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Abstract

A goal of Experience Managers (EM) is to guide users
through a space of narrative trajectories, or story branches,
in an Interactive Narrative (IN). When a user performs an ac-
tion that deviates from the intended trajectory, the EM uses
a mediation strategy called accommodation to transition the
user to a new desirable trajectory. However, generating the
trajectory options then selecting the appropriate one is com-
putationally expensive and at odds with the low-latency needs
of an IN. We define three desirable properties (exemplar tra-
jectories, narrative-theoretic comparison, and efficiency) that
general solutions would possess and demonstrate how our
plan-based Intention Dependency Graph addresses them.

Introduction

Branching story games (e.g. (Telltale Games 2012)) have
gained popularity for presenting a narrative that appears to
adapt to user actions within a story world. This trend has led
to research in branching stories ranging from the creative af-
fordances of beats (Mateas and Stern 2005) to more formal
story-plans in automated planning (Porteous, Cavazza, and
Charles 2010). All representations share the need for an Ex-
perience Manager (EM) to effectively guide a user through
a space of desirable narrative trajectories (Riedl and Bulitko
2012), or story branches, in an Interactive Narrative. This
can take the form of avoiding certain story events while en-
suring others are part of a narrative experience.

When an IN (Interactive Narrative) offers numerous story
branches, it can lead to user actions that do not conform
to an EM’s desired trajectory. An EM can respond to this
in two different ways. The first is an intervention strategy
that simply prevents a user from executing an action that
would lead to an undesirable story trajectory. The desirable
narrative trajectory –a story-plan in an automated planning
context– in Figure 1 is story-plan A, drawn from to the clas-
sic Little Red Riding Hood (LRRH). Should a user attempt
to move Red Riding Hood (rr) to the Bad Wolf’s (bw) cave
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Figure 1: Little Red Riding Hood plan-based trajectories

(c), deviating from the desired trajectory where she goes to
the forest(f ), the EM could intervene by having the path to
c blocked, forcing the user to f. The second strategy, accom-
modation, is a more involved strategy that allows the user to
execute the problematic action, prompting the EM to gen-
erate new trajectories that incorporate the new action in a
new trajectory. In our example, the EM would incorporate
rr’s move to c by generating trajectories B and C and then
choosing one as the new desired trajectory.

While there has been research addressing the intervention
strategy of plan-based INs (e.g. (Magerko 2007)), the ac-
commodation strategy has received little attention outside
of Ramirez and Bulitko’s recent work (Ramirez Sanabria
and Bulitko 2014). There are three properties that make sup-
porting accommodation a difficult problem. The first is that
the generation process must produce exemplar trajectories
characterizing the narrative content of story branches so that
guarantees can be made about choosing a new trajectory
(e.g. fewest character goal changes). Second, generated tra-
jectories must be comparable on narrative-theoretic prop-
erties so that a new desirable trajectory can be assessed in
relation to the previous one (e.g. number of character goal
changes). A final property is that trajectory generation must
be efficient enough to respond in real-time. Solutions ad-
dressing these properties would enable an EM to perform
accommodation using an optimal narrative trajectory rather
than merely a satisfying one (in the boolean sense).

The primary contribution described in this paper is a plan-
based algorithm for finding desirable trajectories that ad-
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dresses the three properties described above. To accomplish
this, we extend the planning and goal graphs used by the
Glaive state-space narrative planner (Ware et al. 2014) to
construct an Intention Dependency Graph (IDG). The IDG
captures the necessary co-occurrence of character goals in a
set of exemplar trajectories that estimates the narrative con-
tent range of story branches in a computationally efficient
manner. We demonstrate some preliminary results using a
simplified classic tale, Little Red Riding Hood.

Previous Work

A central research goal of the IN community is to balance
authorial goals, such as logical plot progression, with those
that enable user agency. To address this gap, Bates (Bates
1992) proposed a drama manager (DM) to monitor and in-
tervene in order to manage the dramatic experience quality.
Building on this foundation, research to design a DM that
closely ties a game environment to artificial intelligence that
automatically produces action sequences led to the Mime-
sis system (Young and Riedl 2004). This work led to active
area of DM research in games summarized in Roberts and
Isbell (Roberts and Isbell 2008). A generalization of a DM
is the experience manager (EM) (Riedl and Bulitko 2012),
which relaxes the dramatic requirement on narratives, allow-
ing them to have training or educational applications. Gen-
erally, an EM must anticipate the experiences available to a
user given the state of the story world. The EM then subtly
mediates with the story world to ensure the user remains on a
narrative trajectory that adheres to some experience quality.

