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Abstract

Several frameworks exist to describe how procedural content
can be understood, or how it can be used in games. In this pa-
per, we present a framework that considers generativity as a
pipeline of successive data transformations, with each trans-
formation either generating, transforming, or pruning away
information. This framework has been iterated through re-
peated engagement and education interactions with the game
development and generative art communities. In its most re-
cent refinement, it has been physically instantiated into a deck
of cards, which can be used to analyze existing examples of
generativity or design new generative systems. This Genera-
tive Framework of Generativity aims to constructively define
the design space of generative pipelines.

Introduction

What is generativity? To the procedural generation commu-
nity, it often means the method of constructing content for
use in a game. Game-creators seek to generate content to
fulfill many conflicting constraints: content that is novel yet
not game-breakingly novel, content that may either fill out
the background of a game, or radically change the game-
play. There are established tools that are of use in this pur-
suit. Many in this community are expert practitioners with
Perlin noise, L-Trees, grammars, tile-based placements, or
genetic algorithms. The particular constraints of game con-
tent may be unique to games, but these generative methods,
and their issues and a affordances, are common across many
fields(Compton, Osborn, and Mateas 2013).

Generative music, computational creativity, parametric
architecture, and many other fields all use these same meth-
ods. Additionally many successful generative systems are
hybrids of many kinds of generative methods, chained to-
gether. Games like Spore (Hecker et al. 2008), No Man’s
Sky (McKendrick 2016), Dwarf Fortress (Harris ), and Sim-
City (Wilmott, Quigley, and Moskowitz 2012) each have
many intersecting pipelines of generativity, in which the
output of one subsystem becomes the input of another.
Some subsystems contain cellular automata (Dwarf Fortress
and SimCity). Some use inverse kinematics (Spore and No
Man’s Sky), some simulate particles or agents in a field
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of forces (Spore terrain generation, SimCity transporta-
tion). Some games use Perlin noise to create terrain (Dwarf
Fortress and No Man’s Sky). In games and other interactive
works, humans interactors may be part of this pipeline!

This paper describes a way of thinking about generativ-
ity as a pipeline of data transformations, constructed from
methods that take one form of data, and return data that is
annotated, transformed, compressed, or expanded. Although
there are many frameworks of generativity (in games and
elsewhere), this framework attempts to provide a system to
design and describe generative pipelines in a way that cap-
tures how generativity is able to take input (random num-
bers, mouse input, and more) and transform it into some-
thing new and surprising.

We proposed a framework shifting the focus from PCG as
game-content (and how it is used) to the pipelines of genera-
tivity, and how they apply across fields. This broader lens on
generativity has allowed the first author to work in conver-
sational agents, bot-making, interactive art, and generative
textiles using the same tools developed for games 1. We be-
lieve that formalizing this approach is a useful contribution,
so that others, in games, art, generative text and other fields,
may also use these methods. In the latest experiment, this
framework has been developed into a deck of cards, which
were recently tested as a tool to help students understand the
design of generative systems (Compton, Melcer, and Mateas
2017).

Related Frameworks

There is no shortage of frameworks available for describ-
ing generative systems, especially for systems used to create
game content.

The framework by Hendrikx, et al, (Hendrikx et al. 2013)
classifies what can be generated by a generator: sound, tex-
tures, vegetation, buildings, behavior, volumetric fire-water-
stone-and-clouds, outdoor maps, indoor maps, bodies of wa-
ter, ecosystems, road networks, urban environments, entity
behavior, puzzles, storyboards, the story, levels, system de-
sign, world design, leaderboards, and news. They also de-
fine five categories of tools: pseudo-random number gen-
erators, generative grammars, image filtering, spatial algo-
rithms (tiling, fractals, Voronoi diagrams), modeling of com-
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plex systems (cellular automata), and artificial intelligence
(genetic algorithms, ANNs, constraint satisfaction), and pro-
vide examples of pairings of method and content, such as
L-systems for trees. This style of framework provides a
well-structured way to catalog the PCG applications of past
games, and offer recommendations for the best approaches,
such as using Perlin noise to generate cloud textures.

