
Marahel: A Language for Constructive Level Generation

Ahmed Khalifa, Julian Togelius
Tandon School of Engineering

New York University
Brooklyn, New York 11201

ahmed.khalifa@nyu.edu and julian@togelius.com

Abstract

Marahel is a language and framework for constructive gen-
eration of 2D tile-based game levels. It is developed with the
dual aim of making it easier to build level generators for game
developers, and to help solving the general level generation
problem by creating a generator space that can be searched
using evolution. We describe the different sections of the level
generators, and show examples of generated maps from 5 dif-
ferent generators. We analyze their expressive range on three
dimensions: percentage of empty space, number of isolated
elements, and cell-wise entropy of empty space. The results
show that generators that have starkly different output from
each other can easily be defined in Marahel.

Introduction

Game level design is one of the most common domains
for procedural content generation. There are many differ-
ent methods for level generation, some ad-hoc and unique
to particular games, others built on more principled algo-
rithms and generalizable to great variety of games (Shaker,
Togelius, and Nelson 2014).

Given the relatively bounded domain, it should be possi-
ble to apply algorithms across games, in order to compare
them. However, doing so typically requires reimplementing
each algorithm in the context of a particular game, such as
Super Mario Bros (Horn et al. 2014). It should also in prin-
ciple be possible to mix and match these algorithms so as to
search (manually or automatically) the space of level gen-
erators for generators that deliver desired aesthetics or work
with particular constraints. To make this possibility a reality,
we need a unified framework for level generators.

In this work-in-progress paper, we present an early ver-
sion of Marahel1, a language and framework for construc-
tive 2D tile-based level generation. The language is an at-
tempt to formalize the principles behind a number of popular
algorithms that can be used for constructive (i.e. not based
on generate-and-test) level generation for tile-based games
so that they can easily be recombined.

Any valid Marahel string constitutes a specification for a
level generator, which when interpreted by the Marahel soft-

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Marahel means levels in Arabic.

ware can produce 2D tile-based levels. Not all valid Mara-
hel scripts will produce usable levels for all games, because
game mechanics play an important role in defining the space
of plausible levels. For example: if the player is able to dig
through walls, it is okay to have isolated areas. The user of
Marahel (a human and/or an algorithm) must make sure that
the script is not only a valid script but also a suitable one,
i.e. it fits the requirements of the current game.

One of the key motivations for the development of Mara-
hel is the General Video Game Level Generation challenge,
which is to develop level generators that work for any game
within a given domain (Khalifa et al. 2016). Another key
motivation is to simplify the development process of level
generators easily and make them accessible to developers
of all stripes through an open API. A third motivation is to
understand the design space of level generators through for-
malizing their design space.

Background

Methods for level generation can be divided into several cat-
egories. One common division is between search-based level
generation, constraint-based level generation, and construc-
tive level generation (Shaker, Togelius, and Nelson 2014).

In search-based level generation (Togelius et al. 2011), a
search algorithm such as a genetic algorithm is utilized to
find a level. The levels are tested using a fitness function
that measures the quality of the levels. The fitness function
can be anything from measuring the connectivity of the level
to an AI agent playing the level and measuring its difficulty.

Constraint-based generators (Smith and Mateas 2011) use
constraint based solvers to find a good map. In such meth-
ods, the user defines what are the feature required in the gen-
erated map and the solver tries to fit all those requirements.

Constructive level generation methods (Shaker et al.
2016) are widely used in the videogame industry due to
many algorithms being very fast, and also relatively easy
to implement and debug. These techniques has been used
in videogames since the early days. For example, Rogue2

generates a new dungeon for every playthrough. While
constructive generation methods differ widely among each
other, the defining feature of constructive generation is that

2https://en.wikipedia.org/wiki/Rogue (video game)

The AIIDE-17 Workshop on
Experimental AI in Games

WS-17-19

84

there is no re-generation of the output based on testing; gen-
eration happens only once. Due to this limitation, the algo-
rithm should guarantee that the generated levels have the re-
quired features during construction. Not all algorithms can
guarantee playable levels 100% of the time, so developers
use repair techniques to fix the generated content. Since con-
structive algorithm are fast, developers sometimes wraps the
algorithm in a generate and test algorithm where it keeps
generating levels until a suitable one is found.

