
Dynamic and Accelerated Partial Order Planning for Interactive Narratives

Xun Zhang,1 Bhuvana C. Inampudi,1 Norman I. Badler,2 Mubbasir Kapadia1

1Computer Science Department, Rutgers University New Brunswick
2Computer and Information Science Department, University of Pennsylvania

Abstract

This paper explores new narrative generation paradigms for
open world problems. We propose a speed-up variant of par-
tial planner–accelerated partial order planner, that can auto-
matically generate narratives for large plan spaces. To incor-
porate real-time free-form user interaction, a dynamic partial
planning technique has been introduced to self-repair the nar-
ratives. We also propose a scalable and robust framework to
craft open world narratives with minimal effort. Our approach
enables content creators to craft complex open world narra-
tives without explicitly authoring user interaction arcs. We
tested our framework by developing multiple narratives with
free-form interactions. Those narratives were used to test the
robustness of the proposed planners.

Introduction

Partial order planners (POPs) are being used to generate
complex narratives with a lot of user interaction. As the plan-
ning time increases with the number of actions, using POPs
for open world narratives is not time efficient. Furthermore,
if those worlds are to accommodate free-form user interac-
tion, the plan should consider all the possible conflicts to the
narrative. This, in turn, increases the plan space and effort
required from content editors to craft a complete narrative.

The existing techniques either support narratives with lit-
tle user interaction, fixed, or less branching narratives with
a lot of user interactions. These approaches are not suitable
for open world problems as the action space will be very
enormous and including all user interactions will drastically
increase the space complexity.

In this paper, we propose an approach that generates and
repairs open world narratives in real time. This approach
accommodates free-form user interactions in a generated
narrative with minimum replanning. This approach can be
used to recreate any historical event (for example, Presi-
dent William McKinley’s assassination) and analyze how
changes in various interactions would have affected that
event or to generate interactive movies.

For such a system the planner should be able to gener-
ate plans in real time by using characters and actions that
are relevant to that scene. The system should replan for any

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

changes in the environment in real time, thereby accommo-
dating free-form user interactions. To validate or use such a
planner, the system architecture should be modular, robust
and scalable to generate extensive narratives.

Though there hasn’t been a single approach which tackles
all the challenges, there has been attempts to address individ-
ual problems. Shoulson et al. (2011) introduced parameter-
ized behavior trees to improve the modularity and reusability
of behavior trees. Kapadia et al. (2015) used interactive be-
havior trees (IBTs) to incorporate free-form user interaction
and conflict resolution. Decision trees can be used to gener-
ate believable narratives, but they cannot practically support
free-form user interaction.

To reduce the planning time, we introduced a hueristic–
related actions, which will be acquired from the action rela-
tion map. The action relation map contains all the related
actions for a condition. Thus it decreases the plan space
thereby decreasing the planning time. Inspired from the D*
and partial order planner, we came up with an approach to
incorporate dynamic characteristics to the planner.

The planning time costs using the improved dynamic
planner are compared against those of a conventional partial
planner with IBTs. The time of execution and the optimal-
ity of the solution are taken as the measures to quantify the
benefits of the proposed solution.

Our planner resembles the concept of mediation (Harris
and Young 2009, Robertson and Young 2014). However, the
dissimilarity and correspondence is yet to be discussed.

Further development is required before the final publica-
tion of our work, which mainly involves two aspects: algo-
rithm optimization and comprehensive evaluation. Besides,
evaluations of our planners against other classic planners
such that proposed by Younes and Simmons (2003) are nec-
essary.

Related Work

There have been several works on manual authoring tech-
niques for the narrative generation. Work of Loyall (1997)
described predefined behaviors, thus even small changes to
the narrative result in monolithic work. The structure of
story graphs (Gordon et al. 2004) allows to author huge be-
lievable narratives with very little user interactions. In story
graphs, the user interactions are facilitated in the form of
choices at key points in the narrative.

The AIIDE-17 Workshop on
Intelligent Narrative Technologies

WS-17-20

289

Partial order planning is often used to automatically gen-
erate narratives. Poole and Mackworth (2011) described the
basic algorithm of a partial order planner to generate par-
tial plans. A comparative study between total order and par-
tial order planners has been done by Minton, Bresina, and
Drummond (1994). Likhachev et al. (2005) described tech-
niques to incorporate Anytime Dynamic nature in total or-
dering planners.