However, the possibility space of games is ever-
expanding, and many exciting game designs use content in
novel ways (such as object design in Katamari Damacy, or
the line-of-sight puzzles in the Witness). A Lindenmayer
system, as a context-free grammar, has no concept of the
outline of the tree that it generates, or its branches’ loca-
tions relative to other objects, and so could not address the
gameplay needs of a tree for Witness-like spatial puzzles.
It is easy to think of many kinds of content not described
by this ontology (social customs, pottery, poetry, language,
memes, recipes, crochet patterns) which might be of great
importance to some future game. Each one of them might
be part of a gameplay, a story, or the background of a game.
While this framework classifies common uses, it cannot pre-
dict or help design novel uses. Additionally, it is easy to cre-
ate a description with specification gaps: as exemplified by
the statement that ”building floor plans can be procedurally
generated using PRNG techniques”. How to translate a num-
ber into a floor plan is a difficult puzzle, one which is not
explained by this framework.

In the framework of “Search-based Procedural Content
Generation: A Taxonomy and Survey” by Togelius et al(?),
the process after generation is inspected through three
lenses: what kind of content is generated, how it is repre-
sented, and how the content can be evaluated. This frame-
work intentionally does not address the methods used in cre-
ation, specifically how the representation of a piece of con-
tent (its genotype) can be translated into the finished artifact
(the phenotype). Instead, their focus is on the content eval-
uation, heuristics (how desirable or apt for its purpose) the
piece of finished content is. They, like Hendrikx et al, list
several kinds of content (trees, terrain, racetracks), and they
decline to add storytelling to their taxonomy, as it has not
yet had a search-based generative implementation. While it
necessarily catalogs only existing systems (and ones the au-
thors are familiar with), in this case, unlike the Hendrikx
classification, the steps to implement a search-based algo-
rithm would be useful even for unknown applications.

In Gillian Smith’s “Understanding procedural content
generation: a design-centric analysis of the role of PCG in
games” (Smith 2014), Smith divides procedural content gen-
eration into five categories:

• generation as optimization
• generation as constraint satisfaction
• generation with grammars
• generation as content selection
• generation as constructive process

The last category, constructive process, refers to genera-
tors that “build content in an ad hoc manner by piecing to-
gether customized building blocks”, but uses Rogue level-

generation (a series of sequential operations on a grid of
empty-or-solid cells) as an example, so it is unclear if the
building blocks refer to steps in an algorithm, or actual
pieces of content, in which case it may be more closely re-
lated to a grammar. The framework further breaks the parts
of a generator into experiential chunks, templates, com-
ponents, and subcomponents, human-authored sections of
varying sizes of granularity and emergence. Unlike the other
frameworks, this one specifically addresses how the player
affects the generator: no influence, setting parameters, se-
lecting from generated content, or directly manipulating the
artifact itself.

As we want to model not only games (and static game
content) but also interactive generative art and generative art
tools (as well as works like Panoramical2 and the works of
StrangeThink3, which exist somewhere between them), it is
worth checking in with our neighboring field of generative
art. Unsurprisingly, there are as many frameworks for gen-
erative art as there are for PCG in games. “A framework
for understanding generative art” by Dorin et al (Dorin et
al. 2012) has many features that are well suited to our pur-
pose here, including a focus on generativity, a way to rep-
resent methods, and a recognition of interactors and view-
ers/experiencers as part of the generative system.

They propose a framework that looks at each generative
artwork as a construction of four types of components: enti-
ties, processes, environmental interaction, and sensory out-
comes. Entities are persistent state-carrying units with indi-
vidual or shared attributes, like cells in Conway’s Game of
Life or agents in a simulation. Entities are acted on by pro-
cesses, actions with initialization conditions and termination
conditions. Interactors, the creator, or other environmental
forces can set conditions or parameters or entity attributes:
these environmental interactions are “flows of information
between the generative processes ... and their operating envi-
ronment.”Entities and processes are captured in static form
(“snapshots”, “endpoints” or “accretions”) or viewed con-
tinuously “live”. All entities and outcomes may be visible
(“flat” system) or translated, a translation with may be struc-
turally similar (“natural mapping”) or arbitrary (for exam-
ple, cellular automata mapped to musical notes, lights, or
knitting).

Of all the previously cited frameworks, this framework
takes clearest note of the interesting property of generative
systems: they are a pipeline of information and processes.
A generative system may transform numbers into content
selection into 3D model into a rendered image, but there is
also always the possibility to interrupt the system, or add
interactivity, by inserting a human interactor or viewer.

