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Abstract

We extend the Expressionist project, and thereby the re-
emerging area of grammar-based text generation, by apply-
ing a technique from software verification to a critical search
problem related to content generation from grammars. In Ex-
pressionist, authors attach tags (corresponding to pertinent
meanings) to nonterminal symbols in a context-free gram-
mar, which enables the targeted generation of content that
expresses requested meanings (i.e., has the requested tags).
While previous work has demonstrated methods for request-
ing content with a single required tag, requests for multiple
tags yields a search task over domains that may realistically
span quintillions or more elements. In this paper, we reduce
Expressionist grammars to symbolic visibly pushdown au-
tomata, which allows us to locate in massive search spaces
generable outputs that satisfy moderately complex criteria re-
lated to tags. While the satisficing of more complex tag cri-
teria is still not feasible using this technique, we forecast a
number of opportunities for future directions.

Introduction
Grammar-based text generation is enjoying a small re-
naissance. The mostly context-free formalism Tracery has
spurred the creation of new communities of grammar au-
thors (Compton, Kybartas, and Mateas 2015), and Expres-
sionist and its tagged-grammars approach is being used
in a variety of videogame projects (Ryan et al. 2016b;
Lessard et al. 2017) and in the middleware technology of
Spirit AI (Spirit AI 2017). Beyond applications of Trac-
ery and Expressionist, others are employing grammar-based
approaches in games and interactive storytelling, too (Hor-
swill 2014; Mawhorter 2016; Dias 2016b; Togelius, Shaker,
and Dormans 2016; Lewis 2017). As an alternative to con-
ventional natural language generation pipelines—the dom-
inant approach in mainstream text generation—grammars
are appealing because they are easier to author (especially
for writers who do not code) while still being very genera-
tive (due to an inherent combinatorial explosion).1 The core
appeal of Expressionist in particular, the approach we fo-
cus on in this paper, is that its tagging mechanism enables
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1Elsewhere, we more extensively situate the grammar-based
approach against conventional techniques (Ryan, Mateas, and
Wardrip-Fruin 2016).

targeted generation (at runtime, content can be requested
by specifying the meanings it should express) and content
understanding (the meanings expressed by generated con-
tent are known, which means a larger system can understand
and act on generated content). These features are combined
in an easy-to-use authoring environment: Expressionist has
been used by a number of non-programmer authors in in-
tensive videogame development projects (Ryan et al. 2016b;
Lessard et al. 2017). While combining these features with
ease of authoring provides significant expressive power, an
unfortunate hazard has emerged, ironically, from the very
generativity of the grammar underpinnings. Due to the rapid
combinatorial growth of generable spaces yielded by gram-
mar authoring, where a day of authoring can yield billions
or more outputs (Ryan et al. 2016b), targeted generation
becomes a search challenge: even when the meanings ex-
pressed by each and every generable output are known,
a space of quintillions or more may have to be searched
to retrieve a meaning that is requested at runtime. More-
over, things are further exacerbated at authoring time, where
one may seek to analyze an authored grammar for higher-
order considerations beyond the meanings of individual out-
puts. This requires more complex queries over huge content
spaces, which means this kind of design support currently
manifests as an even more significant search challenge.

Thus, the idea that we can analyze a tagged grammar
and make claims about the sorts of outputs it is likely to
generate—or whether it can produce outputs that have cer-
tain meanings—is important both for expressively constrain-
able content generation at runtime and to support grammar
authors at design time. As grammars become more complex
and as we hope to use them to address more dynamic situa-
tions, it may not be obvious whether a grammar could pro-
duce, for example, a line of dialogue where a character says
their name twice in the course of one introduction. We may
also want to know how probable a given output is in the
context of the grammar’s total generable space, or to visual-
ize a histogram of the possible lengths of all outputs, as in
Fig. 1. At runtime, we will want to furnish generated con-
tent with the right meanings at the right time. These design
questions and runtime considerations may not come up for
small grammars, where exhaustive search is feasible, but we
have discovered in this renaissance of grammar-based text
generation that typical grammars authored for use in real ex-
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Figure 1: A histogram of grammar output count (log-scale)
by output length. This grammar has 1064 possible outputs.

pressive applications will rarely or never be small (Ryan et
al. 2016b).