Depending on the requirements of the particular game and
the desired type of results, different constructive methods are
used such as template-based generation, binary space parti-
tioning, cellular automata, diggers, and etc. Below we de-
scribe some constructive level generation techniques.

Template-based level generation uses hand authored con-
tent to generate the level. The algorithm combines differ-
ent authored pieces that fit together according to certain
constraints. In some cases, the algorithm alters the gener-
ated level by adding noise to it. You can find this technique
used in Spelunky (Yu 2016) and Binding of Isaac (McMillen
2011) among other games.

Binary space partitioning generates levels by partitioning
the space, either vertically or horizontally. The algorithm
partitions the space until it reaches a certain number of re-
gions then it connects these regions with hallways. For ex-
ample: Splitter (Leemoor 2013) a game created for 7 Day
Roguelike (7DRL) competition uses binary space partition-
ing to generate the game map.

Cellular automata are a mathematical technique of great
generality (Wolfram and others 1986) which can also be
used for level generation (Johnson, Yannakakis, and To-
gelius 2010). For example, this technique can be used to gen-
erate maps that mimic natural caves. In this method, the map
is filled randomly. Each location is then updated based on its
surrounding values. As this method does not generate fully
connected maps, an A∗ algorithm can be used to connect
the isolated areas, or by filling the smaller isolated areas by
solid. For example: Galak Z (Aikman 2014) uses cellular au-
tomata to generate separate rooms. Tomb of Tomeria (Cook
and Colton 2016) not only uses cellular automata to generate
the whole level but also utilizes it as a game mechanic.

The various digger algorithms are agent-based methods.
Typically, the map starts as all solid. The agent moves
around randomly changing all the locations it passes over to
empty which ensures the map’s connectivity. At each time
step, the agent has a probability to spawn a room (a ran-
dom size area of empty locations). Nuclear Throne (Ismail
2013) is an example of a game that uses an agent-based al-
gorithm to generate the map. Other techniques such as gram-
mar based level generation (Van der Linden, Lopes, and
Bidarra 2013; Dormans 2010) are out of the scope of the
current version of Marahel.

As far as we know, there is no prior work in defining
a level generator description language. However, game de-
scription languages are an active research topic. Game de-
scription languages are descriptive languages that can de-
fine a group of games. For example: there are game de-
scription language for board games (Love et al. 2008;
Browne and Maire 2010), card games (Font et al. 2013),

video games (Ebner et al. 2013), puzzle games (Lavelle
2013), strategy games (Mahlmann, Togelius, and Yan-
nakakis 2011), first person dungeon crawlers (Farbs 2017),
and etc. Having a specific language help to decrease the
search space for new games making it easier to find good
games such as Yavalath (Browne 2011). Having a level
generation description language will be the first step to-
wards formalizing the space of level generators that can
be searched manually/automatically to find new techniques,
have a deeper understanding about level design, and etc.

Marahel

Marahel approaches level generation as a description lan-
guage that describes the steps of the generation process in-
stead of the required level. By comparing level generation
techniques to programming paradigms, we can see that tech-
niques such as constraint-based generation follows a declar-
ative programming paradigm, while other techniques such as
constructive generation follows an imperative programming
paradigm.

Answer Set Programming (Smith and Mateas 2011) can
be described as a language that follows a declarative pro-
gramming paradigm where the user define the features re-
quired in the output and the system finds a solution for it.
Following this logic, Marahel can be described as a lan-
guage that follows an imperative programming paradigm
(like C++) where the user defines the steps required by the
generator to change the current map.

A Marahel script constitutes a 2D tile-based level gener-
ator. Each script consists of 5 section: Metadata, Entities,
Neighborhoods, Regions, and Explorers. The first 3 sec-
tions (Metadata, Entities and Neighborhoods) defines differ-
ent data required during the generation process, while the
rest (Regions and Explorers) defines the steps of the gener-
ation. Comparing these sections to an imperative program-
ming languages, the first 3 sections will be similar to the in-
put data and constant values required/used by the program,
while the last 2 sections are the actual program itself.