A framework that represents generativity by a pipeline of
methods can also represent generative systems outside the
digital, and outside of the human-constructed artifact. The
spiral of a gazelle’s horn to spiral or the spots on a butterfly’s
wing can be described in terms of the chains of physical
and chemical algorithms (Ball and Borley 1999). Likewise
the transformations of digital generativity can be described

2http://panoramic.al/
3https://strangethink.itch.io/
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in terms of biological processes, as by McCormack, et al
(McCormack et al. 2004).

In our framework, though, we consider the specific prop-
erties of these transformations. What data types goes into the
transformation? What types of data come out? This speci-
ficity and concreteness allows our framework to model con-
straints in a way that is closer to the implementation of a sys-
tem. This framework enables us to examine the algorithmic
details of generative system through the lens of data trans-
forms.

A framework for generativity
The framework that we are presenting in this paper is in-
tended to represent the compression, expansion, extrapola-
tion, and generation of information that occurs in the run-
ning of a generative algorithm. To that end, we propose a
lens on the components that make up generative systems that
separates the ways that they construct content from the ways
that that content is used or optimized.

Adam Smith (Smith 2012) divides PCG techniques into
two broad categories, additive and subtractive techniques,
after the terms used in sculpture for building up a form,
and carving away undesired parts. Our framework intends
to separate these full systems into their component pieces:
pipelines of many transformations that add or expand in-
formation, and some algorithms and methods that consume
pipelines. Generative pipelines almost always contain many
such transformations, as it is necessary to construct con-
tent (or a space of content) before subtracting or search-
ing over the space. This framework is not meant as a litmus
test to decide whether a particular pipeline is generative, nor
whether any algorithm or substep is itself a generative trans-
formation. “Generativity is often not identifiable in individ-
ual components but in the overall transformations through
the pipeline. Each method in the pipeline may expand, aug-
ment, reduce, or transform the data from a previous step, in
a way that in isolation does not feel generative. But through
the construction of a pipeline of many of these methods, the
pipeline itself becomes generative.

Each transformation has a set inputs and output (a prop-
erty that allowed us to build a dominos-like set of cards
to model these pipelines (Compton, Melcer, and Mateas
2017)). Often each category shares an input/output set (no-
tably not “Geometric Transformations). Each category also
defines the suitability of methods to different situations.
Markov chains and grammars are often confused by novice
text-generation creators, understandable since they both out-
put generative text. But one requires a corpus of existing data
as input, and one requires hand-authorship of rules, so they
will be useful in diverse situations.

In this paper, we propose eight broad categories of trans-
formations which can be use to build a generative pipeline:
content selection, tiles, grammars, parametric, geomet-
ric transformations, distributions, agent-based (parti-
cles, cellular automata, flow, and graph-based simula-
tions), and machine-learned statistical models. Each of
these categories shares some useful properties, but may con-
tain many separate algorithms and techniques. Additionally,
we identify three broad consumers of finished pipelines:

search-based techniques, constraint solvers, and human in-
teractivity.

Categories of Transformations

Content Selection Though not often considered PCG in
itself, content selection is commonly a component in these
pipelines of generativity. If a 20-sided dice is rolled, that
action selects from 20 possibilities, as does drawing from
a deck of 20 cards. A content selection method has some
logic of selection, whether random, or random with chang-
ing probabilities (like cards), weighted randomness, or more
advanced non-randomness based logic, such as sorting con-
tent based on some heuristic. It may even represent a request
for external data, such as asking for the last tweet sent to a
source, or the most popular newspaper headline

Requires: some collection of content
May require: a heuristic for selecting content
Returns: some content

Tiles Perhaps the most ”classic” form of generativity is
tile-based generativity, in which available slots are filled
with some selection of content. A historical example of this
is a tarot spread, in which from 78 cards, 10 are drawn and
placed in a Celtic cross pattern, and the choice of each card
in each position may be interpreted into a personal meaning.
Another historical example is the Musikalisches Wurfelspiel
(Hedges 1978), a tile-based music generator from the 1700s.
Similarly, each cell in Rogue is a slot which can be empty, or
full of a wall, monster, or object. Some tiles have constraints:
a Settlers of Catan board must use all the tiles, but ocean and
harbor tiles may only be placed in specific locations. Open
tiles are recursive: one tile may contain a template to fill with
more tiles (i.e., equipping a socketable weapon in Diablo II)
but this may be better modeled as a grammar.

