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Abstract

We have developed a cinematic annotation scheme and
used that scheme to create a shot-by-shot annotated cor-
pus of similar scenes to aid with research in film un-
derstanding. This paper introduces and describes the
scheme and the created corpus, discusses some of its
merits, and summarizes some basic findings.

Narrative films, like narrative texts, are useful for modeling
the way we understand scenarios and communicate them.
Recent work in computer vision for film will likely lead to
new tools for film analysis (Suchan and Bhatt 2016), and
many of the techniques used for narrative text understand-
ing would be applicable, such as building narrative chains
or scripts (Chambers and Jurafsky 2008; Hu et al. 2013;
Pichotta and Mooney 2014). Films are valuable as an alter-
native or complementary source because films more directly
interface with our perceptual and visual-spatial apparatuses
than texts (Bordwell 2013). Since much of our interaction
with the world is made in this way, research in film under-
standing will provide insights into the way we make mean-
ing about our visual experiences which would be highly
valuable for intelligent agents operating and communicating
in virtual worlds or in the real world (Spranger, Suchan, and
Bhatt 2016). Also, progress in film understanding will bene-
fit the growing number of film-specific applications such as
automated cinematography and other tools for the complex
task of producing films and animations (Ronfard 2017).

To advance research in film understanding, we have as-
sembled a shot-by-shot1 annotated corpus of scenes all
drawn from films of the same genre and conveying the same
type of activity. There are three main features of this data set:
the scenes are all similar, each shot is coded with cinematic
features, and character actions are labeled using a declar-
ative action scheme. The format of our annotation scheme
reflects what an ideal computer vision system may soon
be able to produce (e.g., estimation of camera movement
(Suchan and Bhatt 2016) and/or action recognition (Laptev
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1A shot is the content recorded from continuous filming be-
tween intended cuts.

et al. 2008; Liu, Luo, and Shah 2009)). Each shot is anno-
tated with the entities that are in that shot, where the enti-
ties are located in the story world, where the entities are lo-
cated on the screen in that shot (composition), what actions
the entities in the shot are performing, the type of camera
shot being employed, and other useful details for extract-
ing narrative structure. All scenes in the corpus are from a
common genre and convey the same activity, in that they
are all Western-style duel scenes where two or more gun-
men have an escalating confrontation and face-off in a show-
down. Previous research in film understanding suggests that
viewer understanding is highly structured by character goals
(Magliano and Radvansky 2001; Magliano, Taylor, and Kim
2005; Magliano and Zacks 2011), so our intention is to hold
the kinds of character goals relatively constant and learn
from the similarities and differences across scenes for com-
municating similar plot elements.

The actions performed by characters are tagged in each
shot, and many of these action types are common across
scenes. During coding, actions were mapped to a common
dictionary of action types. We then used the most common
action types to construct a planning domain, a library of
STRIPS-style (Fikes and Nilsson 1972) action schemata, us-
ing a declarative knowledge representation where actions are
explicitly annotated with their preconditions and effects. An
action’s preconditions describe every condition in the world
that must obtain in order for an action to execute, and an
action’s effects enumerate every condition in the world that
changes as a result of the action’s execution. We describe
a plot induction process we used to automatically construct
a time line of actions in a scene and how we used the tim-
ing and precondition/effect information for actions to infer
potential causal relationships between them.

Related Work

We use a specialized annotation scheme for describing shots
similar to work others have done to provide formal or in-
formal languages characterizing cinematic content. For in-
stance, the Prose Storyboard Language (Ronfard, Gandhi,
and Boiron 2013) is a formal language for annotating the
cinematography of a shot, such as frame composition (spa-
tial structure of objects on screen), shot transitions, and cam-
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Figure 1: [A] An extracted snippet of scene from film Hang ’Em High with sample coding attributes [B] Sample action types
for Western World planning domain

era movement. Other declarative representations for cine-
matography define actionable camera control such as for
automated cinematography (e.g., (Christianson et al. 1996;
Halper and Olivier 2000; Courty et al. 2003; Amerson,
Kime, and Young 2005)). The Movie Script Markup Lan-
guage (MSML) (Van Rijsselbergen et al. 2009) was devel-
oped to computerize screenplays to facilitate interactive col-
laboration among the various parties involved with produc-
ing film; it is a language for creating screenplays which han-
dles the story logic and other internal pragmatics of shooting
film.