One mediation strategy used in plan-based EMs to en-
sure causal coherence is accommodation. Accommodation
restructures a narrative plan to account for the resulting state
after a user has disrupted causal links on the narrative tra-
jectory. In the General Mediation Engine (GME) (Robert-
son and Young 2015), plan restructuring queries a system
response oracle for a new narrative trajectory (story-plan)
to solve the planning problem resulting from user actions.
However, when using a plan-based representation, the com-
putational requirements of solving a planning problem limit
the ability of the system response oracle to find the most
desirable new narrative trajectory. Simply finding a new so-
lution plan is difficult and the first one found is often used,
leaving no process to choose the most appropriate trajectory
from a set of narrative trajectories. If the system response is
a trajectory with a great deal of change in character behav-
ior (old character goals dropped, new ones being pursued for
no apparent reason), then the user may become confused or
disinterested by the resulting inconsistent character behav-
ior. If the EM were aware of a trajectory set, then one could
be chosen that ensured desired outcomes, such as one that
minimized changes to character goals.

We address the exemplar narrative trajectories property
through a fundamental property of intentional plans (Riedl
and Young 2010). Intentional plans require that every action
in a solution plan be in service of a character goal (happen-
ings are part of fate’s goals). Character goals are rarely self-
contained, in that they require the effects of other charac-
ters’ actions to establish states of the world and motivations.

We leverage these dependencies to obtain a set of qualita-
tively different exemplar trajectories, where each trajectory
represents a class of intentional plans containing the same
conjunction of character goals. Intentional paths from an ex-
emplar’s character goals can then be combined to produce
candidates for solving a narrative planning problem.

This approach to finding qualitatively different exemplar
trajectories differs from the broader planning community’s
generation of diverse solutions. Generating the solution di-
versity of a planning problem requires solving it multiple
times and relies on the search process to explore all options
in a principled manner when searches are often designed to
find only minimal solutions. While existing planning sys-
tems have made progress towards exploring the solution di-
versity(Coman and Muñoz-avila 2011; Nguyen et al. 2012;
Bryce 2014), it is still an open area of research and is not
performed in a narrative-theoretic manner such as by finding
combinations of character goals. Determining a problem’s
solution diversity without the entire computational burden
of planning would enable an EM to make more informed
accommodation choices.

To ensure that our approach addresses the narrative-
theoretic comparison property, we leverage intentional plans
and plan distance metrics. An intentional plan ensures that
all steps in a plan serve character goals, in addition to the
authorial goals in the planning problem, and have been im-
plemented by several narrative planners (Riedl and Young
2010; Ware 2014). Due to its non-normal assumptions about
the data, Jaccard distance forms the basis of several domain-
independent (e.g. (Srivastava, Nguyen, and Gerevini 2007))
and domain-specific (e.g. (Amos-Binks, Roberts, and Young
2016)) plan distance metrics. We use Jaccard distance as the
basis of a domain-specific plan comparison metric that com-
pares character goals between exemplars.

Finally, to address the efficiency property, we turn to the
broader planning community’s work in problem formula-
tion and strategies for efficient planning. Specifically, the
planning graph (Blum and Furst 1997; Bryce and Kamb-
hampati 2007) is used by many state-of-the-art planners
(e.g. (Helmert 2006)) to calculate heuristics to speed up the
search process. Similarly, the Glaive (Ware and Young 2014)
narrative planner uses the planning graph but with addi-
tional narrative-theoretic constraints captured with character
goal-graphs. The goal-graph identifies the action sequences
a character could take in support of an adopted goal. While
planning and goal graphs are used to prune the search space,
we use them to identify the intentional and motivation de-
pendencies between character goals that constrain the solu-
tions to the narrative planning problem, without having to
solve the planning problem exactly.

We have outlined the technical challenges of an EM when
performing accommodation and described three desirable
properties of a solution that would overcome these chal-
lenges. To address the three properties using plan-based ap-
proach, we reviewed research in intentional planning, plan
comparison, and efficient planning from the broader plan-
ning community. This research forms the basis of the IDG
as a plan-based accommodation solution.
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Figure 2: Story problem on left and domain actions on right
(preconditions and effects underneath on left and right, re-
spectively) for LRRH.

