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Abstract

Narrative mediation is a plan-based process that con-
verts a planning problem into a mediation tree that mod-
els an interactive story. Probabilistic planning relaxes
the classical planning constraint of deterministic action
outcomes by containing domain operators with nonde-
terministic effects. This paper shows narrative media-
tion can be viewed as a probabilistic planning problem
where the outcomes of user actions are modeled with
nondeterministic effects in the domain. The paper gives
a process for automatically converting a deterministic
mediation planning problem into a probabilistic inter-
active narrative planning problem.

Introduction
A big picture goal of the field of interactive narrative is to
create interesting narrative experiences in an interactive set-
ting where the participant has a strong sense of autonomy
and yet the series of events that plays out conforms to a nar-
ratively interesting structure. One approach to creating these
experiences is a strong story experience manager (Riedl and
Bulitko 2013), an intelligent agent that invisibly controls
the actions of non-player characters and manipulates virtual
world events behind the scenes according to a central data
structure that models one or more well-formed stories.

One approach strong story experience managers use to
create these data structures is a plan-based process called
mediation (Riedl and Young 2006). Mediation begins with
a planning domain and problem specified in a modelling
language like the Planning Domain Definition Language
(PDDL) (McDermott et al. 1998). The problem models an
initial state of the world and a desired goal state of the world.
The domain models actions that can be performed by story
characters to transition the story world from one state to an-
other. Mediation begins by constructing a single plan, or se-
quence of actions that transforms the initial world state into
the goal state, that solves the planning problem. Once it has
a single plan, mediation examines the sequence of events
and finds alternate actions the player could take during the
plan’s execution that would break the initial plan’s control.
For each of these alternate actions, mediation constructs an
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alternate plan and recurses until all paths reach a goal state.
These plans are connected together in a tree of plans, called
a mediation tree, that branches for player action and is used
to control interaction during gameplay.

This current mediation process views user actions as
something within its control during the planning process.
It then uses a second, meta-process to account for user au-
tonomy in order to create a branching mediation tree. An
alternate way to view mediation is not as a branching se-
ries of deterministic planning problems, but as a single non-
deterministic problem where the agent has full control over
the outcome of NPC actions but no control over the out-
comes of actions taken by the player. This view allows medi-
ation to take the variability introduced by autonomous player
actions in its meta tree building process and include it di-
rectly in the planning problem by relaxing the determinis-
tic outcome constraint of classical planning. Probabilistic
planning problems can be specified in a modelling language
like the Probabilistic Planning Domain Definition Language
(PPDDL) (Younes and Littman 2004) and solved by a prob-
abilistic planner. The output of a probabilistic planner is a
Markov Decision Process (MDP) policy that maps world
states to system actions. The rest of this paper outlines re-
lated work in narrative mediation and the use of MDPs to
solve interactive narrative problems, describes how media-
tion can be modeled with a probabilistic planning problem,
presents a process for automatically converting a classical
planning problem to an interactive PPDDL problem, and
gives an example of the process in a small domain.

Related Work
Mediation is a plan-based approach to interactive narra-
tive generation. Mediation was first created for the Mime-
sis (Riedl, Saretto, and Young 2003; Young et al. 2004) sys-
tem and has been iterated on and incorporated into many
systems since then (Riedl et al. 2008; Ramirez, Bulitko,
and Spetch 2013; Ramirez and Bulitko 2014; Robertson and
Young 2014a; 2014b; 2015b; 2016; 2015a). The common
feature of each of these systems is they all build branching
story trees by constructing an exemplar narrative by solving
a planning problem and then accommodate alternate player
actions by constructing branching plans. This paper shows
how the accommodation process of mediation systems can
be factored into a problem with non-deterministic effects.
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Figure 1: A small mediation tree with two story branches.