One of the central contributions of our annotation scheme
is action labeling – that is, identifying and naming actions
as they occur in a stream of events depicted in a film. Previ-
ous projects on film understanding have addressed the prob-
lem of action recognition by finding action verbs in corre-
sponding movie script or subtitles and creating a database
of movie clips which map to each verb (Cour et al. 2008;
Laptev et al. 2008). Rohrbach and colleagues (Rohrbach et

al. 2015) created a corpus aligning 68k sentences and video
snippets from 94 movies which could also be used for this
purpose.

Suchan and Bhatt (Suchan and Bhatt 2016) demonstrate
a visual processing framework to extract the scene struc-
ture and the geometry of a scene from a cinematographic
viewpoint (e.g., camera movement, composition, spatial-
temporal dynamics of objects, areas of attention, visual-
perceptual saliency, etc.). Our annotations were created
manually, and it is expected that progress in computer vi-
sion will make the task easier in the future.

Data Collection

In total, 30 scenes from Western films were annotated, shot
by shot, with information about the events in the plot and
about the way the shot is composed by the cinematogra-
pher. Scenes were chosen because they featured two rivaling
persons or parties facing off in a gun duel where the action
ended with gunfire. The scenes were drawn from the 30 films
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listed in Table 1.
The scenes were collected and extracted from YouTube

and are available online (Winer et al. 2017). In our initial
version of the corpus, there are 1428 shots, 586 entities, and
3014 action observations. There are an average of 19.5 en-
tities per scene, 100 action observations per scene, and 48
shots per scene. The average shot duration is 3634 millisec-
onds, and the average scene duration is close to 2 minutes
53 seconds.

For each scene, we tag the following properties about each
shot:

• Scene name

• Start time, duration (milliseconds),

• Shot number (of scene)

• Event description (English sentence)

• Entity tags, sometimes typed as ”character”, ”object”, or
”location”.

• Ordered list of observed action instances (discussed in
text)

• Composition configurations of beginning and ending
frames (A configuration is a 3-ary literal of the form
config(e, x, z)〉 where e is the name of an entity or world
condition, x ∈ {”left”, ”center-left”, ”center”, ”center-
right”, ”right”} corresponds to the position of the entity
from screen-left to screen-right, and z ∈ {”foreground,
background”} labels the depth of the entity in the frame
relative to the orientation of the viewer.)

• Location name where entities in shot are located

• Shot scale ∈ {Extreme wide (EW), wide (W), 3/4 Fig-
ure, 3/4 Figure, Full figure (FF), Waist, Close up (CU),
Extreme close up (ECU)}

• Camera node orientation, either ”None” or else a tuple
of the form 〈a ∈ {”pan”, ”tilt”}, b ∈ {”up”, ”down”,
”left”, ”right”}, c ∈ {”entity”, ”setting”}, d ∈ {”slow,
”medium”, ”fast”}〉

• Camera movement, either ”fixed” (None), ”moving”
(right, left, down, up), or ”tracking entity” with type
in set {”parallel”, ”leading”, ”following”, ”3/4 angle”,
direction ∈ {”right, ”left”, ”front”, ”behind”}}

• Camera angle ∈ {”level”, ”low”, ”high”}
• Zoom in set {”None”, ”In”, ”Out”}
• Lens choice in set {”normal”, ”wide angle”, ”medium

tele”, ”telephoto” }
• Light emphasis, a Boolean, false for natural lighting.

• Subject type in set {”agents/entity”, ”scene”, ”object” }
• Setting type ∈ {”interior”, ”exterior/outside”}
• Continuity matching type in set {”None”, ”action”,

”character”}
• Point of view in set {”none”, ”POV”, ”OTS”}

Coding for cinematography is complex and our categories
reflect an iterative decision process for selecting attributes

and splitting them into discrete categories. Sometimes, a sin-
gle shot can start with one subject, move to another, then a
third, etc., although more complex shots in this genre are
rare. We attempted to strike a balance, such as coding only
for the beginning and ending configurations of each shot,
rather than reflecting all configurations that occur during the
shot, and in some cases this means information about the
shot composition is not reflected in the coding. Camera node
orientation is distinguished from camera movement, where
the former is the movement of the camera but is stationary
in 3D space (e.g., pan and tilt), whereas the latter reflects
movement of the camera through space such as moving up
and down on a crane, or tracking on a dolly.

