
 
 

A Sandbox for Modeling Social AI 

Ethan Robison 
Northwestern University 

ethanrobison@u.northwestern.edu 
 

 

 

Abstract 
We present a system for quickly prototyping AI code for 
modeling social interaction among the simulated residents of 
a skyscraper. The system is built on top of a commercially 
released indie game but replaces its character AI with a gen-
eral-purpose logic programming language. These two fea-
tures together simplify the more tedious parts of creating pro-
totype AI code from scratch, enabling more effort to be fo-
cused on the meatier parts of research. 

Introduction   
One of the obstacles facing game AI researchers is the sheer 

scope of effort involved in making a game, most of which 

has little or no publishable research content: UI design, play-

testing, music and sound effects, and art and animation are 

notoriously difficult facets of game design. While generic 

assets for certain genres, such as First-Person Shooters, or 

(especially) platformers exist, finding appropriate assets for 

other genres can be a challenge. For other genres, finding 

assets-especially aesthetically consistent ones-can be nearly 

impossible. For social games like The Sims 3 (Electronic 

Arts Inc., 2009) or visual novel style games like Long Live 
the Queen (Hanako Games, 2012), researchers are often 

forced to get by with a good deal of willing suspension of 

disbelief on the parts of the play testers when it comes to 

accepting their assets as suitable. 

 This compounds with a further problem for anyone inter-

ested in social modeling in games. Researchers using rules-

based inference systems—such as Comme il Faut (Joshua 

McCoy, 2014) or Versu (Richard Evans, 2014)—as the 

foundation of their AI modeling may find themselves con-

structing complex scripting languages from scratch every 

time they try a new idea. However, for those experimenting 

with new ideas, the overhead of starting from scratch every 

time is a greater burden than the advantages provided by the 

flexibility of making everything themselves. 

 

                                                 
Copyright © 2017, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 

Figure 1: Screenshot of the AI Sandbox 

Architecture 
In this paper, we describe a system for rapidly prototyping 

AI code within the framework of the commercially released 

game Project Highrise (SomaSim LLC, 2016). Project 
Highrise is a simulation game in which players “build and 

manage a modern-day skyscraper,” (SomaSim LLC, 2016). 

In the game, players develop and arrange a skyscraper as 

they see fit, and the tenants and visitors to the skyscraper go 

about their lives-working, shopping, eating, and sleeping in 

the simulated world. The AI Sandbox leaves most of the sys-

tems in Project Highrise intact, removing just the AI that 

controls the NPCs’ decision-making process and replacing 

it with our own code, written in the logic programming lan-

guage BotL (Horswill, 2017)—a simplified logic program-

ming language similar to Prolog (W. F. Clocksin, 2003). For 

the sake of writing code for the Sandbox, BotL works much 

the same as Prolog, except for performance variation and 

slight syntactic differences. 

This solves—at least for researchers doing work on social 

interaction—the problems of assets, UI design, and hairy 

things like serialization, because Project Highrise had those 

already in place. The system is designed to make program-

ming the entity AI the only work that researchers need to do. 

 

The AIIDE-17 Workshop on
Experimental AI in Games 

WS-17-19

107



The system is developed in Unity3D (Unity Technologies, 

2017) and written in C#. 

The BotL-C# Interface 
While the BotL interpreter and the code for Project Highrise 

are both written in C#, the code that the interpreter runs is 

written in plain BotL. This is to allow end users (who will 

not have access to the Project Highrise codebase) to edit the 

BotL code that controls the NPCs. Although BotL code can 

indirectly call any C# method in the codebase, this is done 

via reflection, which is inefficient. To bridge this gap, and 

to prevent users from having to learn the structure of the 

Project Highrise API, a series of registers exists which serve 

as neutral ground to which both parts of the code have 

access. 

 Whenever the Project Highrise engine needs BotL to 

make a decision—for instance at start-up, whenever an NPC 

needs to decide on its next action, or to access any of the 

information stored in the internal logic database—the C# 

code writes any relevant information to these registers and 

the BotL code reads this information, runs its calculations, 

and writes its results back to the registers. 

 In this way neither side of the codebase needs to know 

what specifically the other side is doing, just that the end 

results will end up in a designated location. This helps to 

decouple the halves from one another and to increase 

efficiency. 