Finding Plan-based Narrative Trajectories

We address the three desired solution properties of accom-
modation by uncovering the underlying dependencies be-
tween character goals from the story planning graph. To
represent the motivational and intentional dependencies be-
tween character goals we define in a new structure, the In-
tention Dependency Graph (IDG). Using the IDG, we can
reason about the narrative content of trajectories more effi-
ciently than incurring the cost of generating many different
solutions to a planning problem. We begin this section with
some basic story planning definitions that enable the gener-
ation of example story plans and finish with an algorithm for
constructing the IDG.

Definition 1 (Action) An action A consists of preconditions
that must be satisfied before execution, PRE(A), and effects
that result, EFF(A) (first and second columns, respectively,
on right of Figure 2). Preconditions are literals in a state
space whose conjunction must evaluate to true before ex-
ecution. An action’s effects are literals whose conjunction
reflects the change in state space when A is executed.

Together with an action’s name and parameter list, (first
line of each square in Figure 2), the precondition and ef-
fects describe an action schema. An action schema can be
instantiated into various forms, for example the Move action
is executed by rr, bw, and wm in story-plan A from Figure 1.

Definition 2 (Story planning problem) A story planning
problem Φ is a five-tuple

〈I,G, C, S,Λ〉 where I and G
are conjunctions of True literals in the initial state and goal
state respectively, C the set of symbols referring to character
agents, S the set of symbols, and Λ a set of action schemata.

Examples of each element of Φ can be seen on the left of
Figure 2. For illustration, we have explicitly separated char-
acter goals from the initial state. Typically they would ap-

Figure 3: Goal graph with two paths for 〈bw,¬safe(rr)〉.
Here rectangles indicate steps with preconditions for those
steps shown to the left of the rectangles and effects shown to
the right.

pear using the intends(character, goal) literal, but we omit
these details and the definition of an intentional plan for
brevity, as they are not used by our algorithm. We do, how-
ever, define three character-centric structures from (Ware
2014) that both ensure all actions in a solution plan support
character goals and for calculating efficient search strategies.

Definition 3 (Character goal) A character goal is a tuple
of two elements

〈
c, g

〉
, where g is a literal that a character c

desires to make true.

Character goals are accomplished through sequences of
actions called intentional paths. Figure 3 illustrates two in-
tentional paths for the character-goal 〈bw,¬safe(rr)〉. Path
A consists of three actions bw must take to accomplish
¬safe(rr), while B is a single action. For brevity, the sur-
prise(rr) predicate substitutes for more complex semantics
allowing bw to surprise rr, as in the classic LRRH tale.

Definition 4 (Intentional path) An intentional path is con-
structed for

〈
c, g

〉
by causally linking c’s actions until the

final action has effect g. An action is only required to have
one (or more) preconditions satisfied for it to be added to the
path. The path must not contain a literal and its negation, nor
can a literal appear twice.

Actions in an intentional path only require that at least one
precondition to be satisfied through causal links to an earlier
action’s effects. Any remaining preconditions must then be
satisfied outside of the intentional path, possibly from some
other character’s intentional path. This introduces an inten-
tional dependency, one of two factors that fundamentally
shape the possible story trajectories and is captured by the
IDG. As an example from Figure 3, the Move action in layer
2 satisfies a precondition to the Eat action in layer 1, but
Eat’s remaining preconditions (dotted incoming lines) must
be satisfied by actions in service to some other character’s
goal. Note that intentional paths are constructed separately
from the story plan graph.

Definition 5 (Causal links) A causal link, s
p→ u, is a tuple

〈s, p, u〉 where s, u are actions and p is a literal. A causal
link records that p is both an effect of s and satisfies the
precondition in u.

To improve planning efficiency, the Glaive narrative
planner aggregates multiple intentional paths of a single
character-goal into a character goal graph, represented in a
layered graph (for a more in depth description of layered
graphs in general see (Kivelä et al. 2014)).
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Definition 6 (Character goal graph) A character goal
graph, cgg, is a tuple

〈
CG,G

〉
where CG is a character goal

and G a directed layered graph where vertices represent ac-
tions and layer 0 contains vertices that achieve the character
goal. Action A appears in layer i > 0 iff A does not appear
in a layer i < 0 and an effect e of EFF(A) such that e is used
as a precondition to an action B at layer i−1. An edge exists
from A to B denoting EFF(A) used in PRE(B). A cgg set for
Φ is CGG(Φ).