Cinematographers carefully craft the lighting for shots
and work with lighting designers to create a highly nu-
anced image crafted with natural and artificial light (Gillette
1998); as a very preliminary placeholder for more expres-
sive coding schemes (Barzel 1997; El-Nasr and Horswill
2003), we use the light emphasis attribute in our scheme
to indicate whether or not lighting is used in the shot to
emphasize something, and this is a judgment call. We are
currently working on a coding scheme for lighting direction
and shadows (hard vs soft). Subject type reflects the gist of
whether the shot is focused on a character, on scenery, or on
an object. Continuity matching type is the classification of
whether there is some logic transitioning two shots based on
an action or a character. Point of view can be a point-of-view
(POV) shot if judged to be from the eyes of a character, or
over-the-shoulder (OTS), and ”none” otherwise.

The data set is accompanied by an action predicate dic-
tionary denoting the actions that are observed performed by
characters across scenes. In total, there are 202 action pred-
icates, each annotated with a category (i.e., navigational,
bodily-movement, cognitive-emotional, verbal/communica-
tive, and duel-related), a text definition, the key arguments
and their types (character, object, location, etc.), and the
scenes they are observed in. During the initial pass of cod-
ing, action predicates were formulated such that semanti-
cally similar actions were binned together and collapsed
when the terms for that action were consistent. The level of
granularity for action coding was motivated by psycholog-
ical research about the way we segment continuous human
activity into discrete events (Kurby and Zacks 2008). In the
corpus, actions are also coded for whether they are observed
to begin and or finished during the shot.

A group of 3 researchers worked as a team to create the
action predicate dictionary and label the actions in the scene.
The scenes are automatically split into shots using Transana
software (Woods and Fassnacht 2009) to minimize errors.
We plan to have to two independent individuals use the pred-
icate dictionary to label the actions using this dictionary and
we will use these labels to calculate interrater reliability. We
may do the same for shot composition, shot scale, camera
movement, and other features.

A JSON object is produced for each scene, composed as
a list of shots. The corpus is available for download on-
line (Winer et al. 2017).
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Table 1: Films and scene details used in the Western Duel Corpus (Winer et al. 2017)
Film Title abbrv scene length (s) shots action observations entities

Three Amigos 3a 129.2 68 119 28
Five Card Stud 5cs 204.7 39 85 12
A Gunfight agf 197.2 75 148 18
The Big Country bc 237.8 62 156 18
Blazing Saddles bs 83.1 19 83 13
Cheyenne Social Club csc 127 31 64 17
Duel in the Sun dis 110 15 56 18
El Diablo ed 199.9 55 94 15
For a Few Dollars More fdm 324.5 90 210 24
A Fistful of Dollars ffd 162.1 43 88 22
The Good, the Bad, and the Ugly gbu 190.3 80 103 13
The Gunfighters gfs 122.5 13 55 21
Hour of the Gun hg 259.2 39 112 21
Hang’Em High hmh 144.2 32 69 22
High Noon 2 hn2 173.4 32 75 18
High Plains Drifter hpd 119.3 25 61 18
Jubal ju 167 30 82 19
The Outlaw Josey Wales jw 102 44 55 11
My Name is Nobody mnn 176.1 44 71 13
The Man who Shot Liberty Valance mslv 129.1 22 61 14
Once Upon a Time in the West outw 195.3 35 121 22
Pale Rider pr 201.3 78 117 22
The Quick and the Dead qad 204.1 71 119 29
Quigley Down Under qdu 155.7 36 90 16
Shane sh 262.7 75 164 25
Silverado sil 130.5 24 41 15
True Grit tg 136.6 71 136 35
The Outsider tout 161 57 123 28
Tombstone ts 164.1 52 76 12
Young Guns yg 219.4 71 180 27