The following five steps are taken by the Marahel when
implementing a generator description:

1. Parse the first 3 sections (Metadata, Entities and Neigh-
borhoods) and save them for later usage.

2. Define a 2D array of the dimension specified in the previ-
ous step and initialize it with “unknown”.

3. Use the algorithm defined in the Regions section to divide
the map into several areas.

4. Apply all the defined explorers sequentially to modify the
2D array based on their rules.

5. Return the 2D array to the user.

The Marahel language can be described as a context free
grammar. Grammar 1 shows the full definition of the current
version of Marahel. Terminals in Marahel are a list with the
current supported features in the system. Adding a new ter-
minal to the list extends Marahel’s capabilities. For exam-
ple: if a new divider algorithm is required, we only need to
add a new terminal to “<divider>”.

85

Grammar 1: Marahel language as context free grammar

〈script〉 ::= 〈metadata〉 〈entities〉 〈neighborhoods〉
〈regions〉 〈explorers〉

〈metadata〉 ::= 〈generalInfo〉 〈metadata〉 | 〈generalInfo〉
〈generalInfo〉 ::= ’minDimension’
| ’maxDimension’ | ’dimension’

〈entities〉 ::= ’entityName’ 〈entities〉 | ’entityName’

〈neighborhoods〉 ::= 〈neighbor〉 〈neighborhoods〉 | ε
〈neighbor〉 ::= ’neighborName’ ’relativePoints’

〈regions〉 ::= ’numOfRegions’ 〈divider〉
〈divider〉 ::= ’equal’ | ’bsp’ | ’sampling’

〈explorers〉 ::= 〈explorer〉 〈explorers〉 | ε
〈explorer〉 ::= 〈appliedRegion〉 〈generalParam〉 〈expType〉

〈rules〉
〈appliedRegion〉 ::= ’map’ | ’all’ | ’some’ | ’specific’

〈generalParam〉 ::= 〈param〉 〈generalParam〉 | ε
〈param〉 ::= ’borderSize’ | ’borderHandling’
| ’replacingTech’ | ’iterations’

〈expType〉 ::= ’random’ | ’sequential’
| ’agent’ | ’connector’

〈rules〉 ::= 〈rule〉 〈rules〉 | 〈rule〉
〈rule〉 ::= 〈conditions〉 〈executers〉
〈conditions〉 ::= 〈cond〉 〈conditions〉 | ε
〈executors〉 ::= 〈execut〉 〈executors〉 | 〈execut〉
〈cond〉 ::= 〈bioperator〉 〈estimator〉 〈estimator〉
| 〈unioperator〉 〈estimator〉
| 〈operator〉

〈estimator〉 ::= ’constant’ | ’random’ | ’noise’
| ’entityEstimator’ | ’neighborhoodEstimator’
| ’distanceEstimator’

〈bioperator〉 ::= ’equal’ | ’notEqual’ | ’greater’ | ’less’

〈unioperator〉 ::= ’isEven’ | ’isOdd’ | ’isSingular’

〈operator〉 ::= ’isConnected’

〈execut〉 ::= ’neighborhoodExecuter’

Listing 1 shows an example of a full Marahel script com-
patible with the current Javascript implementation3. This
script generates dungeons that consist of 7 connected rooms
of different size. Below we describe the different sections of
a Marahel script.

Listing 1: An example of a full generator.
{
metadata:{

minDimension:"40x30",
maxDimension:"60x45"

},
entities:[

"empty",
"solid"

],
neighborhoods:{

all: ["111",
"131",
"111"],

plus:["010",
"121,
"010"]

},
regions:{

type:"bsp",
numberOfRegions:7,
parameters:{

min:"8x8",
max:"15x15"

}
},
explorers:[

{
type:"sequential",
region:{name:"map"},
parameters: {iterations:1},
rules:["self(any)->self(solid)"]

},
{
type:"sequential",
region:{name:"all", border:1},
parameters: {iterations:1},
rules:["self(any)->self(empty)"]

},
{
type:"connector",
region:{name:"map"},
parameters:{

type:"short",
directions:["plus"],
entities:["empty"]

},
rules:["self(solid)->self(empty)"]

}
]

}

Metadata

The Metadata section contains all the information that is
related to the whole generation process. In the current im-

3https://github.com/amidos2006/Marahel

86

plementation, Marahel supports only the minimum and the
maximum dimensions of the generated map.