Character goal graphs enable an efficiency gain when con-
structing story planning graphs (Definition 8). They reduce
the actions being considered to those which are potentially
motivated. A character goal g is motivated when ¬g is true.

Figure 4: Simplified story planning graph (SPG) for LRRH.
Here rectangles indicate steps with preconditions for those
steps shown to the left of the rectangles and effects shown to
the right

Definition 7 (Potentially motivated action) An action A
of character c whose preconditions have been satisfied and
is on at least one intentional path of a motivated character
goal

〈
c, g

〉
is called potentially motivated. The potential mo-

tivations of an action is indicated by MOT(A). The character
goal 〈bw,¬safe(rr)〉 in Figure 3 is motivated because in the
initial state, rr is safe.

Potentially motivated actions introduce the second of two
factors that fundamentally shape the possible story trajec-
tories: a motivation dependency between character goals,
which we also represent in the IDG. For instance, when the
bw accomplishes ¬safe(rr), it serves as a necessary condi-
tion before either the wm or gm adopts and acts in service
of their safe(rr) goal. While story planning graphs are used
for efficiency, they can also represent the individual inten-
tion and motivation dependencies of character goals.
Definition 8 (Story planning graph (SPG)) The SPG of
a story planning problem Φ, SPG(Φ), is a directed layered
graph. Each layer consists of two levels, literal Pi and ac-
tion Ai, written (P0, A0, P1, A1, ..., Ak, Pk+1) for a k-layer
graph. The levels P0 and Pk+1 contain the literals from I(Φ)
and G(Φ), respectively, with precondition and effect edges
connecting the layers in between (as in the original planning
graph (Blum and Furst 1997)). An additional edge, a moti-
vation edge, is used to indicate that for an action to be poten-

tially motivated it requires the adoption of a new character
goal. A motivation edge connects the literal ¬g to an action
at the highest layer of an intentional path (Definition 4) with
goal g. Actions are added to the SPG when preconditions are
satisfied and the action is potentially motivated.

The SPG in Figure 4 omits literal layers P1−P5 and some
actions for clarity. The bold eat(bw,rr,c) action in A1 has an
incoming precondition edge from move(rr,m,c) in A0, indi-
cating that character goal 〈bw,¬safe(rr)〉 has an an inten-
tion dependency on 〈rr,¬hungry(gm)〉. The dashed outgo-
ing motivation edges, safe(rr), of eat(bw,rr,c) indicate that
〈bw,¬safe(rr)〉 fulfills a motivation dependency for both
the wm and gm acting in service of their safe(rr) goal.

While individual character intention and motivation
dependencies are represented in the SPG by pre-
condition/effect/motivation edges, dependencies between
character-goals are not explicitly represented. A primary
contribution of this paper is the IDG, which aggregates
the dependencies between character-goals from the SPG
into exemplar trajectories. The final layer of vertices in the
IDG are the exemplar trajectories, each a set of character-
goal conjunctions. Together the exemplars estimate the story
branches in the SPG to the narrative planning problem. From
these exemplar trajectories, story plans can be generated.

Figure 5: Intention dependency graph (IDG) for LRRH

Definition 9 (Intention dependency graph (IDG)) The
IDG of a planning problem Φ, IDG(Φ), is a direct layered
graph represented by a tuple of three elements

〈
V,E, f

〉

where V is a set of n vertices v0, v1 . . . , vn−2, vg each as-
signed a layer and a label, L(vi), consisting of a set of char-
acter goals. E is a set of directed edges between vertices, and
f a vertex labeling function that takes a set of IDG vertices
as input and outputs the union of their character goals.

Vertices are added to the IDG when an SPG action is the
start of a new intentional path or when a new dependency
is identified between existing intentional paths. An edge is
added between IDG vertices to indicate a dependency (moti-
vation or intention) in the character goals of the child vertex
to those of its parents. The label of a vertex is constructed
from the union of its parents’ labels and new character goal
(if the SPG action is the start of a new intentional path).
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Our example continues with the IDG in Figure 5 con-
structed from the intention and motivation character depen-
dencies of the SPG in Figure 4. Two vertices (v1, v2) are
added to the IDG for the three potentially motivated actions
in A0 of the SPG, as they are the first actions towards two
character goals. IDG edges are added between v0 and v1, v2
indicating the intention and motivation dependencies to the
initial state. The bold eat action in A1 is the start of a new
intentional path towards 〈bw,¬safe(rr)〉, and a new vertex
v5 must be added to the IDG. To represent the intentional
dependency (bold, solid edge) to the move action in A0, we
add an IDG edge from v1 to v5. The motivation dependency
of 〈bw,¬safe(rr)〉 to P0 of the SPG is transitively satisfied
in the IDG by v5’s connection to v1, which depends on v0.