On the other hand, Shoulson et al. (2011) showed how
behavior trees could be parameterized to improve the mod-
ularity and re-usability of the narratives. This helps to reuse
similar story arcs to generate rather complex narratives. Li,
Lee-Urban, and Riedl (2012) involved learning script-like
narrative knowledge from crowdsourcing to generate narra-
tives. Magerko et al. (2004) explored design issues of con-
structing a plot, creating AI characters, and using a director
in an interactive storytelling environment. For implementing
free-form user interactions, Kapadia et al. (2015) modeled
an architecture with behavior trees. It also provided a con-
flict resolution algorithm in IBTs. Kallmann and Thalmann
(1999) described a framework where virtual objects could
aid the user to accomplish a pre-programmed possible inter-
action. An event-centric framework for directing interactive
narratives was shown by Shoulson et al. (2013).

Loyall (1997) designed Hap, an architecture for creating
believable agents. Shoulson and Badler (2011) described a
framework for mitigating individual agent complexity while
retaining agent diversity. The framework of Kapadia et al.
(2011) generated complicated behaviors between interacting
actors in a user-authored scenario. Kapadia, Marshak, and
Badler (2014) presented a modular and flexible platform for
authoring purposeful human characters in a virtual environ-
ment. Based on the framework, an attempt (Inampudi et al.
2017) has been made to generate compelling narratives by
synthesizing the memories of the agents.

Harris and Young (2009) proposed another plan-based
narrative generation algorithm which calculates responses to
user input in an anticipatory manner. Ware and Young (2011)
proposed the Conflict Partial Order Causal Link (CPOCL)
that marks certain steps in a plan as non-executed in order
to preserve the conflicting subplans of all characters without
damaging the causal soundness of the overall story.

A survey of various approaches to quantifying the inter-
estingness of a narrative was provided by Li. (2015). The
work of Pérez and Ortiz (2013) was one of the earliest at-
tempts to measure the interestingness of a computer gener-
ated plot. It compares ideal story tension graphs to the one
that generated plot to find the interestingness. Although the
framework of Kartal, Koenig, and Guy (2014) can be used
to quickly generate complex and believable narratives, the
memory requirements increase exponentially as the number
of possible actions increases.

The Planners
In the following sections, we have made an attempt to
describe the implementation of our planner and the game
UI. Below are some terms that we will be used to describe
our system.

Affordance: An affordance a is an action that involves
two objects: the executor and the bearer. In this paper, we
will use terms “affordance” and “action” interchangeably.
Every affordance has a set of pre-conditions and effects
(< {Φ}, {Ω} >). Pre-conditions are required for the action
to execute, and effects are the state changes produced by the
action after execution. Every affordance in our system also
has a parameterized behavior tree (Shoulson et al. 2011)
associated with it.
Causal link: Two actions, a1 and a2 , have a causal link l
over a condition φ , if a precondition φ of a2 is satisfied by
executing a1, i.e., if φ ∈ a1 ← {Ω} and φ ∈ a2 ← {Φ}. An
entry of a causal link is denoted as a triple < a1, φ, a2 >. A
causal link < a1, φ, a2 > is said to be running if action a1
is running and a2 is not yet executed.
Over-consistent link: A causal link l will be in the over-
consistent state if the condition of the causal link is already
present in the current state of the system.
Under-consistent link: A running causal link l is said to be
under-consistent if the condition is negated by the current
state. A user action negating a running causal link will result
in an under-consistent link.

Original Partial Order Planner

The partial order planner proposed by Poole and Mack-
worth (2011) was implemented to evaluate the performance
of ours.

The planner employs a non-deterministic algorithm that
stores all the goal states in an agenda at the beginning and
depletes it by one entry in each iteration and stores cor-
responding ordered actions and causal links with the con-
straints of the preconditions on that entry. The new action
must happen before the removed agenda entry in the partial
order. The algorithm terminates when the agenda is empty,
and outputs the ordered action list, which is the partial plan.