avg 173 47.6 100.5 19.5
sum 5189 1428 3014 586

Plot Induction

We outline a procedure for reconstructing plot by using ac-
tion types. An action type designates a STRIPS-style declar-
ative action model (Fikes and Nilsson 1972) which includes
typed variable parameters, non-ground literal preconditions
designating which conditions would need to hold for an in-
stance of the action type to occur, and non-ground effect
conditions designating what conditions the action’s execu-
tion would make hold. We created the action types as part of
a planning domain where the actions were inspired by fre-
quent action predicates used in the action predicate dictio-
nary. We created 76 action types (available online (Winer et
al. 2017)), where 32 of these types are the receiving end of a
manual many-to-one mapping from action predicates to ac-
tion types. The unused actions were created to enable a more
comprehensive and usable planning domain. The caveat is
that mapping of actions to plan-based actions is not per-
fect, as some interpretation of the mechanics of the world
are needed to build a planning domain.

Actions may be observed over the course of multiple shots
and are sometimes interleaved with other shots. In Figure 1,
Jed begins to draw his gun in shot 24 and finishes in shot
26, and begins to fire in shot 26 and finishes in shot 28.
This creates a problem for extracting the scenario underly-
ing the discourse presentation. We construct a potential plot
for each scene using the action observations through a pro-
cess we call plot induction. This process involves using the

types of actions observed being performed by characters. An
instance of an action is one where its variable parameters are
substituted by consistent-typed entities.

Definition 1 (Action) An action instance is a tuple
〈t, V, a, P,E〉 where t is an action type, V is an ordered list
of entities, a ∈ V ∪ ∅ is an agent which performs the ac-
tion, P is a set of ground function-free literal preconditions,
and E is a set of ground function-free literal effects. If s is
an action instance of the form 〈t, V, a, P,E〉, eff(s) = E,
pre(s) = P , ag(s) = a, and args(s) = V .

Action instances are observed via cinematic discourse in
the format of camera shots. The same action instance can be
observed in multiple shots. Intervals are represented as log-
ical variables (Allen and Ferguson 1994) (whose endpoints
are millisecond values, moments, in Q). Let min(i) indicate
the starting moment of i and max(i) denote the ending mo-
ment.

Definition 2 (Observation) An observed action is literal of
the form obs(a, s, f, τ) where a is an action instance, s is
a boolean tag indicating whether the action begins at the
observation, f is a boolean tag indicating whether the action
finishes in the observation, and τ is an interval. If o is an
observation of the form obs(a, s, f, τ) let act(o) denote a,
ent(o) = args(act(o)), st(o) = s, fin(o) = f , min(o)
denotes min(τ), and max(o) denotes max(τ).
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Each scene is composed of shots, ordered chronologically,
and each shot has a list of observed actions (see Figure 1A).

An action instance can begin before the first time the ac-
tion is observed, meaning the camera does not show the be-
ginning of the action (or similarly does not show when the
action finishes). Thus, we find the nearest observations with
the same performing agent and infer that if the agent was
observed and wasn’t performing the action, then the action
must have stopped/started at least at the beginning/end of
this recent observation. Algorithm 1 steps through the infer-
ence procedure, which defines the interval span of an action
instance.

Algorithm 1 find-interval-span

Input: Action observations Aobs and action instance a
Output: Interval span of a

1: os := argmino∈Aobs
(act(o) = a)

2: of := argmaxo∈Aobs
(act(o) = a)

3: s, f = (min(os),max(of ))
4: Φ,Ω = (st(os), fin(of ))
5: if ¬Φ then
6: s := max

o∈Aobs

s.t. max(o) < s, ag(act(os)) ∈ ent(o)

7: end if
8: if ¬Ω then
9: f := min

o∈Aobs

s.t. min(o) > f, ag(act(of )) ∈ ent(o)