Listing 2 shows an example of metadata section. In this
example, the level generator will always generate maps of
size between “40x30” and “60x45”.

Listing 2: Example of the entities section.
metadata:{

minDimension:"40x30",
maxDimension:"60x45"

}

Entities

The Entities section contains a list of all the names of the
entities that can appear in the final generated map, and is
the “ontology” of the levels. Entities are the base unit of any
generated level. A level is a 2D array of entities.

Listing 3 shows an example of the entities section. In
this example, we have two different entities: “solid” and
“empty”. This level generator is only able to generate maps
that contains any of these entities.

Listing 3: Example of the entities section.
entities:[

solid,
empty

]

Neighborhoods

The neighborhoods section is a section that contains a list of
different neighborhoods. A neighborhood is an entity that
defines relations between multiple locations and a center
one. Neighborhoods can be represented using various meth-
ods such as a list of points, a 2D arrays of numbers, etc. For
example: “[(1,1), (0,-3)]” shows a list version of a neighbor-
hood where (1,1) and (0,-3) are relative points. To calculate
the relative locations from a certain point such as (2,2) using
this neighborhood, you need to add each point separately to
get (3,3) and (2,-1) as a result.

In the current implementation, Marahel uses a 2D array of
numbers to specify these relative points. Each neighborhood
contains a name and a 2D array of numbers. The numbers
indicate the relation between their locations in the matrix
with respect to a certain location.

Listing 4 shows two neighborhoods: all and plus. Each 1
in the array tells the generator to use that location relative to
the location of the value 2 or 3. The value 3 is same as 2 but
it tells the generator that this location is a relative location
too. The all neighborhood can be represented as the follow-
ing list of relative points “[(-1,-1), (-1,0), (-1,1), (0,1), (1,1),
(1,0), (1,-1), (0,-1), (0,0)]” while plus neighborhood can be
represented as “[(1,0), (-1,0), (0,1), (0,-1)]”.

Regions

The Regions section defines the algorithm that is used to
divide the map into several regions. Regions are portions of

Listing 4: Example of the neighborhoods section.
neighborhoods:{

all: ["111",
"131",
"111"],

plus: ["010",
"121",
"010"]

}

the generated map that are generated using the selected algo-
rithm. In each Marahel script, The user selects the “divider
algorithm” and the “number of regions”. Marahel currently
supports three different algorithms to generate rectangular
regions:

• Equal: divides the map into equal sized portions using a
grid then selects randomly some/all regions based on the
required “number of regions”.

• Binary Space Partitioning: divides the map into differ-
ent size region by splitting each region either vertically
or horizontally. The algorithm keeps splitting each region
till the termination conditions are met. After that, it selects
randomly some/all regions based on the required “number
of regions”.

• Sampling: adds regions to the generated map that do not
intersect with the previous ones. The algorithm continues
until the required “number of regions” is met.

Listing 5 shows the regions section from a generator. The
algorithm splits all the regions that are bigger than 15x15
while making sure the resulted regions are bigger than 8x8.
In the end, the algorithm chooses 7 random regions from the
output regions.