Accelerated Partial Order Planner (APOP)

One of the major factors that influence the planning time
of a partial planner is the plan space. To optimize the plan-
ning time, we created an action relation map M which will
be used to search for the actions that satisfy a precondition.
Two actions are related if the precondition of an action is
present in the effects of the other. This is created only when
a new affordance is added and is stored in the system mem-
ory. Hence, this reduces the search space for the planner
and hence improves the planning time. A single entry of M
looks like < φ, {a} >. Algorithm 1 describes the approach
we used to create the action relation map. The APOP has
been proven to be efficient in some recent work (Inampudi
et al. 2017).

Dynamic Partial Order Planner (DPOP)

The existing techniques either preemptively plan for user in-
teractions or replan the narrative from scratch, and none of
these approaches are efficient to update the narratives in real
time to achieve a lifelike simulation as the number of objects
and interactions is prolific. To tackle this issue, we propose
an algorithm which incorporates the concepts of the D* al-
gorithm (Likhachev et al. 2005) with POP.

290

Algorithm 1: Constructing the action relation map and
getting an action from the action relation map

1 ConstructActionRealtions ()
2 foreach Φ ∈ A ← {Φ} do
3 foreach a ∈ A do
4 if Φ ∈ a ← {Ω} then
5 M = M ∪ < Φ, a >

The heuristic we use for the search algorithm is the action
relation map M introduced in the previous section.

user action

action1action3

action4

action2

C1

C1C2

C3

Figure 1: Example of an over-consistent link leading to re-
dundant states

One of the improvements over the previous planner is re-
moving redundant states. Over-consistent links (OC) may
make some states in the narrative redundant, i.e., as is shown
in figure 1, the user action (aui) has made the causal link C1

over-consistent. Hence, action1 is already satisfied by the
user action, and action2 becomes redundant, which is no
longer required in the narrative. Removing redundant states
from the narrative is called consistency propagation. Algo-
rithm 2 describes the logic we employed to find and remove
the redundant states from the narrative.

Algorithm 2: Consistency propagation in the behavior
tree

1 PropagateConsistency(OC)
2 foreach a ∈ OC do
3 if a /∈ {L ← {a1}} then
4 Remove a from affordances and constarints
5 foreach l ∈ L do
6 if a ∈ l ← {a2} then
7 OC = OC ∪ l ← {a1}
8 if OC �= ∅ then
9 PropagateConsistency(OC)

10 else
11 return

The planner keeps executing on open conditions to be
satisfied. For every user action, the narrative state manager
checks for any over-consistent and under-consistent states.
If an over-consistent or under-consistent state is found, it is
added to the open conditions of the planner. In the case of
over-consistency, consistency propagation is performed be-
fore the repairing is done. See Algorithm 3 for more details.

One important feature of the planner DPOP is that it can
repair or replan the narrative in real time when the user inter-

venes in the narrative. The algorithm to update the planner
space accordingly (line 29 of algorithm 3) is shown in algo-
rithm 4.

Proofs of the soundness and completeness of the planner
can be found in the appendix.

Algorithm 3: The dynamic planner
1 begin
2 Φopen = {< goal, φ > |∀φ ∈ goal ← {Φ}}
3 A = {start, goal}
4 O = {start ≺ goal}
5 L = ∅
6 initialP lanGenerated = false
7 repeat
8 if Φopen �= ∅ then
9 < ac, φ >= pop(Φopen)

10 if a ← {Φ} �= φ ∀a ∈ A then
11 as = SelectActionFromRelations(φ)
12 A = A ∪ as

13 O = O ∪ {start ≺ as}
14 foreach l ∈ L do
15 if l is not executed then
16 O = Protect(l, as,O)
17 foreach Φ ∈ as ← {Φ} do
18 Φopen = Φopen ∪ {< as,Φ >}
19 else
20 as = ∃a ∈ A s.t.φ ∈ a ← {Φ}
21 O = O ∪ {as ≺ ac}
22 L = L ∪ {< as, φ, ac >}
23 foreach a ∈ A do
24 if a is not executed then
25 O = Protect(< as, φ, ac >, a,O)
26 else
27 initialP lanGenerated = true
28 if aui & initialP lanGenerated then
29 UpdatePannerSpace(aui)
30 until forever