Requires: A set of possible tiles, a template of slots or
sockets

May require: selection logic (see ”content selection”
above), constraints (which tiles can fill which sockets, ori-
entation or proximity constraints)

Returns:the selected tile (or none) for each socket

Grammars Grammars recursively replace non-terminal
templates with either more non-terminals, or with terminal
symbols. Often, grammars require a selection from multiple
possible expansion rules. Tracery (Compton, Kybartas, and
Mateas 2015) is an example of a system designed to handle
text-generation with user-authored grammars,

Requires: A set of replacement rules (a grammar)
May require: non-context free rules that govern prefer-

ences or constraints (if so, some form of a constraint solver
is required)

Returns:A tree of recursive choices.
Tracery returns not only a tree of recursive choices, but

also a flattened depth-first traversal of the finished text of
each node. Grammars themselves do not return finished con-
tent, they still require some additional methods to compress
that tree into the final flattened content. A grammar may gen-
erate, SVG text, for example, but a browser is still required
to interpret those parametric geometry instructions to draw
an image on the screen.
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Parametric A parametric generative method is one which
converts some numerical values to content (even if the con-
tent is another numerical value). This conversion may be as
simple as turning a value into the sine of that value, or turn-
ing two values into the Perlin (or Worley) noise value at that
point. But many unusual and custom functions can be cre-
ated. The ”superformula” (Gielis 2003) is an equation that
can describe a striking range of 3 and 2 dimensional shapes
using 6 parameters, and was considered for use in No Man’s
Sky (McKendrick 2016).

Since Lindenmayer system are so common in game flora,
any taxonomy cannot neglect to include them. Interestingly,
an L-system is a hybrid: a computational grammar, with
parametric values defining the parameters of each grammar
replacement.

Parametric methods are, in fact, often less of a category
of generative method, and more like an interface which they
may implement. In “Navigating the Constructive Space”, be-
low, we discuss some properties of certain parametric meth-
ods which make them particularly expressive for generativ-
ity and interaction. In “Example systems”, several simple
parametric generators are dissected to reveal that a paramet-
ric generator may be implemented with an L-system or a
particle system.

Requires: An array of floats, usually normalized
Returns: Widely variable: L-systems create graphs in

space, but other parametric generators may create curves
(superellipses), 3D geometry, or waveforms or vectorfields.

Geometric transformations Unlike parametric methods
which take numbers, some functions take other forms of ge-
ometric information and process it into a new kind of geo-
metric information.

One familiar form of this is a Voronoi diagram. The
Voronoi algorithm, given an array of points, calculates the
region graph (a set of edges and nodes) that represents the
region of space closest to each point. A Delaunay triangula-
tion also takes a set of points, but returns a triangulation of
those points. Many other speciality triangulation algorithms
exist for various needs and dimensionalities.

Some methods take 3-dimensional points and turn them
into triangle meshes, in a generative and emergent way, like
Metaballs. Likewise, a region of arbitrary voxel data can be
turned into a triangle mesh with voxel polygonization algo-
rithms, a key step in No Man’s Sky’s generation of render-
able terrain (McKendrick 2016).

There are even some simple, often overlooked genera-
tive methods by which curves are turned into more com-
plex curves, or geometry. Offsetting a Bezier curve is one
such method. This seems too simple to be worth noting, but
being able to remap geometry along a curve is the founda-
tion of many digital painting tools. Painting tools work as
either deformed geometry or shapes along a curve, or distri-
butions of images or geometry along a curve (Smith 1995).
This technique is visible in Adobe Illustrator brush strokes,
but it is also used in the physically impossible generative
3D paintbrushes of Google’s Tilt Brush VR program. These
techniques require some existing geometry, such as lines,
curves, graphs, or 3D meshes, and return a different or ex-

trapolated geometry.
These methods not easily categorized by their input and

output data. Each one often takes a spatial or relational ob-
ject (such as vectors, a 3D model, or a graph) and returns
some other spatial or relational object.