Listing 5: Example of the regions section using binary space
partitioning.
regions:{

type:"bsp",
numberOfRegions:7,
parameters:{min:"8x8",max:"15x15"}

}

Explorers

Explorers are the core of the generation process. Explorers
use an algorithm to visit different tiles on a defined region
of the map. At each step of the algorithm, the explorer is
at a certain location(s) where it will apply the defined rules.
Explorers and rules together define how the system modifies
the generated map. A Marahel script can have more than
one explorer where they are applied sequentially. Explorers
consist of 3 main parts:

• Type and Parameters: specifies the type of the explorer
and its parameters. Different supported types will be dis-
cussed later in this section. Also, It specifies some general
parameters such as “number of repetition” which allows

87

Percentage of white spaces

Nu
m

be
r o

f is
ola

te
d

ob
jec

ts

0% 100%

0
10

0
50

50%50% 100%0%
0

50

100

Percentage of white space

Nu
m

be
r o

f is
ola

te
d

ob
jec

ts

(a)

Percentage of white spaces

Nu
m

be
r o

f is
ola

te
d

ob
jec

ts

0% 100%

0
10

0
50

50%50% 100%0%
0

50

100

Percentage of white space

Nu
m

be
r o

f is
ola

te
d

ob
jec

ts
(b)

Percentage of white spaces

Nu
m

be
r o

f is
ola

te
d

ob
jec

ts

0% 100%

0
10

0
50

50%50% 100%0%
0

50

100

Percentage of white space

Nu
m

be
r o

f is
ola

te
d

ob
jec

ts

(c)

Percentage of white spaces

Nu
m

be
r o

f is
ola

te
d

ob
jec

ts

0% 100%

0
10

0
50

50%50% 100%0%
0

50

100

Percentage of white space

Nu
m

be
r o

f is
ola

te
d

ob
jec

ts

(d)

Percentage of white spaces

Nu
m

be
r o

f is
ola

te
d

ob
jec

ts

0% 100%

0
10

0
50

50%50% 100%0%
0

50

100

Percentage of white space

Nu
m

be
r o

f is
ola

te
d

ob
jec

ts

(e)

Figure 1: Expressive range of the different generators: (a) uniform map generator, (b) nonuniform map generator, (c) digger
map generator, (d) cave map generator, and (e) mine map generator.

the system to repeat this specific explorer any number of
times.

• Applied Region: selects the area of the map that is af-
fected by the explorer. The user can select either the whole
map, all/some regions generated by the region divider, or
manual defined regions. Any tile outside the applied re-
gion(s) won’t be affected by the explorer.

• Rules: is a list of conditional rules that change the gen-
erated map. Marahel goes over the list in order until the
first rule is satisfied; that rule will then be applied.

rule : condition, ..., condition → executer, ..., executer
(1)

Equation 1 shows the structure of rules in Marahel. Rules
in Marahel consists of two sides: Left hand side and Right
hand side. The left hand side is a group of conditions that
need to be satisfied before applying the right hand side. If
any condition fails, the rule fails.

condition : estimator <op> estimator (2)

Conditions can be anything that returns either true or false.
In the current implementation of Marahel, only compara-
tive conditions exists (bi-operator conditions). Equation 2
shows the structure of the comparitive conditions. <op> is
either greater than (>), less than (<), equal (==), or not
equal (! =). Estimators are functions that return a numerical
value, it can be anything from a constant number to a com-
plex equation. Estimators, in the current implementation of
Marahel, are either a neighborhood estimator, a distance es-
timator, a number estimator, or an entity estimator.

The neighborhood estimator calculates the number of a
certain entity/entities around the current location using the
relative points defined by a specified neighborhood. The dis-
tance estimator calculates either the maximum, average, or
minimum distance between the current location and a spec-
ified entity/entities. The number estimator is either a fixed
number, a random number between 0 and 1, or a perlin noise
value between 0 and 1 for the current location either in the
applied region or in the whole map. The entity estimator gets
the total number of a specified entity either in the applied re-
gion or in the whole map.

Executors are simpler than conditions. Executors modi-
fies locations on the map relative to the current location. In

Listing 7: Example of an sequential generator.
{
type:"sequential",
region:{name:"all", border:1},
parameters:{iterations:1},
rules:["self(any) -> self(empty)"]

}

the current implementation of Marahel, it supports one type
of executor where it changes the current location and/or the
surrounding locations (using the relative points of a speci-
fied neighborhood) to a certain entity. If the executor have a
list of entities, it will pick one of them at random.

