
gorithm 2 with the hill-climbing agent, the iteration cost C
converges to the optimal cost h∗ for all connected states:
∃J∀j ≥ J∀s ∈ S+ [Cj(s) = h∗(s)].

Proof. First, we define a set of states: Fi = {s ∈ S+ |
Ci(s) = CHC[Ci−1](s) = h∗(s) and HC launched in the
state s with heuristic Ci follows an (optimal) path entirely
contained in Fi}, i ≥ 1. Note that sgoal and all its imme-
diate neighbors are members of F1 since HC[h] reaches the
goal optimally from any of them. We will now prove that
once a state enters Fi, it will be in Fj for any j ≥ i. Sup-
pose this is not the case. Then there exists Fi and a state
s ∈ Fi such that s 
∈ Fi+1. As s ∈ Fi the hill-climbing
agent guided by Ci−1 travels from s to sgoal along an optimal
path P fully contained in Fi. As s 
∈ Fi+1, the hill-climbing
agent guided by Ci deviates from the path P . Let state s′
be the earliest state in which the deviation occurs (Figure 3,
left). While in s′, HC[Ci−1] chose s′′ ∈ P . On the other
hand HC[Ci] located in s′ chose s′′′ 
∈ P . Given how HC
chooses its states (Equation 1) and the fixed tie-breaking
we use, the following inequality must hold for the switch
from s′′ to s′′′ to happen: c(s′, s′′′) + Ci(s

′′′) < c(s′, s′′) +
Ci(s

′′). Since s′′ ∈ Fi it follows that Ci(s
′′) = h∗(s′′):

c(s′, s′′′) + Ci(s
′′′) < c(s′, s′′) + h∗(s′′) which is impos-

sible since Ci(s
′′′) ≥ h∗(s′′′) and s′′ is on an optimal path

from s′ to the goal. This means that HC[Ci] will not change
its behavior when launched in s and will stay on P . Thus,
s ∈ Fi+1 which contradicts our supposition. Hence, no state
can leave Fi and Fi ⊂ Fi+1.

We will now show that Fi necessarily grows by at least
one state with each iteration until it absorbs all states in S+.
Suppose Fi 
= S+ then there must be a state s ∈ S+ \
Fi such that an optimal path from s to sgoal enters Fi with
its very first edge (Figure 3, right). If all of s’s neighbors
that lie on optimal paths to the goal are already in Fi then
s will necessarily enter Fi+1. Suppose, however, that s has
a neighbor s′′ which is on an optimal path to goal but is
outside of Fi. If HC[Ci] chooses to go from s to s′ then

s

s′′
s′′′

s◦s′

sgoal Fi

s

s′′

s′′′

s′

sgoal

Fi

Figure 3: To the proof of Theorem 2.

s ∈ Fi+1. Suppose HC[Ci] chooses to go from s to s′′. Then:

c(s, s′′) + Ci(s
′′) ≤ c(s, s′) + Ci(s

′) (2)
c(s, s′′) + Ci(s

′′) ≤ c(s, s′) + h∗(s′) (3)
c(s, s′′) + h∗(s′′) = c(s, s′) + h∗(s′) (4)

which means that Ci(s
′′) = h∗(s′′) and s′′ is also on an

optimal path from s to goal. Tracing this optimal path P =
(s, s′′, . . . , s′′′, s◦, . . . , sgoal) we see that it enters Fi with the
edge (s′′′, s◦) where s′′′ 
∈ Fi but s◦ ∈ Fi. This means that
HC[Ci] launched in the state s′′′ follows the optimal path
(s′′′, s◦, . . . , sgoal) which means that s′′′ enters Fi+1. This
means that Fi never loses states and grows by at least one
state until it becomes S+ at iteration J . �

We just showed that despite the fact that a hill-climbing
agent is initially incomplete and never changes its heuristic,
in at most |S+| iterations of Algorithm 2 it will be able to
reach the goal from any connected state and do so optimally.
While empirical results suggest that the same holds for self-
knowledge iterations with heuristic-updating agents such as
LRTA* proving so is a subject of future work.

5 Human-like Irrational Behavior

Using solution cost as a heuristic can discourage the agent
from visiting any states where it knows to perform poorly
(with the original heuristic). Just as with the proverb “Once
bitten twice shy”, the agent will avoid such “bite” states even
if they are indeed on an optimal path to the goal. On the
other hand, knowing that a solution cost in a state is high
can be useful when the state is not on an optimal path to
goal and thus should indeed be avoided. Such solution costs
are especially helpful when the initial heuristic is low and
thus invites the agent to visit the useless state.

How can an agent tell between the two scenarios? Does
the ranking of a state’s neighbors induced by a solution cost
with a heuristic indicate the true ranking of such neighbors?
In using solution cost from a previous iteration as the guid-
ing heuristic for the next iteration, our agents can assume so
even when it is not the case.

Such irrational behavior is related to the distinction be-
tween adaptive/rational and non-adaptive/irrational choice
switching. Marcatto, Cosulich, and Ferrante (2015) showed
that regret from being under the (false) impression that an
objectively suboptimal choice would have been better can
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prevent humans from making the optimal choice on the sub-
sequent trials. While the experimenters set it up by misin-
forming the participants of the outcome of the choice they
did not make, our agents are effectively misinformed by bas-
ing their choice on the solution length with an inaccurate
heuristic. In both cases, human/AI agents use past outcomes
to shape their future choices even when the future and the
past experiences are not aligned. Thus our NPCs can display
the specific type of human irrational behavior (non-adaptive
choice switching) without being explicitly scripted to do so.

6 Current Limitations and Future Work

The study presented in this paper is the first look at the use
of self-knowledge in RTHS. As such it opens many exciting
directions for future work. First, our conjecture that the irra-
tional fear due to self-knowledge makes an NPC more nat-
ural in the eyes of the player needs to be confirmed/refuted
via a user study. Second, where does such self-knowledge
come from? In our experiments we computed it by indepen-
dently running LRTA* from every state with a fresh heuris-
tic and recording its solution cost. While this is prohibitively
expensive for large maps, there can be more practical ways
of obtaining such self-knowledge. For instance, an agent can
observe a solution produced by another agent (social learn-
ing) or the agent can recall its own solution quality for sim-
ilar states and combine them into an estimate of its solution
quality from a novel state (case-based reasoning).

7 Conclusions

To the best of our knowledge, this paper is the first investi-
gation into the use of self-knowledge in real-time heuristic
search. We showed that using solution costs in place of the
usual heuristic can harm solution quality. We demonstrate
this curious fact on a simple grid-pathfinding example and
empirically showed that this is a common phenomenon with
LRTA* as well as more general RTHS algorithms sampled
from a large space of algorithms. We proved that for hill-
climbing the solution costs do converge to optimal. Finally,
we conjectured that embracing the “once bitten twice shy”
paradigm can make NPCs appear more human-like in game.
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