Distributions Distributions, in this case, refer not just to
the probability of content being selected (i.e. a uniform or
normal distribution), but how it is placed spatially. Plac-
ing trees over a landscape requires not only deciding which
species and which size of tree to select, but also where to
place trees of that size and species in relation to the land-
scape and in relation to each other. Similarly, distributing
notes in music is not spatial, but still requires the system to
select notes from the current key and place them relative to
other notes. A sufficiently sparse tile-based system (very few
tiles to place, many possible sockets) can be treated like a
distribution. Consider a roguelike world of 10x10 tiles. This
may be considered as a grammar (each tile is a socket that
can be filled). But if the space is expanded to 1000x1000,
most tiles may be empty, and by the time the space is as large
as Minecraft, it may be more practical to treat the space as
a continuous space that can receive distributions of objects,
rather than as several billion sockets.

Many different heuristics can be used to tune a distribu-
tion, such as suitability, but may also include aesthetic logic
such as:

• greebling: a term originating in Star Wars production his-
tory (De la Mar ), meaning that the uneven distribution of
object over a surface makes the surface look ”real”

• footing: the tendency for the intersection between two
naturally-occurring objects to be noticeably different than
non-intersection spaces, such as grass growing higher
against a fence post, moss accumulating the the cracks
of boulders, trash getting caught against a park bench, or
sand pooling where a river bank meets the river.

• barnacling: a term-of-art on Spore used to describe the
aesthetic value that a monumental object is often best
framed by smaller simpler versions of itself, or by some
contrasting object.

These aesthetic choices may suggest that distribution oc-
curs only in landscapes, but is useful as well in generative
art, music, decoration or fabric design.

Requires: Content to be distributed, rules to govern se-
lection and distribution,

Returns:Location (and possibly other annotations) of the
new positions for the content

Particles, cellular automata, and graph-based simula-
tions Cellular automata are grid-based cellular systems
where each cell represents an agent with rules for updating.
The origin of the concept is in Conway’s Game of Life (?),
but it is also used in Dwarf Fortress, Minecraft, and in the
pollution and water models of SimCity (Wilmott, Quigley,
and Moskowitz 2012). It is also the basis of a platform for
running emergent simulations to make arguments by Nicky
Case4.

4http://ncase.me/simulating
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When agents are liberated from the grid and can move
freely through space, they become particles. A particle has
physical properties like velocity and acceleration, and may
also have other properties that define how they respond to
forces. Almost every particle system has some forces be-
ing applied to the particles, such as gravity or drag, but of-
ten those forces represent non-physical forces, such as flock
cohesion and avoidance in the Boids algorithm (Reynolds
1987). Applying complex forces to particles can generate
interesting patterns that respond to external geometry. Parti-
cles were used to texture the planets and creatures in Spore:
as particles moved across the geometry, they acted as paint-
brushes, painting into the texture map, using distribution of
stamps or deformable brush geometry extruded along their
paths (Compton et al. 2007).

While cellular automata are confined to a grid, and parti-
cles can move freely through space, some agents are con-
fined to paths on a directed graph, or even simulated as
continuous flow through that graph. The difference between
flow and agents in a directed graph is ambiguous: SimC-
ity’s transport system implemented both with the same sys-
tem (Wilmott, Quigley, and Moskowitz 2012). Loopy, by
Nicky Case, is a platform for designing emergent simula-
tions based on direct graph flows 5. Similarly a simulation of
emergent behavior in game systems can be modeled as a di-
rected graph, as in Dorman’s Machinations (Dormans 2011).
Sometimes multiple simulations in each of these styles will
interact with each other. In SimCity, the distribution of new
houses along a graph of streets is driven by the values of cel-
lular automata maps, each of which has its own rules for how
to update (groundwater pollution diffuses downhill). Those
houses create Sims, which route themselves as particles or
along the streets, as the houses siphon energy off an energy
graph, and write into the pollution map (Wilmott, Quigley,
and Moskowitz 2012).

Requires: A directed graph with update rules, or forces
and distribution(particles), or cell update rules (cellular au-
tomata)

Returns: Particle trails, or the new states of the graph or
grid-cells

Machine-learned statistical models So far, all the rules
discussed for various systems (grammars, graph simula-
tions) have been hand-authored. But there are systems which
generate rules, and those, too, can be part of the generative
pipeline. Markov chains and grammars can create similar-
looking output, but a Markov chain (at least, a machine-
learned model) requires an input of content to learn its sta-
tistical rules. Beyond Markov chains, the PCG community
is beginning to experiment with using deep learning to gen-
erate content (Summerville et al. 2017). For example, Deep
Forger 6 is a bot that has trained on classical artworks until
it has generated a flexible statistical model of what colors
go where in a Picasso. When given an image from a user
on Twitter, the model can be used to iteratively optimize
that image towards its ideal of Picasso-ness. Since the use
of deep learning in PCG is relatively new, the community

5http://ncase.me/loopy
6https://deepforger.com/

is still experimenting with where it will fit in the workflow.
However, with this framework, there is a clear input, and a
clear output: surprisingly, “machine learning” is actually two
components, which we can use separately.