The problem, again, is a search problem that emerges
from the naturally massive generable spaces yielded by the
grammar-based approach to text authoring. To solve this
problem, we need to reduce these huge spaces to smaller
ones that can more efficiently be operated over.

Fortunately, our community is not alone in using for-
malisms like grammars to describe objects of interest. The
area of software verification uses equivalent flavors of au-
tomata to great effect in formulating and answering ques-
tions including whether a regular expression might fail to
catch a dangerous class of user input. As it turns out, we can
borrow many of their techniques and algorithms by consid-
ering grammars as something like a program with function
calls and returns, which lets us directly analyze their struc-
tures rather than their huge generable spaces.

In this paper, we investigate and compare a family of tech-
niques for controlling and analyzing Expressionist gram-
mars, using actual authored examples as test cases. First,
we reduce these grammars to symbolic visibly pushdown au-
tomata (D’Antoni and Alur 2014), and then we use off-the-
shelf algorithms to analyze those automata. We evaluate this
approach on small, medium, and large grammars, with test
cases of varying difficulty. While this paper represents sig-
nificant steps toward unrestricted targeted generation from
tagged grammars, providing a set of explicit performance
baselines, some persisting performance issues illuminate op-
portunities for future improvements.

Related Work

Beyond applications of Tracery and Expressionist, recent
projects by Horswill, Mawhorter, and Dias, respectively,
have also utilized generative grammars for expressive text
generation (Horswill 2014; Mawhorter 2016; Dias 2016b).
By employing generative grammars, these systems harness
the power of templated dialogue, a pattern used in Prom

Week, Versu, the LabLabLab trilogy, Event[0], and various
works of interactive fiction (McCoy and others 2014; Evans
and Short 2014; Lessard 2016; Mohov 2015; Short 2014).
One account of these approaches is that they forego the
power of conventional natural language generation pipelines
to emphasize authorability and expressivity above other con-
cerns. In turn, our current project aims to further improve
authorability by providing novel design support at author-
ing time (authors form offline queries about what mean-
ings generable content can express) and to further improve
expressivity by providing novel generation support at run-
time (a system requests generated content in terms of the
meanings it ought to express). There unfortunately has not
been much work on design support for procedural text au-
thors, but Garbe et al.’s work on visualizing the combinato-
rial content space of the interactive narrative Ice-Bound is
a touchstone in this area (Garbe et al. 2014). Emily Short
has also written about approaches to and prospects for vi-
sualizing the combinatorial text spaces yielded by genera-
tive grammars (Short 2016b; 2016c). Our approach, which
supports queries about the array of meanings that genera-
ble content can express, can be thought of as a method for
authors to investigate the expressive range of their text gen-
erators. The notion of expressive range is due to Smith and
Whitehead (Smith and Whitehead 2010), and recent work
by Cook et al. has explored design support via visualizing
expressive range (Cook, Gow, and Colton 2016). With re-
gard to runtime concerns for procedural text, Short and Dias
have individually articulated the need for generative text
that expresses salient meanings, rather than content yielded
by random sampling from a generable space (Short 2016a;
Dias 2016a). In procedural generation more broadly, this re-
lates to the 10,000 Bowls of Oatmeal problem articulated by
Compton (Compton 2016) and expanded on by Cook (Cook
2016) and Cardona-Rivera (Cardona-Rivera 2017), in which
a generative system can fall prey to producing an astronom-
ical number of content variations that do not provide salient
or meaningful differences to a human observer. The design
of Expressionist inherently confronts this issue by allowing
authors to efficiently index their generable spaces according
to prominent authorial concerns, which means distinctions
in the meaning of generable content will be reified as dis-
tinctions in the tags attached to such content.

Targeted Generation

Expressionist is a tool for text generation that associates
units of generable content with their meanings, by a scheme
in which tags may be attached to the nonterminal symbols
in a context-free grammar (Ryan et al. 2016b). When con-
tent is generated, it comes bundled with all the tags attached
to all the nonterminals that were expanded to produce it.
By ‘meanings’, we mean any semantic, pragmatic, or other
information (e.g., a character personality trait) that content
may express in the application context. This scheme criti-
cally enables two things:

• Content understanding. Because generated content
comes bundled with its meanings as structured metadata,
the larger system may understand it and execute any asso-
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ciated effects. For example, a generated insult might carry
tags specifying that the recipient of the line should lower
their affinity for the speaker by some amount.