The addition of IDG nodes and edges continues until we
reach the goal-state in the SPG, at which point we connect vg
to IDG vertices whose character goals could satisfy the goal
state. Our example shows v4, v7, and v8 connected to vg ,
with respective labels having intentional paths in the SPG.
These three vertices are also representative of the three orig-
inal trajectories in Figure 1 and are exemplars of the narra-
tive content in solutions contained in the SPG. Furthermore,
the IDG satisfies the comparable property by using charac-
ter goals in the vertex labels. We can make comparisons be-
tween exemplar trajectories’ character goals.

Finally, we address the efficiency property of an accom-
modation strategy by introducing possible histories to con-
struct the IDG and SPG simultaneously.

Definition 10 (Possible history) A possible history (PH)
is a set of IDG vertices {v1, v2, ...vn} associated with each
SPG literal and action. The PH(p), where p is a literal,
captures the different ways p could become true from the
possible history of actions with p as an effect. The PH(A)
of action A consists of PH constructed from union of the
PH(PRE(A)) and PH(MOT(A)).

PHs are used to propagate IDG vertices in the SPG en-
abling new IDG vertices to connect to the character goals
they depend on. We return to our example in Figure 4 and see
IDG vertex v0 is added to all initial state literals in layer P0,
denoted by {v0}. The move(rr,m, c) action in A0 is depen-
dent on the initial state, is potentially motivated by rr’s goal
of ¬hungry(gm), and is the first action of a new character
goal. Since no precondition or motivation literals have a PH
with this goal, we add a new IDG vertex with a label consist-
ing of the union of the new character goal and the PH labels
from its precondition literals. This results in v5 being added
to the IDG with the character goal 〈rr,¬hungry(gm)〉 as a
label, since v0 is the only parent and has a blank label.

The simultaneous construction of the SPG and IDG is de-
tailed in Algorithm 1. The initial setup, where v0 is added
both to the IDG and the PH of literals in P0 of the SPG
is detailed in lines 1-4. Lines 5-14 capture the end of SPG
construction, when the goal literals of the planning problem
have been achieved and the final IDG vertices are added,
which represent conjunctions of character goals that esti-
mate the possible solution story plans to the planning prob-
lem. In all other levels of the SPG (line 15), the algorithm
enumerates the possible histories that could have lead to the

action being executed and adds the action to the SPG (lines
18-21). If the action is part of an existing goal graph and no
new dependencies are introduced, the action simply inherits
the possible histories (line 26-27). Alternatively (lines 28-
31), if the action introduces new dependencies, then a new
vertex, vk, is added to the IDG with a label containing the
union of the character goals from IDG vertices it depends on.
This is followed by adding an edge between the PH vertices
and vk in IDG and vk being added to the possible histories
of the action. Finally, if the action is part of a new charac-
ter goal, then lines 33-38 add a new motivation edge to the
SPG, add a new IDG vertex with the new goal, and connect
this vertex to the IDG vertices it depends on. Lines 16-44
are repeated for each action added to the level and PH prop-
agated to its effects, until no more actions can be added and
we advance to the next SPG level (line 45).

We have addressed the three desired solution properties of
accommodation by uncovering the underlying dependencies
between character goals from the SPG. The IDG addresses
the exemplar and comparable properties by representing the
intentional and motivational dependencies between charac-
ter goals as a conjunctive set that estimates the narrative con-
tent range of solutions in the SPG to the narrative planning
problem. We address the efficiency property with an algo-
rithm that constructs the SPG and IDG simultaneously.