Marahel currently supports four different types of explor-
ers that are described in details in the following text.

Random: is an explorer that visits the tiles in a random
order. The user can control the number of tiles to visit using
its parameters.

Listing 6 shows an example of an random generator. This
generator picks 20 random location in the map and changes
them to “enemy” entity only if they are “empty”.

Listing 6: Example of an automata generator.
{
type:"random",
region:{name:"map"},
parameters:{numberOfTiles:20},
rules:["self(empty) -> self(enemy)"]

}

Sequential: is an explorer that visits tiles in a sequential
order. The user can define several parameters to control the
explorer behavior such as, percentage of explored tiles as a
value between 0 and 1, starting location as a value between
0 and 1, order of visiting tiles using neighborhood’s relative
points.

Listing 7 shows an example of a sequential explorer. This
explorer fills “all” the regions with “empty” entity while
leaving 1 tile as border.

Agent: is an agent based explorer. Marahel spawns multi-
ple agents inside the applied regions that are updated step by

88

step. At each time step, Marahel updates all the living agents
based on their parameters then applies the rules to modify
their current location. The user can define several parameters
to control the agent’s behavior such as, the number of agents,
the number of steps needed to change direction, their lifes-
pan, and the possible directions as a list of neighborhoods.
Each agent selects a direction (relative point) randomly from
the array of directions.

Listing 8 shows an example of an agent generator. This
generator spawns 3 agents that change direction every 10
steps to a random direction picked from the “plus” neigh-
borhood. These agents have a lifespan of 150 step. At each
step, the agents spawn either a single empty entity (70% of
the time) or a 3x3 area of empty entities.

Listing 8: Example of an agent generator.
{
type:"agent",
region:{name:"map"},
parameters: {number:3, change:10, lifespan

:150, directions:["plus"]},
rules:[

"self(any),random<0.7 -> self(empty)",
"self(any) -> all(empty)"

]
}

Connector: is a special type of agent. Connector uses an
A∗ algorithm to explore tiles between the isolated areas in-
side the applied region. The user can control the behavior
of the agent using a set of parameters such as, the names
of connected entities, the allowed directions using a list of
neighborhoods (where Marahel pick a random relative point
and use it as a possible movement), and the type of connec-
tion. The type of connection specifies the goal of the agent
(heuristic function for the A∗ algorithm). The current im-
plementation supports shortest connections (minimize the
distance between unconnected areas), random connections
(randomly connect unconnected areas), and hub connection
(use one area as a central hub and connect it to all the other
areas).

Listing 9 shows an example of a connector generator. This
generator tries to make sure that all “empty” entities are con-
nected using a “plus” neighborhood. Connections are se-
lected based on the shortest distance. Each location on the
connection path will be set to an “empty” entity.

Listing 9: Example of a connector generator.
{
type:"connector",
region:{name:"map"},
parameters:{type:"short", directions:["

plus"], entities:["empty"]},
rules:["self(any) -> self(empty)"]

}

Results

In this section, we analyze different map generators made
for a top down roguelike game4 such as Desktop Dungeon5.
This analysis is done to show the ability of Marahel to de-
scribe different level generators with different characteris-
tics.

We designed 5 different generators in the Marahel lan-
guage, intended to generate dungeons in different styles6:

• Uniform map generator: divides the map using equal
divider and fill each region with “empty” then connecting
them.

• Nonuniform map generator: similar to the previous
generator but it uses bsp divider instead of equal divider.

• Digger map generator: uses multiple agent explorer to
generate the map by adding a single “empty” entity 70%
of the time or a 3x3 “empty” entities the rest of the time.

• Cave map generator: uses sequential explorer with rules
similar to cellular automata to generate cave-like maps.

• Mine map generator: is similar to the nonuniform map
generator but it modifies each region using the cave map
generator.

We generated 1000 maps from each of these generators.
We calculated the percentage of “empty” entities (white
space) and the number of isolated objects for each generated
map. We used these two values to showcase the expressive
range (Smith and Whitehead 2010) of each of these genera-
tors.