The output of a probabilistic planner is a Markov De-
cision Process, a policy that maps states to actions the
agent should take during story executing in the virtual en-
vironment. MDPs were first used in the context of expe-
rience management by the Declarative Optimization-based
Drama Management (DODM) system (Nelson et al. 2006a;
2006b), which built on the search-based drama management
pioneered by the Oz Project (Bates 1992; Weyhrauch 1997).
MDPs serve as the basis for targeted trajectory distribu-
tion markov decision processes (TTD-MDPs) (Roberts et al.
2006; Bhat et al. 2007; Cantino, Roberts, and Isbell 2007;
Roberts, Cantino, and Isbell Jr. 2007; Roberts et al. 2007).
Created to provide replayability in the context of experi-
ence management, TTD-MDPs model desired distributions
over outcomes and trajectories instead of maximizing ex-
pected reward. This paper shows how a mediation problem
specified in PDDL can be converted to a probabilistic plan-
ning problem specified in PPDDL that accounts for player
choices with non-deterministic effects and, when solved by
a probabilistic planner, that produces a policy for controlling
interaction in an experience management context.

Mediation as Probabilistic Planning
Narrative mediation can be modeled as an MDP where ac-
tions taken by NPCs are deterministic and have a 100% tran-
sition probability but actions taken by human-controlled in-
teractors are non-deterministic. This paper assumes there is
an explicit ordering between action turns for the player and
non-player characters in the mediation tree and correspond-
ing MDP. Non-deterministic player actions must be taken
by the system and the outcome is split between the possible
deterministic actions a player could take in the original do-
main. The transition probabilities for human-controlled in-
teractors could be predicted with information provided by
a model of choice preference (Yu and Riedl 2013), goal
recognition (Cardona-Rivera and Young 2015), and/or role
assignment (Domınguez et al. 2016). Here we assume play-
ers make uniformly random choices among options. This as-
sumption is just a placeholder and can easily be replaced
with a more robust model.

Figure 1 shows a small mediation tree. Rows correspond
to plans produced by mediator’s planner and branches rep-
resent choices the player has between multiple possible ac-
tions. S0 and S1 are world states, P0 and P1 are player ac-
tions, N0 is an NPC action, and G0 and G1 are goal states.
The story starts at S0 and the player is given the choice be-
tween action P0 and P1. If the player chooses P0 then the

S0 P0 S1 N0 G0

G1

0.5

0.5

N1
1.0

1.0

Figure 2: A small MDP that corresponds to the mediation
tree in Figure 1.

system performs N0 and the story reaches goal state G0. If
the player chooses P1 then the story reaches goal state G1.

Figure 2 shows a small MDP that corresponds to the me-
diation tree shown in Figure 1. S0 and S1 are still world
states and G0 and G1 are still goal states. Player actions P0

and P1 from the mediation tree have been combined into a
single action P0 with a probabilistic outcome. The first out-
come, with probability 50%, corresponds to the mediation
tree’s P0 action and leads to S1. The second outcome, also
with probability 50%, corresponds to the mediation tree’s P1

action and leads to G1. As mentioned before, the system as-
sumes the player makes uniformly random choices between
deterministic actions so two possible action outcomes are
each assigned a 50% probability, three would have 33.3%,
four 25%, and so on. N0 is still an NPC action with a de-
terministic outcome. The MDP also contains an additional
NPC action, N1, not in the mediation tree because it is not
part of any plan created by mediation. A policy for this
MDP that corresponds to the mediation tree in Figure 1 is
π = {(S0, P0), (S1, N0)}.

Modelling uncertainty introduced by player choices in
plan-based interactive narrative environments as probability
distributions over possible action outcomes allows policies
to be created by probabilistic planners that correspond to
mediation trees. The next section shows how a deterministic
PDDL narrative problem can be automatically transformed
into a non-deterministic PPDDL problem.

PDDL to PPDDL
In order to encode the non-determinism introduced by game
time player actions into a planning problem, we encode fully
ground situations in which players can take action directly
into probabilistic domain operators. To illustrate this pro-
cess we use a simple planning problem shown in Figures 3a
and 3b. Figure 3a shows the deterministic PDDL planning
problem and domain. The player controls a character named
Arthur and the computer controls a character named Mer-
lin. Arthur and Merlin are standing at a location named the
Woods. A Rock and Excalibur are on the ground at the
Woods with Arthur and Merlin. The goal of the planning
problem is for Arthur to be holding Excalibur. Characters in
this domain can pick up an object if the character and the
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Problem
Initial State
Arthur is player
Arthur at Woods
Merlin at Woods
Excalibur at Woods
Rock at Woods