Model construction:
Requires: Lots of content:
Returns: A model representing a set of statistical patterns

in that content
Transformation via model:
Requires: A trained model. Deep-learning activation-

optimization may also require a starting piece of content
to optimize, as Markov models may require a starting se-
quence.

Returns: For a Markov model: a statistically-viable walk
through a Markov chain. For a neural network: an activation-
optimized version of the source content

Consumers of generative pipelines

The previous section defined broad categories consisting of
many transformations that can be used to construct a gen-
erative pipeline. Such a pipeline will take some number of
inputs, and transform them into a generative and emergent
space of outputs. But in what context are these inputs gener-
ated, and in what context are the outputs used? This section
describes several contexts in which a generative pipeline is
a component. For any particular generative pipeline, it could
be used in many different contexts, creating a different sys-
tem each time, so this section is titled Consumers of gener-
ative pipelines to reflect that role.

Search-based techniques There are many approaches to
navigating a space that has locality and continuity. By
adding another dimension to the vector, a heuristic value,
we can model that each vector in the space can have has
a quality dimension, computed somehow from the artifact
generated from that vector. A hill-climbing algorithm can
take a given vector (representing some artifact), and sam-
ple the space nearby, moving from a lower quality artifact
to a higher quality one, repeating the process until it has
achieved a local maximum. Starting from many scattered
starting spots can increase the chance of finding more max-
ima (not just the local one). Other approaches such as mod-
eling inertia (particle swarm optimization) or interpolations
between two points (“crossover” in genetic algorithms) can
improve speed or performance in some situations.

Even in systems that are not mathematically continuous or
local, these techniques can still work, just not as smoothly
or well. In Flowers (7), the flowers have a 26-dimensional
parametric ”genotype”, which generates L-system flowers
in a mostly continuous function, but the number of leaves
and petals are integers. Because of the mostly-continuous
nature, a random walk throught the possibility space creates
a smoothly morphing animation. But it is not fully contin-
uous, from the integer leaves, so when the flowers animate
from one form to another, there is some popping as leaves
and petals appear. In systems that must be modeled as trees
of choices, such as the classic genetic programming exam-
ple of building an expression tree to model a function, there

7http://www.galaxykate.com/apps/flowers/
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is no possibility to create a continuous and local space. And
yet, with a large enough tree, the effect of choices at the
leaves are smaller, and it begins to behave more like a con-
tinuous and local system. Many systems are continuous at
some sections and discontinuous at others. For most practi-
cal generative systems, a designer will end up with a mix, but
the more continuous and local it is, the better many forms of
search (and animation) will work.

Let us consider genetic algorithms (GA) as model con-
sumers of generative pipelines. Each GA requires three
pipelines to function:

1. A pipeline that transforms a genotype to a phenotype

2. A pipeline that transforms a phenotype to an evaluation

3. A pipeline that transforms the evaluated set of genotypes
to the next generation of genotypes

Each one of these may be simple or complex. The Flower
app’s second and third pipeline consist only of displaying
the flowers to the screen, waiting for the user to select one,
then creating several slightly varied versions of its DNA ar-
ray for the next generation. But examining these as pipelines
show that each have input and output data, and that any
of the transformations about could be used to construct the
pipeline. Likewise, a pipeline that already existed could be
used by a GA, or could be used by other forms of search.

Constraint solvers For certain classes of well-defined
problems, there exist computational solvers. Such solvers
take in problem specifications in their particular format, and
compute (in reasonable time) solutions to those problems.
Two examples of this pattern are IK-solvers and Answer-
set programming.