Algorithm 4: Updating the planner space after user in-
teraction aui

1 UpdatePlannerSpace(aui)
2 A = A ∪ aui

3 foreach l ∈ L do
4 if l ← φ ∈ aui ← {Ω} then
5 Remove l from L
6 OC = OC ∪ l ← {a1}
7 foreach φ ∈ l ← a2 ← {Φ} do
8 Φopen = Φopen ∪ {< l ← a2, φ >}
9 if OC �= ∅ then

10 PropagateConsistency(OC)
11 foreach rl ∈ RL do
12 if ¬rl ← φ ∈ aui ← {Ω} then
13 Remove rl from RL
14 foreach φ ∈ rl ← a2 ← {Φ} do
15 Φopen = Φopen ∪ {< rl ← a2, φ >}

291

Initial Plan

Replan Success

Replan Failure

1.0 2.0 3.0 4.0

Experiment A Experiment B Experiment C

(a) Average performance boost of all experiments, represented as avg(POP time
DPOP time)

Experiment Observations Standard deviation Average Confidence width Min average Max average
A: Initial plan 26 0.134 1.901 0.043 1.857 1.944
A: Replan success 31 1.077 1.776 0.318 1.457 2.094
A: Replan failure 22 0.602 0.921 0.021 0.900 0.942
B: Initial plan 23 0.539 2.253 0.185 2.068 2.438
B: Replan success 23 0.753 2.902 0.258 2.644 3.160
B: Replan failure 23 0.173 0.794 0.059 0.735 0.853
C: Initial plan 23 0.338 3.801 0.116 3.685 3.916
C: Replan success 23 0.880 3.841 0.302 3.539 4.143
C: Replan failure 23 0.779 1.394 0.267 1.127 1.661

(b) Performance boost statistics with 90% confidence, represented as avg(POP time
DPOP time)

Experiment Observations Standard deviation Average Confidence width Min average Max average
A: Initial plan 26 0.134 1.900 0.051 1.849 1.952
A: Replan success 31 1.077 1.776 0.379 1.397 2.155
A: Replan failure 22 0.060 0.921 0.025 0.896 0.946
B: Initial plan 23 0.539 2.253 0.220 2.032 2.474
B: Replan success 23 0.752 2.902 0.308 2.594 3.209
B: Replan failure 23 0.172 0.794 0.071 0.724 0.865
C: Initial plan 23 0.338 3.801 0.138 3.663 3.939
C: Replan success 23 0.880 3.841 0.359 3.482 4.201
C: Replan failure 23 0.779 1.394 0.318 1.076 1.712

(c) Performance boost statistics with 95% confidence, represented as avg(POP time
DPOP time)

Figure 2: Statistics of the experiments on DPOP with reference to the POP

Testing and Evaluation

The experiments were conducted within our game UI, which
is the main experiment interface with the players.

About the Game UI

In our game UI, every smart object is associated with a smart
trigger. When the player enters the trigger of the smart ob-
ject, an interactive menu is shown with all the available af-
fordances of that object. Selecting an affordance will execute
the parameterized behavior tree associated with it, and also
send the effects to the narrative state manager to update the
corresponding states.

All the characters in the scene have a default behavior tree
attached to them. The planner can take control of any charac-
ter running on default behavior. The game allows the player
to possess and control any in-game character, or switch
among them while the experiment is in progress. Whenever

the player takes control of a non-player character (NPC), all
the behaviors on that NPC are suspended. If that NPC was
formerly being controlled by a planner, the plan is recom-
puted. For every player action, the consistency of the plan
is checked and repaired if necessary. Instead of taking over
any character, the player can just observe the world from the
character’s point of view.

Experiment Objects Affordances/object Plan space
A 4 ≤ 3 12
B 23 ≈ 8 2091
C 37 ≈ 8 7257

Figure 3: Configurations for each experiment scene

292

Experiment Configuration

Our game is set up with scenes where the president as-
sassinations occur. The planner is tested with three differ-
ent scenes with a varying number of smart objects and af-
fordances. The quantitative details of the experiments are
shown in figure 3.