Figure 1a shows the expressive range of the uniform map
generator. There is a small white area near the bottom of the
y-axis which is similar to the expressive range of the nonuni-
form map generator in 1b. The reason is both of these gen-
erators generated same number of regions of either differ-
ent sizes or different locations. This forces all the generated
maps to have similar white space percentage and a small
number of isolated areas. Figure 1c shows the expressive
range of the digger map generator. The digger map gener-
ator have more isolated areas than the previous two gener-
ator. Figure 1d shows the expressive range of the cave map
generator. This generator has the highest number of isolated
regions. Figure 1e shows the expressive range of the mine
map generator. The mine generator have a small white space
percentage and a small number of isolated areas.

Another metric, we used is measuring the cell-wise en-
tropy of empty entity over the generated map. Each gener-
ated map is divided into 25 regions (5x5) where the entropy
of the empty entity (white space) in that portion is calcu-
lated. We take the average over all 25 regions. The entropy
of the current generated map is calculated using equation 3.

H(X) =
1

n

n∑

i=1

∑

x∈X

−Pi(x) logPi(x) (3)

4It is a game genre that defines games similar to rogue.
5http://www.desktopdungeons.net
6Check http://akhalifa.com/marahel/paper/scripts.zip for their

full description.

89

Uniform Nonuniform Digger Cave Mine

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2: The entropy of empty entity over the generated
maps. The black lines shows the median of the entropy for
the generated maps. The box shows the standard deviation,
while the horizontal lines shows the maximum and mini-
mum values.

where n is the number of regions (25 in our case), Pi(x) is
the probability of empty/solid entity in the region i.

Figure 2 shows the distribution of the entropy over a 1000
generated maps from the 5 different generators. The cave
map generator has a high entropy with a small standard devi-
ation which indicates that its generated maps have an empty
entity percentage around 50% in each region. On the other
hand, the equal, binary space partitioning, and mine map
generators have the lowest entropy values with a higher stan-
dard deviation. This low entropy reflect the presence of big
areas of all empty or all solid regions. The digger generator
has a high entropy values due to the high stochasticity in the
agents that digs the map.

Figure 3 shows 4 generated maps using more than two
entities. These maps feature 3 new entities: player, enemy,
and treasure. The green dot is the “player” entity and it is
spawned only in locations that are surrounded with “empty”
entities from all the directions. Red dots are “enemy” enti-
ties and they are generated at any location in the map but
with a higher chance to select locations that block hallways.
Yellow dots are “treasure” entities, they are generated only
at corners and hallways.

Conclusions

This paper introduced Marahel, a description language for
2D tile-based constructive level generators. We used Mara-
hel to define five generators and plotted their expressive
range and their entropy. The results shows how different
these generators are from each other in terms of isolated ar-
eas, open space percentage, and open space entropy.

We believe the results show clearly that Marahel can be
used to describe generators with very different generation
styles, both qualitatively and quantitatively. While Marahel
can also be used to generate maps with more entities than
just solid and empty, for example potions, traps, treasures
and etc, such generation is not discussed in this initial paper.

Figure 3: Different generated maps with more entities. The
green dot is the player, red dots are enemies, and yellow dots
are treasure chests. The used generators, in order from top
left to bottom right, are: nonuniform map generator, digger
map generator, cave map generator, and mine map generator.

For future work, we want to integrate our work with
Danesh (Cook, Gow, and Colton 2016) to allow for an easier
visualization for the generators and their expressive range.
This will help the users of the system to easily debug their
generators. We aim to have a user interface to make it eas-
ier to game/level designers to write Marahel scripts. We will
also create an implementation of Marahel in Java, and possi-
bly in C# and Python, to complement the current JavaScript
implementation. The Java implementation will be made to
interface with the General Video Game AI framework, and
be included with the GVGAI Level Generation Track soft-
ware. This work is the first step towards finding a general
level generator. One of the core ideas is to use a genetic evo-
lution to search the space of generators defined by Marahel
that fits specific games.