Goal State
Arthur has Excalibur

Domain
take(?taker,?thing,?location)
Precons:   ?taker at ?location

?thing at ?location      
Effects:     ?thing not at ?location

?taker has ?thing

(a) PDDL Domain and Problem

Domain
Arthur_takes_Excalibur_Woods()
Precons:   Rock not at Woods

Excalibur at Woods     
Effects:    Probability 1.0

Arthur has Excalibur
Excalibur not at Woods

Arthur_takes_Rock_Woods()
Precons:   Rock at Woods

Excalibur not at Woods
Effects:    Probability 1.0

Arthur has Rock
Rock not at Woods

take(?taker,?thing,?location)
Precons:   ?taker at ?location

?taker not Arthur
?thing at ?location      

Effects:     Probability 1.0
?thing not at ?location
?taker has ?thing

Arthur_takes_Both_Woods()
Precons:   Rock at Woods

Excalibur at Woods    
Effects:    Probability 0.5

Arthur has Rock
Rock not at Woods

……………………………………..
Probability 0.5
Arthur has Excalibur
Excalibur not at Woods

(b) PPDDL Domain

Figure 3: A simplified description of a small PDDL domain and problem. A simplified description of a small PPDDL domain
that corresponds to the PDDL domain shown in Figure 3a.

object are at the same location. A plan for this domain and
problem is the single action (take Arthur Excalibur Woods).
During gameplay, the player also has the opportunity to per-
form the action (take Arthur Rock Woods).

There are two components of the corresponding prob-
abilistic domain that encodes non-deterministic effects of
possible player choices. The first is a copy of the deter-
ministic operators tailored to prevent the player from using
the operator and containing a 100% transition probability
to model the system’s complete control of non-player char-
acters. Figure 3b implements this component with the take
action containing the added precondition ?taker not Arthur.
The second component is a set of fully ground operators that
model possible player choices while playing the game. To
generate this set, the set of fully ground player actions pos-
sible in the story world must be generated using the deter-
ministic PDDL domain and problem. In the context of the
domain and problem presented in Figure 3a, the set of pos-
sible fully ground player actions is {(take Arthur Excalibur
Woods),(take Arthur Rock Woods)}.

The next step is to determine intersections between
ground player actions. Two actions intersect if there is one
or more world states where both sets of preconditions are
satisfied. In the case of our example, the two ground player
actions intersect when both the Rock and Excalibur are at
the Woods. If an intersection takes place, an action should be
added to the domain that contains the intersecting precondi-
tions along with probabilistic effects that split the probabil-
ity across the original effects from the deterministic domain
according to a user model, which in our case is simply a uni-
formly random distribution. The Arthur takes Both Woods

action is an example of a non-deterministic intersection ac-
tion that splits the effects of the deterministic {(take Arthur
Excalibur Woods),(take Arthur Rock Woods)} action set.

In addition to intersections, there may be situations
where one action is enabled but another is not. In our ex-
ample, if the Rock has been picked up then the player
can only execute the (take Arthur Excalibur Woods) ac-
tion and if Excalibur has been picked up the player
can only execute the (take Arthur Rock Woods) ac-
tion. In addition to intersections, the conversion pro-
cess must also account for situations where possible ac-
tions converge. These situations are modeled in the Fig-
ure 3b domain with the Arthur takes Excalibur Woods and
Arthur takes Rock Woods actions. Each of these actions
have a single outcome with 100% probability because it’s
the only action the player can perform in the situation.

This process of finding situations in which actions inter-
sect and differentiate is repeated recursively until all choice
situations are modeled. The full set of non-deterministic op-
erators has at most one operator representing each combina-
tion of single and combination operators. The largest inter-
secting operator possible is the one that represents all fully
ground actions from the deterministic problem.

Conclusion
This paper shows the meta-planning process of mediation
can be viewed as a probabilistic planning problem. The pa-
per explains the relationship between narrative mediation
and a Markov Decision Process policy that maps states to ac-
tions, gives a process that can convert a deterministic medi-
ation problem into an equivalent non-deterministic planning
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problem, and gives an example of the conversion process.
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