For each experiment, the data is collected for 3 cases: (i)
initial plan; (ii) repairing or replanning success, when the
planner is able to repair the narrative; (iii) repairing or re-
planning failure, when the planner is not able to repair the
narrative.

Accelerated Planner

For initial tests, the APOP is run in a scene with a vary-
ing number of homogeneous objects, and the time costs are
compared with the POP. The results are present in figure 4.

Objects Affordances Original POP APOP
2 2 5.75 5.4
2 5 11.2 5.72

10 5 11.89 6.04

Figure 4: For homogeneous objects, average of 10 observa-
tions (time in milliseconds)

The initial planning case of the experiments corresponds
to the APOP. The APOP displays significant improvements
over the POP. The planning time efficiency improvement
is exponential with regards to the total affordances in the
scene, e.g., the third configuration that simulates a typical
complex scene shows that the APOP is almost twice as fast
as the POP.

Dynamic Planner

A detailed analysis is conducted for the experiments A, B
and C. The data is split into two cases: case 1 when the
DPOP tries to repair the plan succeeds, and case 2 when no
plan exists between current state and goal state.

For case 1, the DPOP showed similar improvements as the
APOP. The DPOP was as 3.7 to 3.9 times fast as POP with
90% confidence. For case 2, the DPOP is almost as fast as
POP, which is expected because DPOP does an exhaustive
search just like POP. Detailed analysis can be found in figure
2.

The following two figures show two demonstrating scenes
where the DPOP works in.

Figure 5a and 5b reproduces a president assassination
scene, where many types of agents are involved, including
the player, the president, the assassin, and the doctor, etc.
The initial narrative is generated and stored as the reference
journal. While with the game UI interactions, the narrative
is invalidated. With the DPOP fixing it, the complete case is
revealed.

Figure 6a and 6b shows the scenes in experiment A where
the DPOP succeeds and fails to repair the narrative in real
time and interactively with the user. The initial goal of the
narrative is that the NPC buys the weapon, but with user
intervention that the player buys it before the NPC does, the

narrative failed to repair, which is the intended result for the
player–to prevent the NPC from purchasing the weapon.

(a) The auto-generated initial narrative

(b) The DPOP repairs the invalidated narrative

Figure 5: Screenshots from experiment C demonstrating a
case where the narrative is repaired by DPOP

(a) Without user intervention, the NPC opens the
door, walks in and buys the weapon

(b) The player opens the door, the NPC walks in with-
out opening the door, then the player buys the weapon
before the NPC does, and the narrative fails to be re-
paired

Figure 6: Two different cases of experiment A

User Study

In this user study, we did a quantitative analysis of the dy-
namic planner from the experimental results discussed in the
previous section. An in-game questionnaire was conducted
to comprise the analysis.

293

Hypotheses

There are two major hypotheses for our application:

1. The dynamic planner can reconstruct or repair the plan in
real time and faster than a partial planner.
Metrics: The time for replanning using POP and DPOP
and the time for replanning from scratch using POP and
DPOP.

2. This framework could be used to generate real-world like
narratives with free-from interactions.
Metrics: How close the simulation is to the original event
and the complexity of the narrative.

DPOP analysis

The following metrics were collected from the game plays
of 23 individuals. The game environment consists of 11 af-
fordances and 4 heterogeneous smart objects.

The performance of the DPOP was analyzed with two
planning types: (i) planning from scratch, and (ii) replan-
ning (or repairing the plan). The corresponding individual
experiment results are shown in figure 7 and figure 8.

Figure 7: Time taken to generate a partial plan (in ms)

Figure 8: Time taken to repair the plan (in ms)

As per our user study results and the feedback from the
testing users, we can come to the conclusion that:

1. The APOP and the DPOP have shown improvements over
the POP according to the test data;

2. The DPOP is able to repair plans in real time, without
much loss of user experience.

Conclusion and Future Work

Compared with the POP, our APOP and DPOP shows ade-
quate performance improvements. With the DPOP, we can
generate and repair the narrative in real time with free-form
user interactions. It also shows the capability to recreate or
simulate the possible variants of real world events, and po-
tentially provides an extension for creative scenarios, e.g.,
replaying historic events.