IK solvers are common in games for any kind of pro-
cedural animation, but perhaps reached the zenith of ex-
pressiveness in the development of Spore, where they were
the final part of a complex chain of generativity, through
which animator-authored animations were de-coupled from
the sample creature they were animated on, to become
generalized sets of “goals”, which became IK-specification
input for creature skeletons with arbitrarily many-jointed,
twisted, and branching morphologies: ”the resulting pose
goals preserve the overall motion and stylistic details of
the authored animation. Stylized locomotion is synthesized
for the player-created leg morphology and layered onto the
goals. These goals are fed into an inverse kinematics (IK)
solver tuned to handle conflicting objectives while attaining
natural solution poses.” (Hecker et al. 2008)

A less-commonly-used solver is Answer Set Program-
ming (ASP), a recent descendent of Prolog-style logic pro-
gramming. In ASP, sets of constraints and possible options
are grounded into a boolean satisfiability problem, which is
then used to generate sets of final values for which all the
constraints are satisfied. This method allows an author to
describe a generative world as a space of possible choices
that can be made, while also describing the rules for how
different choices impact each other (for example, a tile in a
Roguelike dungeon cannot contain both a wall and an ob-
ject). ASP has been used in a small number of indie games

(Smith 2012), as it can handle complex gameplay and de-
sign constraints, without having to code them implicitly in
the generative pipeline.

Interactivity: users and players performing search As a
data flow framework, it is important to consider that any part
of the pipeline should be modular, if possible. Practically,
this often means that a technique like search can be defined
either as a computation, or as a user task. A user will prob-
ably navigate a possibility space very different from a com-
putational optimization. Often they will dynamically switch
goals, or their goals will shift from directed goals (towards
a piece of content), or to meta-goals like novelty, discover-
ability, control and mastery. Unlike a computer, a user finds
it pleasurable to map a possibility space, to get a model of it
that fits in their mind. Talton et al recognized this in the Stan-
ford Dryad project (Talton et al. 2009) and created socially-
created landmarks which mapped commonly developed tree
forms. Landmarks are useful for navigation purposes and
spatial mapping, in physical spaces and abstract possibility
spaces as well.

The “10,000 bowls of oatmeal”(Compton 2016) prob-
lem is common in generated content. In a smooth, multidi-
mensional possibility space, there are many mathematically
unique pieces of content, but the content is not perceptually
unique to the user. So additional techniques can build struc-
tures within the possibility space. One example of this is in
Petalz(Risi et al. 2016), where computational clustering was
used to group the flower-generation space into distinct re-
gions, each of which became collectible. More broadly, we
have seen the applicability of the navigation techniques in
Kevin Lynch’s classic Image of the City (a book about hu-
mans navigating urban space) (Lynch 1960) become equally
useful in the virtual non-physical possibility space. Content
which is characterful is memorable as a landmark, while
content that is differentiable, recognizable as either of a
class, or not of a class creates boundaries and zones in an
otherwise undifferentiated possiblity space.

Because search is a task, rewarding the player or user
for performing search is also part of the pipeline of gener-
ativity. Mapping the possibility space and feeling mastery
is an autotelic reward, but systems may provide additional
rewards, like the collectible tracking of Petalz. Some sys-
tems also encourage, or at least afford, social rewards for
search. Spore let users name and own (socially if not legally)
the creations they made, and players delighted in becoming
notable “creators”. Often, users pull the content they cre-
ated in the system into their “real” world, whether posting
it to Twitter, or manufacturing it into real objects through
print-on-demand services. A numinous possibility space of
equally-interesting (and thus disinteresting) artifacts can be-
come a single cherished possession with which the user or
player shares a social history.

Examples of Using the Framework for

Analysis and Design

With this set, it becomes possible to analyze a few example
systems as generative pipelines. These systems were cho-
sen for their simplicity and clarity (in the first examples of
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Stipplegen and the works by the author) or to show that
the framework holds for comparing complex games-industry
PCG systems, in the case of No Mans Sky. In addition, each
one has a different context (industrial design, genetic algo-
rithm, software art toy, or game) in which the pipeline is
consumed as part of a larger context.

StippleGen

StippleGen (Evil Mad Scientist Labs 2012) is an example of
a generative pipeline for non-game content. However, this
content still had constraints: it needed to take an image, and
return a series of dots that could be drawn with a single
CNC-controlled marker (on an egg), and still be recogniz-
able as the original image.