References

Aikman, Z. 2014. Generating procedural dungeons in galak
z. https://www.youtube.com/watch?v=ySTpjT6JYFU. [On-
line; accessed 28-July-2017].
Browne, C., and Maire, F. 2010. Evolutionary game design.
IEEE Transactions on Computational Intelligence and AI in
Games.
Browne, C. 2011. Yavalath. http://www.cameronius.com/
games/yavalath/. [Online; accessed 26-July-2017].
Cook, M., and Colton, S. 2016. Towards procedural gener-
ation as gameplay: Clay and tombs of tomeria.
Cook, M.; Gow, J.; and Colton, S. 2016. Danesh: Help-
ing bridge the gap between procedural generators and their
output. In PCG Workshop. ACM.

90

Dormans, J. 2010. Adventures in level design: generating
missions and spaces for action adventure games. In PCG
Workshop. ACM.
Ebner, M.; Levine, J.; Lucas, S. M.; Schaul, T.; Thompson,
T.; and Togelius, J. 2013. Towards a video game description
language.
Farbs. 2017. Dungeon script. http://dungeonscript.farbs.
org/. [Online; accessed 26-July-2017].
Font, J. M.; Mahlmann, T.; Manrique, D.; and Togelius, J.
2013. A card game description language. In European Con-
ference on the Applications of Evolutionary Computation.
Springer.
Horn, B.; Dahlskog, S.; Shaker, N.; Smith, G.; and Togelius,
J. 2014. A comparative evaluation of procedural level gen-
erators in the mario ai framework. In Foundation of Digital
Games. ACM.
Ismail, R. 2013. Random level generation in wasteland
kings. http://rami-ismail.squarespace.com/blog/2013/04/02/
random-level-generation-in-wasteland-kings. [Online; ac-
cessed 23-May-2017].
Johnson, L.; Yannakakis, G. N.; and Togelius, J. 2010. Cel-
lular automata for real-time generation of infinite cave lev-
els. In PCG Workshop. ACM.
Khalifa, A.; Perez-Liebana, D.; Lucas, S. M.; and Togelius,
J. 2016. General video game level generation. In GECCO
Conference. ACM.
Lavelle, S. 2013. Puzzlescript! http://www.puzzlescript.
net/. [Online; accessed 26-July-2017].
Leemoor, G. 2013. 7drl: Splitter: Bsp dun-
geons. https://pangoempire.wordpress.com/2013/03/09/
7drl-splitter-bsp-dungeons/. [Online; accessed 28-July-
2017].
Love, N.; Hinrichs, T.; Haley, D.; Schkufza, E.; and Gene-
sereth, M. 2008. General game playing: Game description
language specification.
Mahlmann, T.; Togelius, J.; and Yannakakis, G. N. 2011. To-
wards procedural strategy game generation: Evolving com-
plementary unit types. In European Conference on the Ap-
plications of Evolutionary Computation. Springer.
McMillen, E. 2011. Binding of Isaac Gameplay
Explained. http://edmundmcmillen.blogspot.com/2011/09/
binding-of-isaac-gameplay-explained.html. [Online; ac-
cessed 23-May-2017].
Shaker, N.; Liapis, A.; Togelius, J.; Lopes, R.; and Bidarra,
R. 2016. Constructive generation methods for dungeons
and levels. In Procedural Content Generation in Games.
Springer.
Shaker, N.; Togelius, J.; and Nelson, M. 2014. Procedural
Content Generation In Games. Springer.
Smith, A. M., and Mateas, M. 2011. Answer set program-
ming for procedural content generation: A design space ap-
proach. IEEE Transactions on Computational Intelligence
and AI in Games.
Smith, G., and Whitehead, J. 2010. Analyzing the expressive
range of a level generator. In PCG Workshop. ACM.

Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2011. Search-based procedural content generation: A
taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games.
Van der Linden, R.; Lopes, R.; and Bidarra, R. 2013. De-
signing procedurally generated levels. In Artificial Intelli-
gence in the Game Design Process Workshop. AAAI.
Wolfram, S., et al. 1986. Theory and applications of cellular
automata. World scientific Singapore.
Yu, D. 2016. Spelunky. Boss Fight Books.

91