How difficult was it for
you to find the objective?

20%

60%

20%
Very easy
Easy
Midium
Difficult
Very difficult

(a)

How many attempts did
you make to solve it?

20%

80%

1~3
4~6
7~10
>10

(b)

How realistic is the scene
environment?

33%

50%

17%
1 (least realistic)
2
3
4
5 (most realistic)

(c)

How seamlessly does the
environment change?

33%

33%

17%

17%
1 (abrupt)
2
3
4
5 (smooth)

(d)

Figure 9: Player responses for the user study questionnaire

Though the system used in this paper facilitates to prove
the working and efficiency of the APOP and the DPOP, it
could only do so for a predetermined number of affordances
and smart objects. The user study also implies that the real-
ism of the testing environment is not outstanding. To accom-
plish a more comprehensive evaluation than those discussed
previously, we need to create a complex scene and going to
conduct a more perplex narrative experiment.

To extend the universality of our system, we need to im-
plement a system that can procedurally generate smart ob-
jects and affordances so that universal statistics of a plan-
ner can be measured. The output (narrative) quality of the
planner can be improved by using better heuristics like in-
terestingness or tension induced in the story if an action is
added.

Additionally, although we have tested our planners within
various scenes, the performance was not measured against
other types of planners due to the limited time for interface
programming. Deeper studies of comparison among these
planners shall be conducted.

Appendix: Proofs

In this section we have made an attempt to prove the sound-
ness and completeness of the planner.

Proposition 1 (Soundness). For a solution plan πc =
DynamicPlan(πp), there exists a total ordering of event in-
stances to produce a complete and consistent story arc αc.

Proof. The successful termination condition of Dynamic-
Plan returns a plan πc that has no open preconditions, whose
ordering constraints are guaranteed to be consistent, and
there are no incomplete event instances with missing pa-
rameters. According to Kapadia et al. (2016), πc is a so-
lution plan and hence, there exists a total ordering of event
instances αc for πc.

294

Proposition 2 (Completeness). DynamicPlan is guaran-
teed to return a complete, consistent ordering of event in-
stances πc, if one exists.

Proof. DynamicPlan is a non-deterministic procedure and
we can prove completeness by showing that at least one of
its execution traces returns a solution, if one exists. Let us
prove it inductively on the number of event instances |I| in
the solution plan.
Base Step. If the original plan πp is a solution to the problem,
then DynamicPlan terminates immediately and returns πp.
Induction Step. Assume that DynamicPlan is complete for
planning problems that have solutions of length (k − 1).

For a planning problem 〈πp = 〈Ip,Op,Lp〉,A〉, let there
be a solution πc which can be obtained by adding k addi-
tional event instances Ik = {I1, · · · Ik} to Ip. Since Ik ∈ Ik
is relevant to satisfying a clause in A, there is at least one
execution trace of DynamicPlan that chooses Ik to address
an open clause in A. The resulting partial plan, π

′
contains

I
′
= Ip ∪ Ik. The next recursion step of DynamicPlan op-

erates on π
′

to generate a solution for the planning problem:
〈π′

,A′ = A ∪ Φ(Ik)〉, whose solution can be obtained by
adding (k− 1) events, Ik−1 = Ik − Ik, which is our starting
assumption. By induction, DynamicPlan has an execution
trace that finds a solution for π

′
.