The Exclusion Logic Database 
Most of the engine code is deliberately not imperative; since 

some operations are run dozens of time a frame, side effects 

could be problematic. However, this makes tracking the in-

ternal state of the game challenging. The Sandbox uses an 

Exclusion Logic database (Evans, Introducing Exclusion 

Logic as a Deontic Logic, 2010) to hold any information that 

the user wants to keep track of. 

 It is worth noting that the BotL/C# interface knows noth-

ing about level of access. More explicitly, everything can 

read and write to every part of the database. This is not as 

dangerous as it first seems, since end users are only editing 

their own BotL code and so are able to govern their own 

editing of the exclusion logic database. The C# side of the 

code does only very basic editing of the database at start-up, 

before any user BotL code has been run.  

 

Controlling NPCs 
Since the purpose of the Sandbox is to facilitate writing cus-

tom NPC control code, it is a little confusing to talk about 

the code for controlling the NPCs that is built into the sys-

tem already. Specifically, when we refer to controlling the 

NPCs, we mean the C# logic that decides what to do when 

the user-written BotL code instructs it to do a specific task. 

The logic consists of three main parts: handling user in-

put, handling per-NPC actions, and making broader deci-

sions about the state of the game world in general. 

The Sandbox allows for keyboard and mouse input, both 

of which are left as empty predicates for the user to fill in as 

they please. 

Decision Making 
The replacement for the vanilla AI is two-tiered: first, at a 

lower level, each NPC is also capable of deciding things on 

their own. Whenever a NPC finishes their last action, they 

call the makeDecision procedure, which informs them 

of the next action that they need to take. These are the pos-

sible actions that an NPC can take: 

 Idle: stand around and do nothing for a specified amount 

of time; 

 Go somewhere: move from one place to another place, or 

to the current location of another entity (a NPC, a building, 

a water cooler, etc.); 

 Say something: pop up a speech bubble with a plaintext 

string on it and notify the NPCs around it that it spoke; 

 Change color/clothing: part or all of the NPC’s sprite is 

changed in color, a good way to reflect changes in internal 

state without text; 

 Die: the NPC is removed from the game (although any 

pertinent information is not automatically cleared from the 

exclusion logic database). 

These actions are tailored to games centered around social 

interaction. The real expressiveness of the system stems 

from the user written BotL code under the hood. In other 

words, though it seems like the number of actions that an 

NPC can take is small, the context of those actions provides 

the richness. 

The Director 
In addition to per NPC actions, every frame, “director” de-

cisions are made. These are contained in the procedure di-
rectorDecision, which imperatively handles every-

thing too tricky (or too global) for the NPCs to do them-

selves. This could be weather, actions involving multiple 

NPCs, changing the time of day, or creating/removing in-

game entities. 

 It is important to note that “director” is a bit of a misno-

mer: the director is not a drama manager; rather, director de-

cisions pertain to anything in the game world that might in-

volve multiple NPCs or fall outside of the purview of any 

one individual. Nor is the director making decisions for 

NPCs. Individual NPCs make their own decisions whenever 

they finish an action or something happens around them 

(such as another NPC saying something). 

 

Implementation Status 
The AI Sandbox is a work in progress, being a combination 

of a recently released indie game and a recently created logic 

programming language. In coming months, the underlying 

architecture of the system will be re-worked, since the cur-

rent structure was put together quickly over a short period. 

108



 What we have managed thus far is a heavily simplified 

version of the needs-based AI used in The Sims 3 (Evans, 

Modeling Individual Personalities in The Sims 3, 2010) 

done in approximately 120 lines of code. NPCs walk around, 

order burgers and coffee, “go to sleep,” and, if they cannot 

make it to food, water, or bed; they die. While not quite as 

fun as its commercial inspiration, it serves as a morbid proof 

of concept. 

 Additionally, we have an experimental game in which 

NPCs are color-coded according to what “type” of person 

they are. If too many of their neighbors are a different color 

than they are, the NPCs move to a different part of the apart-

ment complex. This is a quick rendition of the Parable of 
the Polygons (Vi Hart, 2017) and is about 150 lines long. As 

an illustration of BotL’s pithiness, here is the snippet of 

BotL code that determines whether a given NPC wants to 

move: 

 
wants_to_move(Peep)<-- 
 get-different(Peep, DList), 
 DList.Count > 3; 
get-different(Peep, Different) <-- 
 listof(X:(nearby(Peep,X), 
 different(X, Peep)), Different); 
 

 Both systems run smoothly with over 50 NPCs on screen, 

although it quickly becomes difficult visually to tell which 

NPC is which. 