• Targeted generation. A system requests content by re-
questing the meanings that it should express. For instance,
the system might request that an insult, or something more
specific, as in the example given below.

Targeted generation can naturally be thought of as a
search task: find in the space of generable outputs one that
has the requested meanings (i.e., requested tags). Due to the
combinatorial explosion of generative grammars, where a
few hours of authoring may produce trillions or more pos-
sible outputs (Ryan et al. 2016b), this search task becomes
a major challenge. In response to this, previous work intro-
duced a search method called middle-out expansion, where
a nonterminal with a desired tag is targeted and the sys-
tem traverses the grammar in both directions (Ryan, Mateas,
and Wardrip-Fruin 2016)—avoiding undesirable tags—until
a completed path has been formed. This method only works
for requests to target a single desired tag, however: unless
there is an individual nonterminal with all the desired tags,
targeting multiple tags requires finding a path that connects
multiple nonterminals that together have all the desired tags,
which could equate to search across a space of trillions or
more paths. To approximate solutions to cases where mul-
tiple tags are desired, a follow-up method, heuristic expan-
sion, carries out greedy middle-out expansion by preferring
production rules whose expansions have nonterminals with
desired tags (Ryan et al. 2016a). This method has its own
drawbacks, though: it does not guarantee that all desired tags
will be collected, and it is susceptible to local maxima.

The overarching goal of this line of work, which the above
methods have not satisfied, is to support content requests that
contain the following: any number of tags the content must
have, any number of tags that it must not have, and option-
ally a scoring metric specifying the desirability of all other
tags. Moreover, these kinds of content requests should be
fulfillable at both runtime and authoring time, as a form of
design support taking the form of queries about the range
of content requests that can be satisfied at runtime. While
these two kinds of support have different practical consider-
ations (relating to the purposes they serve, what is then done
with the generated content, etc.), they have the same techni-
cal requirement: a mechanism for satisfying content requests
of the structure we have just given. We note that “content
request” (runtime) and “query” (authoring time) are essen-
tially interchangeable terms: each is a solicitation of content
satisfying a provided set of criteria.

Example

Here, we will illustrate this idea using actual examples from
the system that generates text in Juke Joint (Ryan et al.
2016a). In this game, procedurally generated characters have
visited a small-town bar to mull over personal dilemmas,
and the player is a ghost who haunts a jukebox in the bar,
selecting which of its songs will play next. As the lyrics of a
song emanate across the bar, each stanza elicits thoughts in
the minds of the characters—expressed in generated natural

language—that work to gently guide their streams of con-
sciousness toward prospective resolutions to their dilemmas.
When a lyric plays, its themes become activated in the minds
of the characters, and this may cause other concepts to also
become activated. For instance, if the current stanza has the
theme commitment, the concepts my job and my family may
also become activated for a character who is committed to
their job and their family. Meanwhile, our authored Expres-
sionist grammar includes tags that correspond to all of the
concepts that can become activated. After a stanza plays, all
of the concepts that have become activated in a character’s
mind are collected to form a content request for an elicited
thought to be generated for the character. In the above ex-
ample, the content request would look something like this:
present: ‘commitment’
absent: N/A
metric: (‘my job’, 3), (‘my family’, 1)

This request specifies that the generated content must ex-
press commitment, the lyrical theme, which the generator
knows can be expressed by producing text that is associated
with a tag called ‘commitment’ (which we as authors have
included in our Expressionist grammar). While the request
does not include any tags that must not be collected, it spec-
ifies the relative desirability of ‘my job’ and ‘my family’,
with the weights in the tuples defining the former to be three
times as desirable. To satisfy this request, the generator col-
lects all the generable thoughts that have the ‘commitment’
tag, and then uses the scoring metric to determine which
ones best express ‘my job’ and/or ‘my family’. While this is
an example of targeted generation at runtime, we might also
want to carry this out at authoring time. For example, we
may want to check that a thought can be generated from our
grammar that expresses commitment, my job, and my fam-
ily. Or we may want to quickly generate dozens of these to
check for content quality.

