
ProcDefense — A Game Framework for Procedural Player Skill Training

Brandon R. Thorne, Hiru Nelakkutti, Joseph Reinhart, Arnav Jhala
Department of Computer Science
North Carolina State University

Raleigh, NC
{brthorne | hsnelakk | jareinha | ahjhala}@ncsu.edu

Abstract

A challenge of game design is in providing affordances to
players so that they can learn and improve their skills. Ad-
vances in Procedural Content Generation (PCG) suggest this
type of game content is a candidate for automatic creation.
Some work in PCG has been successful in customizing game
difficulty to achieve desired player experience; however, this
often involves bringing the difficulty of the game to a level
appropriate for the player’s current skills. Players desiring to
improve their performance in a particular game may be will-
ing to tolerate relatively higher levels of frustration and anx-
iety than are targeted in experience-based approaches. As an
initial step in this line of inquiry, we introduce ProcDefense,
an action game with a modular difficulty control interface, as
a platform for future inquiry into the effectiveness of differing
PCG techniques for performance-training, dynamic difficulty
adjustment.

In the video games industry, designers are challenged
to support player mastery of gameplay mechanics through
the game interface. They employ a variety of techniques to
introduce the mechanics including tutorial levels, diegetic
commentary, and extradiegetic hints. Assisting players in at-
taining mastery once the mechanics are understood is often
done with solo practice modes or scoring feedback in ad-
dition to the sequence of challenges comprising the game
itself. With the advances in real-time player modeling and
procedural content generation, it has become possible to
consider approaches that could dynamically tune gameplay
parameters with the objective of improving player skill.

Procedural Content Generation (PCG) research is often
concerned with customizing those challenges in order to
elicit particular affective responses from a player (Yan-
nakakis and Togelius 2011). This work has made excel-
lent progress in describing system behaviors which can in-
crease player enjoyment and engagement with a game; how-
ever, this is often accomplished by adjusting challenges to
match player skill. In more competitively oriented games,
adjustment of content only with respect to player experi-
ence may not aid the player in achieving their goal. In this
case player enjoyment and engagement are still important,
but aiding the player in improving their skill in the game
must also be considered. In other applications, educators are

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

using simulation-based training for tasks requiring user ac-
quisition of domain knowledge and manipulation of inter-
face elements. This can be seen in flight simulators and,
more recently, augmented reality surgical training (Evans
and Schenarts 2016). Their success suggests a similar ap-
proach of simulating game situations to train players might
prove effective. We theorize that by incorporating models of
player experience and engagement with simulationist strate-
gies for identifying and presenting training scenarios to the
player, we can guide a PCG system to present those train-
ing scenarios to the player within the original game environ-
ment, accelerating improvement of the player’s performance
over undirected game practice alone.

Figure 1: ProcDefense screen capture depicting game state
after shattering a projectile. Smaller, short-lived projectiles
replace the one destroyed.

In this paper we describe the mechanics of a simple game,
ProcDefense, to be used as a platform for testing the relative
efficacy of different PCG approaches for such player train-
ing. ProcDefense draws on current work in PCG to inform
construction of a platform for explicitly tackling the chal-
lenge of tweaking game parameters in support skill develop-
ment across multiple dimensions of skill.

ProcDefense

ProcDefense is an action game in which the player uses an
arc-shaped paddle to defend a central core from incoming
projectiles. The player can move the paddle along a circle at
a fixed radius from the center of the core. Projectiles are con-

The AIIDE-17 Workshop on
Experimental AI in Games

WS-17-19

132

tinuously spawned which are initially directed toward the
core. The projectiles begin with a set durability that is decre-
mented every time the projectile is reflected from the paddle,
the bounds of the play area, or other projectiles. When the
durability of a projectile reaches zero, it is destroyed and
player score is increased. If a projectile reaches the core,
the projectile is destroyed and the player score is reduced.
After several successful reflections, the player may change
the mode of the paddle to shatter the next incoming projec-
tile as shown in Figure 2. This destroys it immediately and
spawns several projectiles with low durability which destroy
any other projectiles they meet. A level in this game is de-
fined as a set of difficulty parameters (Table 1) and a set of
completion criteria. Difficulty parameters include the set of
projectile types as well as paddle properties. A given pro-
jectile type is spawned as an instance of its associated type
parameters shown under projectile type in Table 1. The com-
pletion criteria dictate the rate of score increase required and
the duration over which it must be maintained in order for
the player to complete the level.

The game provides an interface through which the cur-
rent difficulty parameters may be adjusted. Which parame-
ters to change and how adjustments should be made in or-
der to facilitate player skill improvement is the core topic of
inquiry this platform supports. For example, a training sub-
system might reduce projectile speed if players are losing
score quickly, but in order for the player to proceed to the
next game level, the difficulty settings must be at least as
difficult as the level specifies. The player must then main-
tain the rate of score increase for the duration specified in
the completion criteria in order to move to the next level.
If the player is never able to satisfy the completion criteria
at the target difficulty, they will remain within their current
level whose parameters will continue to be adjusted to assist
them in improving.

Platform and design considerations

While there exist several games with AI interfaces, particu-
larly related to AI competition frameworks, we designed a
new game for inquiry into difficulty-adjusting, training sys-
tems. We needed control over both the design and the source
of the game so that design decisions could be made with the
dynamic training aspect in mind. This consideration indi-
cated that at least an open-source game was preferable. We
also needed freedom in determining what features of game
state are available for consideration and how often they are
reported, as well the ability to evolve game mechanics as
we explore the interaction of difficulty adjustments and skill
improvement. Given this freedom, we could ensure that our
game had sufficient variety in play skill as well as use of
high-level strategies.