References

Gordon, A. S.; van Lent, M.; van Velson, M.; Carpenter, P.;
and Jhala, A. 2004. Branching Storylines in Virtual Reality
Environments for Leadership Development. In Proceedings
of the 16th Innovative Applications of Artificial Intelligence
Conference (IAAI-04), 844–851. San Jose, CA: AAAI Press.
Harris, J., and Young, R. M. 2009. Proactive mediation in
plan-based narrative environments. In IEEE Transactions
on Computational Intelligence and AI in Games, volume 1,
233–244.
Inampudi, B. C.; Zhang, X.; Geraci, F.; Badler, N. I.; and
Kapadia, M. 2017. Memory reconstruction from autobi-
ographic memories of autonomous virtual agents. In Pro-
ceedings of the 30th International Conference on Computer
Animation and Social Agents (CASA), 79–88.
Kallmann, M., and Thalmann, D. 1999. Direct 3d interac-
tion with smart objects. In Proceedings of the ACM Sym-
posium on Virtual Reality Software and Technology, VRST
’99, 124–130. New York, NY, USA: ACM.
Kapadia, M.; Singh, S.; Reinman, G.; and Faloutsos, P.
2011. A behavior-authoring framework for multiactor
simulations. Computer Graphics and Applications, IEEE
31(6):45 –55.
Kapadia, M.; Falk, J.; Zund, F.; Marti, M.; Sumner, R. W.;
and Gross, M. 2015. Computer-assisted authoring of inter-
active narratives.
Kapadia, M.; Frey, S.; Shoulson, A.; Sumner, R. W.; and
Gross, M. 2016. CANVAS: Computer-Assisted Narrative
Animation Synthesis. In ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’16. Eurograph-
ics.

Kapadia, M.; Marshak, N.; and Badler, N. I. 2014.
ADAPT: The Agent Development and Prototyping Testbed.
IEEE Transactions on Visualization and Computer Graphics
99(PrePrints):1.
Kartal, B.; Koenig, J.; and Guy, S. J. 2014. User-driven nar-
rative variation in large story domains using monte carlo tree
search. In Proceedings of the 2014 International Conference
on Autonomous Agents and Multi-agent Systems, AAMAS
’14, 69–76. Richland, SC: International Foundation for Au-
tonomous Agents and Multiagent Systems.
Li, B.; Lee-Urban, S.; and Riedl, M. O. 2012. Crowdsourc-
ing narrative intelligence. Advances in Cognitive Systems
2.
Li., B. 2015. Learning Knowledge to Support Domain-
Independent Narrative Intelligence. Ph.D. Dissertation.
Likhachev, M.; Ferguson , D.; Gordon, G.; Stentz , A. T.; and
Thrun, S. 2005. Anytime dynamic a*: An anytime, replan-
ning algorithm. In Proceedings of the International Confer-
ence on Automated Planning and Scheduling (ICAPS).
Loyall, A. B. 1997. Believable agents: building interactive
personalities. Ph.D. Dissertation, Pittsburgh, PA, USA.
Magerko, B.; Laird, J. E.; Assanie, M.; Kerfoot, A.; and
Stokes, D. 2004. AI Characters and Directors for Interactive
Computer Games. Artificial Intelligence 1001:877–883.
Minton, S.; Bresina, J. L.; and Drummond, M. 1994. Total-
order and partial-order planning: A comparative analysis.
CoRR abs/cs/9412103.
Pérez, R. P., and Ortiz, O. 2013. A model for evaluating
interestingness in a computer–generated plot,. In Proceed-
ings of the Fourth International Conference on Computa-
tional Creativity, 131–138.
Poole, D. L., and Mackworth, A. K. 2011. Artificial Intel-
ligence: Foundations of Computational Agents. Cambridge
University Press.
Robertson, J., and Young, R. M. 2014. Gameplay as on-line
mediation search. In Experimental Artificial Intelligence in
Games, 42–28.
Shoulson, A., and Badler, N. I. 2011. Event-centric control
for background agents. In ICIDS, 193–198.
Shoulson, A.; Garcia, F. M.; Jones, M.; Mead, R.; and
Badler, N. I. 2011. Parameterizing behavior trees. In 4th In-
ternational Conference, MIG 2011, Edinburgh, UK, Novem-
ber 13-15, 2011. Proceedings.
Shoulson, A.; Gilbert, M. L.; Kapadia, M.; and Badler, N. I.
2013. An event-centric planning approach for dynamic real-
time narrative. In Proceedings of Motion on Games, MIG
’13, 99:121–99:130. New York, NY, USA: ACM.
Ware, S. G., and Young, R. M. 2011. Cpocl: A narrative
planner supporting conflict. In Proceedings of the Seventh
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, 97–102.
Younes, H. L., and Simmons, R. G. 2003. Vhpop: Versa-
tile heuristic partial order planner. In Journal of Artificial
Intelligence Research 20, 405–430.

295