The image is first converted into a greyscale image. The
greyscale image is used to control the distribution and size
of many dots (more, larger dots for dark areas). This dis-
tribution is not as aesthetic as desired for a final product 2.
Create a voronoi diagram of the distributed points. Simu-
late easing (particle-based force simulation) to redistribute
the points. Use the new point locations to guide a CNC-
controlled marker to draw on an egg.

Several small works by the author

The Icemaker 8, a generative art toy, uses parametric val-
ues to set the strength of forces controlling the movement of
a particle system (using steering-style forces analogous to
flocking). Geometry is extruded along the length of the par-
ticles’ paths, then duplicated and reflected around 6 axes to
create snowflake symmetry. A random distribution sets the
starting positions and thickness of the tubes.

The Flower generator 9 uses a custom parametric gen-
erator, controlling color, shape, and a Lindenmayer system
to determine branching. Multiple flowers are created, and
the user clicks on the best one. The selected “”favorite”
flower spawns several closely-related and similar-looking
children(thanks to a mostly local and continuous possibil-
ity space), and the user can iteratively evolve their flower.
Users can also set it to continuously evolve autonomously,
randomly walking the possibility space, as an automated
procedure replaces human intention (without changing the
pipeline of data flow).

Idle Hands 10 is an interactive art installation. It uses a
very straightforward generative pipeline to create emergent,
highly reactive animations from very little coding effort. The
Leapmotion uses machine vision to detect hands, and returns
a set of points representing the joints of each finger. A small
cloud of particles is simulated in the background (for visual
interest when the hands are still). Each frame, the screen po-
sitions of the joints and the particles (about 100 total sites)
compute a Voronoi pattern. The regions of the Voronoi pat-
tern are triangulated, and the triangles are colored based on
the Perlin noise value of their centroid (this reduces flicker-
ing when triangles appear or disappear from the diagram),
and the resulting triangles are drawn to the screen.

8https://galaxykate.itch.io/ice
9https://galaxykate.com/apps/flowers

10https://galaxykate.com/apps/idlehands

No Man’s Sky

In No Man’s Sky, (McKendrick 2016) ground is modeled as
a thin voxel layer around a sphere. Various generative meth-
ods create terrain interest, such as using thresholded Worley
and Perlin noise to add and remove voxels, which creates
canyons, caves, tunnels and “”Perlin worms”. Turbulence is
applied, a rough physical simulation of particle movement
in a forcefield. The voxels are polygonized. Various para-
metric objects are generated and distributed on the surface
of the landscape. Like many shipped systems, this is a col-
lage of many different layered techniques, in the words of
the engineer, Innes McKendrick, ”Nothing by itself is really
interesting enough, the key is having this toolkit of loads dif-
ferent techniques that you can use in different areas until you
get something that looks like the goal you’re seeking.”

Examining No Man’s Sky as a pipeline allows us to com-
pare it to Spore’s terrain generation. Though both had sim-
ilar goals and outputs, Spore used particle systems which
controlled textures stamping directly into a heightmap, a
completely different process than No Man Sky’s noise, vox-
els, and triangulation.

Conclusions and Future work

This framework describes to a very fine granularity of what
a generative system is and how it works. No data can mag-
ically appear: if a Markov chain requires an array of con-
tent, and all one has is an array of parametric values, then
some method will be needed to convert the data before
that pipeline is valid. Conversely, most methods that re-
quire compatible inputs and output (say, an array of values)
can, with some flexibility, be made to work together, even if
hooking them together is not a meaningful action.

Unlike many frameworks, our framework is constrained
enough to make a physical construction set, with “sockets”
that determine whether inputs or outputs are compatible. We
recently instantiated this as a deck of cards (Compton, Mel-
cer, and Mateas 2017)11, with 171 cards representing various
inputs, outputs, and transformative generative methods, with
17 types of data (values, voxels, vectors, text, and more) and
3 kinds of input-control (human, sensor, and content) deter-
mining compatibility. While this framework strives for gen-
eral applicability, Generominos encodes specific granular al-
gorithms. Generominos can be used to diagram existing gen-
erative systems (games and artworks alike), and, excitingly,
can be used to quickly design fantastical new systems. The
instantiation of this framework as Generominos will allow
the framework to be readily used and tested by practition-
ers and investigators of generative systems across the many
contributing fields and disciplines. Will this framework be
flexible enough, and informative enough to be useful to prac-
titioners and investigators of generative systems, across our
many fields?
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