Assessment

In our LRRH example, we obtain three IDG solution vertices
(v4, v7, v8, Figure 5) each with different character goals.
These vertices are represented by the plans in Figure 1,
where A is the classic tale, B closely resembles the classic
tale but with rr immediately being eaten by the bw due to an
exceptional user action. Finally, plan C differs a greatly from
the classic tale, with gm fending for herself and assuming the
hero role to rescue rr. We observe these differences numeri-
cally by applying the Jaccard distance, a typical method for
plan comparisons (Srivastava, Nguyen, and Gerevini 2007),
to the set of character goals in the labels of the aforemen-
tioned IDG vertices. If an EM accommodates by choosing
to minimize the change in character goals from a desired
trajectory (v4) to a new one (v7 or v8), it would use a plan
with character goals in L(v8). The choice would introduce
a single character goal difference, the bw not eating gm and
is reflected in a smaller Jaccard distance, 0.25 (1− 3

4 ), than
v7 (0.66 (1− 2

6 )). While using Jaccard distance of character
goals is useful for our demonstration, it cannot account for
all possible cases, such as those plans with different char-
acter goals but the same action set. Validating a narrative-
theoretic distance metric is outside the scope of this work.

The IDG produces a set of exemplar trajectories. By
maintaining all possible intentional and motivational depen-
dencies between character goals as vertex labels, the IDG
produces a set exemplar trajectories for G(Φ). This disjunc-
tive set of IDG vertices represents all possible conjunctions
of character goals in the SPG and estimates the narrative
content range of solutions to the story planning problem (Φ).

The IDG captures narrative-theoretic differences between
solution plans. The primary narrative-centric addition that
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Algorithm 1 SPG(Φ, CGG, level)

Require: Story problem Φ, goal graphs CGG, level index
Ensure: SPG where final literal layer has gi ∈ G true

\\If block for initial SPG and IDG setup
1: if level == 0 then
2: Add v0, vg to IDG
3: Add I(Φ) to P0 and Set PH(I(Φ)) = v0 in SPG
4: SPG(Φ, 1)

\\Else If block to end SPG and IDG construction
5: else if ∀gi ∈ G(Φ) == � || Plevel−1 == Plevel then
6: for all vertex set V ∈ PH(G(Φ)) do
7: if |V | == 1 then � IDG vertex satisfies G(Φ)
8: add edge v ∈ V to vg in IDG
9: else � new dependencies, new vertex in IDG

10: create vertex v|V |+1 with label f(V ) in IDG
11: add edge from v ∈ V to v|V |+1, v|V |+1 to vg in IDG
12: end if
13: end for
14: End

\\Else block for all other levels of the SPG
15: else
16: for all ground action A ∈ Λ(Φ) do
17: if A applicable at Alevel & A ∈ CGG then
18: add A at Alevel in SPG
19: add edges from Pre(A) in Plevel to A in SPG
20: add Eff(A) at Plevel+1 in SPG
21: add effect edges from A to Eff(A) in SPG
22: for all char goal graph cgg ∈ CGG(Φ) do
23: if A ∈ cgg then

\\For each IDG vertex set that makes A applicable
24: for all vertex set V ∈ PH(Pre(A)) do
25: if CG(cgg) ∈ L(V ) then � existing goal in V
26: if |V | == 1 then � No new dependencies
27: add v ∈ V to PH(A) in SPG
28: else � new dependencies, new vertex in IDG
29: create v|V |+1 with label f(V ) in IDG
30: add edge from v ∈ V to v|V |+1 in IDG
31: add v|V |+1 to PH(A) in SPG
32: end if
33: else � new character goal, new vertex in IDG
34: add motivation edge ¬G(cgg) to A in SPG
35: add v|V |+1 with label f(V ) in IDG
36: add edge from ∀v ∈ V to v|V |+1 in IDG
37: add v|V |+1 to PH(A) in SPG
38: end if
39: end for
40: end if
41: end for
42: end if
43: add PH(A) to PH(Eff(A) in SPG � propagate PH
44: end for
45: SPG(Φ, CGG, level ++)

46: end if

intentional planning makes to classical planning is ensuring
character goals support authorial goals. The IDG identifies
intentional and motivational dependencies between charac-
ter goals from the SPG to create conjunctive sets of character
goals to estimate the narrative content range in solutions to
the story planning problem. Comparisons between IDG ver-
tex labels captures their narrative-centric differences.