Future Work 
In the future, we would like to make more miniature ver-

sions of relevant game AI systems, such as CiF (Joshua 

McCoy, 2014), Prom Week (Josh McCoy, 2013), or Versu 

(Richard Evans, 2014); or items in the spirit of Schank and 

Riesbeck’s Five Programs Plus Miniatures (R. C. Schank, 

1981). 

Limitations 
The advantages to using a commercial game center mostly 

around already having assets available, a strong structure 

upon which to build experimental code, and freedom to 

work on research instead of on foundation. There are disad-

vantages, however, to using someone else’s product as the 

starting point for custom research. 

 For Project Highrise, this means being limited to the 

sprites and sound effects that come with the system. But it 

also means being limited to the sorts of scenarios that a sky-

scraper management simulator is likely to include. This is 

not to say that the barrier to entry is not lowered, just that it 

is important to keep in mind that this system is designed for 

writing prototype AI models, not fully-fledged custom play-

able experiences.  

Conclusion 
Part of the advantage of systems like this is that they enable 

the quick creation of prototypes for specific genres of games 

for AI research. By facilitating the construction of inference 

systems, and by providing already complete art and UI, the 

AI Sandbox takes care of some of the heavy lifting that re-

searchers need to do when they test new AI ideas. 

 The system will probably never work for most AI catego-

ries outside of social interaction; and is certainly ill-suited 

to other AI methods such as behavior trees, deep learning, 

etc. However, for researchers seeking to model social inter-

action systems using symbolic reasoning systems, the AI 

Sandbox should serve as a solid starting point for more ro-

bust future efforts. 

Acknowledgements 
 The author was given permission to use the Project High-
rise codebase for research purposes by its creator, Robert 

Zubek. Those interested in the architecture of Project High-

rise should see Rob’s paper on the topic (Zubek, 2017). 

 BotL was created by Ian Horswill, who graciously ad-

justed its features to suit the Sandbox’s needs. 

References 
Electronic Arts Inc. (2009). The Sims 3. 

Evans, R. (2010). Introducing Exclusion Logic as a Deontic Logic. 
Deontic Logic in Computer Science, 179-195. 

Evans, R. (2010). Modeling Individual Personalities in The Sims 
3. GDC. San Francisco, CA. 

Hanako Games. (2012, June). Long Live the Queen. 

Horswill, I. (2017). Retrieved from 
https://github.com/ianhorswill/BotL 

Josh McCoy, M. T.-F. (2013). Prom Week. Proceedings of the 
Ninth AAAI Conference on Artificial Intelligence and Interactive 
Digital Entertainment, (pp. 207-208). 

Joshua McCoy, M. T.-F. (2014). Social Story Worlds With Comme 
il Faut. IEEE TRANSACTIONS ON COMPUTATIONAL 
INTELLIGENCE AND AI IN GAMES, 97-112. 

R. C. Schank, C. K. (1981). Inside Computer Understanding: Five 
Programs Plus Miniatures (Artificial Intelligence Series) 1st 
Edition. Routledge. 

Richard Evans, E. S. (2014, June). Versu—A Simulationist 
Storytelling System. IEEE TRANSACTIONS ON 
COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 113-
130. 

SomaSim LLC. (2016). Project Highrise. Chicago, Illinois, United 
States. 

SomaSim LLC. (2016). Project Highrise | SomaSim Games. 
Retrieved from SomaSim Games: 
http://www.somasim.com/highrise/ 

Unity Technologies. (2017). Retrieved from Unity 3D: 
https://unity3d.com/kr/ 

Vi Hart, N. C. (2017). Parable of the Ploygons. Retrieved from 
http://ncase.me/polygons/ 

109



W. F. Clocksin, C. S. (2003). In C. S. W. F. Clocksin, 
Programming in Prolog, 5th ed. Springer-Verlag. 

Zubek, R. (2017). 1000 NPCs at 60 FPS. In S. Rabin, Game AI Pro 
3: Collected Wisdom of Game AI Professionals (pp. 403-410). A 
K Peters/CRC Press. 

 

 

110