10: end if
11: return (s, f) object with attributes .s and .f

Definition 3 (Plot-Reconstruction) A plot-reconstruction
of a scene with action observations Aobs is a tuple of
the form 〈A, I,≺, L, 〉 where A is a set of action in-
stances for each unique action instance in Aobs, I is the
find-interval-span function I : A → R2 mapping
action instances in A to their interval span, ≺ is an order-
ing over actions in A s.t. ai ≺ aj where ai, aj ∈ A indicates
that I(ai).f ≤ I(aj).s, and L is a set of potential causal-
links of the form ai

p−→ aj where ai, aj ∈ A, ai ≺ aj ,
p ∈ eff(ai) ∩ pre(aj), and ¬∃athreat ∈ A s.t.I(ai).f ≤
I(athreat).f ≤ I(aj).f ) and ¬p ∈ eff(athreat)

Previous research suggests that causal relationships be-
tween events are central to narrative comprehension (Lehn-
ert 1981; Trabasso and Van Den Broek 1985; McNamara
and Magliano 2009) and may serve as key features for tasks
such as automated narrative summarizing (Cheong et al.
2008) or narrative script learning (Chambers and Jurafsky
2008). The potential causal-links can also be used to extend
the plot reconstruction to induce slot-filling inferences: ac-
tions which are not shown but are necessitated and enabled
(Niehaus and Young 2010), or to recognize character plans
(Cardona-Rivera and Young 2017).

Action Clustering

We clustered action types using the potential causal-link fea-
ture of the reconstructed plot. Action types which are clus-
tered may form meaningful story chunks reflecting differ-
ent aspects of the scene type. Some action types are inher-

ently similar because they are variations of the same mean-
ing sense but with different parameter configurations (e.g.,
arrive vs. walk-from-to).

Similarity between two action types s, t, written sim(s, t)
is defined as

log2
P (∃p, s p−→ t|t p−→ s)

P (∃p′, t′, s p′−→ t′|t′ p′−→ s)P (∃p′, s′, t p′−→ s′|s′ p′−→ t)

where P (s
p−→ t|t p−→ s) is the probability that two action

instances of types s, t are in a potential causal-link, either
s

p−→ t or t
p−→ s for some literal p.

We performed hierarchical clustering using a distance
measure between hierarchical clusters S, T defined as:

dist(S, T ) = max
s,t∈S×T

sim(s, t)

for complete-link and with min for single-link. The cluster-
ing procedure is to iteratively merge the two clusters with
the largest minimum sim between any two contained action
types (single-link) or the largest maximum sim between any
two contained action types (complete-link).

Sample clustering results for k = 5, complete-link:
c0 = {drop-gun, walk, die, raise-gun, fall}
c1 = {identify, dismount, arrive, wince, give, pick-up, draw-
gun, cheer}
c2 = {drink, drop, carry-from-to, reveal, lower-gun, cock-
gun, stand-up, side-step, adjust-clothing, face-at, look-at}
c3 = {fall-from-to, face-from-to}
c4 = {run, holster-gun, taunt, de-escalate, leave, get-shot}

Conclusion
We introduced an annotation scheme for cinematics and
used that scheme to hand-annotate a small corpus of scenes
from existing Hollywood films. This corpus is unique in a
way we predict will be beneficial for film understanding re-
search because it combines 3 things:

1. It features 30 instances of the Western gun duel scene
archetype, and thus each scene has similar discourse goals
and underlying story actions.

2. Each scene is manually coded shot-by-shot with a special-
ized cinematic annotation scheme.

3. Character actions observed in shots are mapped to declar-
ative action types which can be used for plot induction
and other intelligent narrative tasks.
In future work we hope that by using item 1, we can au-

tomatically learn a script representing the gun duel scene
archetype and that this will lead to insights for a domain-
independent approach for learning other scene archetypes;
however, until other corpora similar to this one are cre-
ated, it will be difficult to evaluate the effectiveness of
this work. Also, the corpus will likely be useful for narra-
tive processing tasks in computer vision, either for train-
ing or as a benchmark test. Finally, the corpus may be
useful for psychologists studying narrative discourse com-
prehension; experiments in this field often involve show-
ing movie clips to participants which vary only on ex-
perimental conditions (Magliano, Taylor, and Kim 2005;
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Magliano and Zacks 2011), but it is typically difficult to ei-
ther create or find clips which vary systematically and in
well-defined ways.
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