Constructing the IDG is more efficient than solving the
planning problem. The SPG is equivalent to Glaive’s plan-
ning graph and retains its increase in polynomial complexity
over the original Graphplan planning graph. The Graphplan
planning graph is constructed in polynomial time (Blum
and Furst 1997), which is less than automated planning’s
P-SPACE complexity class (Bylander 1994). The simulta-
neous construction of the IDG adds three polynomial costs
to Glaive’s planning graph incurred on adding ground ac-
tions to the SPG. Firstly, we discuss IDG vertex additions.
The maximum number of new IDG vertices per ground
action can be computed from the product of its precondi-
tion and motivation possible history sizes, denoted as v =

|PH(MOT(A))| ×
|PRE(A)|∏

i

|PH(PREi(A))|. In the worst

case, every precondition and motivation to an action has all
previous IDG vertices, so each combination of possible his-
tories used to obtain an action’s preconditions leads to a new
IDG vertex and would lead to |V (IDG)||PRE(A)|+|MOT(A)|
vertices being added. Note the exponent is relative to the ac-
tion’s preconditions and motivations, and not the size of the
IDG.

Secondly, there is a search cost to determine if an action’s
possible history already contains an action’s character goal
in the labels of IDG vertices. Since the labels are unordered,
at worst this requires c = |CGG(Φ)| comparisons.

Finally, we calculate additional cost for IDG edge addi-
tions. For each new IDG vertex, it is possible to need a new
edge for each of the ground action’s preconditions and one
for its motivation. We indicate this worst case scenario with
e = |PRE(A)|+ 1.

These three IDG costs are incurred per ground action at
each layer of the SPG. The total cost of constructing the IDG
is captured by O(knvce), where k is the number of levels
in the SPG, n the maximum number of actions at any SPG
level, and v,c,e as described in the preceding paragraphs.

The IDG has inherent limitations. While constructing the
IDG addresses the desired properties of a plan-based ac-
commodation solution, there is no free lunch. In our case,
we trade-off speed for accuracy, as characterized by three
factors. First, the SPG does not use mutex edges to capture
precedence and interference relationships between actions.
This results in unreachable plans being considered in the
SPG and consequently overestimating the number of exem-
plars that could solve the narrative planning problem. Sec-
ondly, the SPG terminates construction when G(Φ) is sat-
isfied, capturing only solutions near minimal length. Non-
optimal solutions with different character-goal dependencies
may exist beyond where the SPG ends. Finally, only solu-
tion plans with character-goals necessary to support reach-
ing G(Φ) are considered. While compatible but ‘dead-end’
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branches (non-necessary) can add to a trajectory’s narrative
content, they are not considered by the SPG and IDG.

Conclusions and Future Work

An IN with a plan-based representation has the ability to
represent branching stories, but suffers from high compu-
tational costs. These costs become particularly problematic
when an EM must accommodate an exceptional user action
and introduce a new narrative trajectory. We identified three
desirable properties (exemplars, comparison, efficiency) that
general solutions must address and detail how our plan-
based representation, the IDG, addresses them.

The IDG first addresses the exemplar property by en-
suring that a disjunctive set of IDG vertices represents all
the possible conjunctions of character goals in the SPG
to estimate the narrative content range of solutions (story
branches) to the story planning problem. Secondly, com-
paring the labels of IDG vertices addresses the compari-
son property as the labels contain character goals, the pri-
mary addition story-plans make to classical plans. We fol-
low classical planning’s approach to comparing plans by us-
ing a Jaccard-based distance metric. Finally, the efficiency
property is achieved by leveraging the reachability heuristic
calculations done in polynomial time by Glaive’s planning
graph to simultaneously create the IDG. We demonstrate ex-
amples of how the IDG addresses these properties with a
simplified LRRH domain.

An immediate area for continued work is to perform an
empirical evaluation with two components. The first is will
determine if the IDG generates a wide variety of solutions
(within its own solution set). This can be measured using
solution diversity (Coman and Muñoz-avila 2011) calcula-
tions that determine how effective the IDG is at finding dif-
ferent solutions. We expect the IDG would find more di-
verse solutions with less effort that existing approaches (e.g.
(Ware and Young 2014)) as it leverages the underlying inten-
tion dependencies in the story planning problem. The sec-
ond component to an evaluation is to determine if the IDG is
generating the same solutions as other diverse story planners
(e.g. (Farrell and Ware 2016)). This can be measured by us-
ing the solution overlap measure (Roberts, Howe, and Ray
2014). We expect that the IDG will find all the solutions the
other story planners do, as well as others, should they ex-
ist in the solution space. Using both solution diversity and
overlap against results from existing diverse planners would
demonstrate the advantages of this paper’s approach.
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