Symbolic Visibly-Pushdown Automata

Finite automata are a fundamental tool of thought in com-
puter science; here we briefly explore a variety of increas-
ingly sophisticated automata to obtain important support
tools for expressive text generation, which we discuss be-
low. The role of automata in grammar-based text synthesis
is undisputed, given the importance of the Chomsky hierar-
chy and its equivalences between (some) important classes
of grammars and increasingly more powerful automata: reg-
ular grammars and the finite automata, context-free gram-
mars and pushdown automata, and context-sensitive gram-
mars and linearly-bounded Turing machines. Because Ex-
pressionist deploys a context-free grammar, we limit our at-
tention here to the first two classes.

Finite automata can be seen as simple machines (defined
as labeled directed graphs) that recognize whether a given
finite input sequence belongs or does not belong to a lan-
guage. Such an automaton has a set of states, of which we
denote (without loss of generality) an initial state and some
terminal states, along with a set of edges between pairs of
states (self-edges are allowed) where each edge has an asso-
ciated symbol. We say that an automaton accepts a string if
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and only if it induces a sequence of moves along the edges
starting from the initial state and ending exactly on a ter-
minal state, without skipping any characters in the string or
making any additional moves. The string is processed one
character at a time, and a move is only allowed if the current
character is exactly the same as the symbol of the prospec-
tive edge. While this is phrased as a decision problem, it
is clear that we could also use a finite automaton to con-
struct strings by traversing it as a directed graph, accumu-
lating symbols as we go, and terminating when we reach a
terminal state; any complete search algorithm would suffice.

Finite automata have some wonderfully useful properties:
they admit efficient emptiness checking (it is easy to see if an
automaton accepts no strings), and they are closed under in-
tersection, union, concatenation, and complementation. Clo-
sure here means, for example, that the intersection of two fi-
nite automata (an automaton which only accepts the strings
which both of the component automata would accept) is
also a finite automaton. This means we can easily ask for
all strings which are valid phone numbers but also have no
repeating digits (intersection), or we can ask for words that
do not end in “-ing” (complementation) with the exception
of “fling” (union). In effect, this allows us to manipulate the
potentially infinite-magnitude languages—the sets of recog-
nized strings—in terms of operations on the finite automata.
Unfortunately, the performance of many of these algorithms
scales poorly with increasing numbers of symbols; ASCII is
a challenge and full Unicode is unusably large.

The issue here is that an automaton needs one unique
edge between states per distinct symbol. But all edges that
go from one state to the same target state are in some
sense equivalent—the predicate is not really a single charac-
ter equality, but a set membership problem. Symbolic finite
automata (SFAs) address and generalize this concern (Bès
2008). In a symbolic automaton, we are still processing a
finite string of inputs, but each input comes from a po-
tentially infinite set; to account for this, edges have asso-
ciated guards which are predicates from a given Boolean
algebra (a structure admitting disjunction, conjunction, and
negation with designated true and false elements). The clas-
sic algorithms on finite automata generalize and maintain
their closure properties, and because the number of edges
remain small they can be extremely efficient. Symbolic fi-
nite automata have seen great success in the safety anal-
ysis of regular expressions, string sanitizers, and string-
manipulating programs (Yu, Alkhalaf, and Bultan 2010;
D’Antoni and Veanes 2013; Aydin, Bang, and Bultan 2015).

Pushdown automata (PDAs) generalize finite automata in
a different direction: by adding some memory in the form
of a stack and allowing edges to push or pop symbols or
peek at the stack’s topmost symbol. In a pushdown automata,
we split the alphabet into input symbols (as for finite au-
tomata) and stack symbols, and give edges an associated
action (which might be the null action); moreover edges
can push a stack symbol or pop a specific symbol off the
top of the stack. This allows them to recognize context-
free languages involving for example matched parentheses
or other counted pairs. Sadly, pushdown automata are not
closed under intersection or complementation, although they

are closed under intersection with regular languages. For the
purposes of validating properties about grammars, intersec-
tion is extremely important (the above applications of sym-
bolic automata relied on them extensively).