Among open-source games, we considered a simplified
real-time strategy game MicroRTS (Ontanon 2013), but due
to its domain complexity, detecting particular behaviors in
need of remediation is challenging. There are a large number
of strategies which might be successful in a given situation,
and we cannot necessarily tell which the player is attempt-
ing to employ. We also considered the Mario AI competition

platformer implementation (Togelius et al. 2013) as a can-
didate game; it has a simpler domain, and there has been
a wealth of level generation research conducted with this
game in recent years (Pedersen, Togelius, and Yannakakis
2009; Togelius et al. 2011; Shaker et al. 2011); however,
we were concerned the popularity of the platformer genre
might have some confounding effect on future experimental
results. Likely many of our volunteer participants for a user
study will have experience with standard platformer con-
trols. If we use the standard controls as the player interface,
our players are likely to have little to learn, and if we deviate
from standard controls in order to train the player in their
use from novice to master, we violate the genre conventions
and player expectations leading to frustrated participants.

In light of these considerations, we opted instead to de-
sign a new game with a simple domain that is perhaps less
likely to already have extensive time investment from our
participant pool. We incorporate the shattering mechanic to
add a strategic element to player decision making. Instead of
always greedily moving the paddle to block the most immi-
nent threat, the player may also choose timing and position-
ing to eliminate sets of projectiles. This gives some variety
in strategic decision making within a simple and intuitive
framework.

(a) Charging (b) Fully Charged

(c) Shattering Activated (d) Shatter Complete

Figure 2: Ability charge progression for shattering paddle.
Paddle deflections build charge which may be used to de-
stroy one projectile.

Interface

We provide to the difficulty adjusting subsystem a game
state description each time durability of a projectile is re-
duced. This includes type, position, velocity, and durability
of each projectile; paddle position, size, and speed; and cur-
rent level completion progress. The attached subsystem is
then free to use or ignore any of the provided features, af-
fording us opportunities to compare feature selection strate-
gies in future studies. The subsystem is able to manipulate
the current difficulty settings of the level (see Table 1), while
the player’s performance required to complete the level re-
mains fixed.

133

Category Parameter Description

Environment Spawn Interval Minimum duration
between spawn of
any projectiles.

Projectile Types Set of projectile
types which can be
spawned.

Projectile Type

Scale Size of projectile
sprite.

Spawn Interval Duration between
spawn of projec-
tiles of this type.

Initial Speed Speed upon projec-
tile spawn.

Durability Number of colli-
sions required to
destroy this projec-
tile.

Damage Score reduction
upon this projectile
type hitting the
core.

Paddle Size How much of the
core the paddle
protects.

Speed How fast the pad-
dle rotates about
the core.

Table 1: Difficulty Parameters

Future Work

With the game in place, we can begin development on the
systems to drive difficulty adjustment. One set of possible
system components is given as an example.

The system could be driven by a subset of the features
of the game state which are indicative of poor performance.
Feature selection might be learned from gameplay captures,
crowdsourced from players, or performed by individual do-
main experts. Correlating features to mistakes in gameplay
would allow for targeted application of strategies for adjust-
ing difficulty to remediate the mistakes. The specific strategy
chosen might depend upon a model of the individual player’s
susceptibility to frustration and their motivation to improve.

On the game platform itself, adding functionality to in-
clude or exclude game mechanics in a given play session
would allow us to examine the effect of the player’s cog-
nitive load on training efficacy. Yielding some insight into
whether the overall time required to master a level could be
improved by allowing the player to practice a skill in isola-
tion, or if reintegrating that skill into a more complex game
would take just as much time as training it in a complex set-
ting in the first place.

ProcDefense is a platform that supports inquiry into pro-
cedural player skill training. It is a tool to test strategies for
dynamically adjusting game difficulty in order to accelerate
player performance improvement.

References

Evans, C. H., and Schenarts, K. D. 2016. Evolving edu-
cational techniques in surgical training. Surgical Clinics of
North America 96(1):71–88.
Ontanon, S. 2013. The combinatorial multi-armed bandit
problem and its application to real-time strategy games. In
Ninth Artificial Intelligence and Interactive Digital . . . , 58–
64.
Pedersen, C.; Togelius, J.; and Yannakakis, G. N. 2009.
Modeling player experience in super mario bros. In Com-
putational Intelligence and Games, 2009. CIG 2009. IEEE
Symposium on, 132–139. IEEE.
Shaker, N.; Asteriadis, S.; Yannakakis, G. N.; and Kar-
pouzis, K. 2011. A game-based corpus for analysing the
interplay between game context and player experience. In
Affective Computing and Intelligent Interaction. Springer.
547–556.
Togelius, J.; Kastbjerg, E.; Schedl, D.; and Yannakakis,
G. N. 2011. What is procedural content generation?: Mario
on the borderline. In Proceedings of the 2nd International
Workshop on Procedural Content Generation in Games, 3.
ACM.
Togelius, J.; Shaker, N.; Karakovskiy, S.; and Yannakakis,
G. N. 2013. The mario ai championship 2009-2012. AI
Magazine 34(3):89–92.
Yannakakis, G. N., and Togelius, J. 2011. Experience-
Driven Procedural Content Generation. IEEE Transactions
on Affective Computing Vol. 2(No. 3):147–161.

134