It is important to note that this lack of closure applies
to context-free languages in general, but some pairs of
languages can be intersected without leaving the realm of
PDAs. Regular languages are one such subset; as it turns
out, there is another set in between the regular languages
and fully context-free languages called visibly context-free,
recognized by visibly pushdown automata (VPAs), which is
extremely useful for our purposes (Alur and Madhusudan
2004). Visibly here means that all stack operations (pushes
and pops) happen because of specific, recognizable symbols
in the input string (we call these respectively call and re-
turn symbols by analogy to function calls). To be available
for a transition, a return symbol must match the stack sym-
bol pushed by the corresponding call. Accordingly, these are
also called input-driven PDAs. Formally, a VPA has a set of
states, initial states, terminal states, edges, input symbols,
and stack symbols (like a PDA), but the input symbols are
further partitioned into calls, returns, and internal symbols.

Not every context-free grammar designates its nontermi-
nals with such opening and closing “parentheses,” but any
context-free grammar (CFG) can be augmented to output
these as well (becoming a visibly CFG); it is straightforward
to transform a visibly CFG into a VPA. We can imagine
that every nonterminal begins with a call and ends with a
return, while every generated terminal is an internal symbol.
VPAs are closed under intersection and complementation.
We end our tour of automata with symbolic VPAs, which,
like SFAs, generalize edge conditions to arbitrary Boolean
algebras (D’Antoni and Alur 2014). These enjoy all the clo-
sure properties of VPAs but remain compact after intersec-
tions and other operations, and have recently been used to
determine what control flows through programs might have
elicited a particular error log (Ohmann et al. 2017).

Reducing Expressionist Grammars to Automata

Because of the expressive power of symbolic automata, and
their successful application in many domains that seem sim-
ilar to what we need for Expressionist, we wanted to apply
an automata-based approach to Expressionist grammars as a
solution to the problem we have formulated above. We use
the off-the-shelf library SVPAlib (D’Antoni 2017) because it
comes with an implementation of SVPAs and several useful
Boolean algebras. In this section, we explore how we reduce
Expressionist grammars to SVPAs and how queries about
generable content with targeted meanings, i.e., desired tags,
can be answered through an automata-theoretic lens. We aim
for a reduction in the computer-science sense: properties of
interest should hold on the SVPA if and only if they also
hold on the original grammar. As an aside, most of the al-
gorithms we describe work for grammars and SVPAs which
can contain loops, which are not allowed in Expressionist
grammars.

Our goal is to create, for a given Expressionist grammar,
a deterministic automaton. Many algorithms of interest re-
quire deterministic automata, and while every nondetermin-
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AskWeather ::= "That weather " TodayTonight ", " AgreementInvitation "?"
                        | "How about that weather?"
                        | StuckInsideAskVisitorAboutWeather

Call:
TodayTonight

Call:
StuckInsideAskVisitorAboutWeather

Return

I:$R1

I:$R2

I:$R3

I: How about that weather?

I: That weather

I: ?

Call:
Agreement-

Invitation
Return Return

I: ,

Figure 2: An Expressionist rule and corresponding SVPA fragment. Edges are labeled (I)nternal, Call, or Return; dotted circles
show placeholder start and end nodes in the SVPA fragments built from other rules.

istic SVPA is determinizable, this operation can make an au-
tomaton much larger, slowing down future processing. The
Boolean algebra we are using is essentially a finite set al-
gebra with a universe comprising every terminal, an iden-
tifier for every nonterminal, and an identifier for every Ex-
pressionist tag—in other words our edges might have atomic
predicates regarding set membership, set union, set comple-
ment, set intersection, and so on, with the overall edge pred-
icates being Boolean combinations of those basic queries.
A transition which generates a specific terminal, for exam-
ple, will have as its predicate the singleton set containing
that terminal. A transition which denotes a call into a non-
terminal will have as its predicate a set containing the union
of the nonterminal’s identifier and the set of tags attached
to that nonterminal. To create a fully deterministic automa-
ton and to simplify the construction, we further augment the
set of terminals by adding as many rule selector symbols as
there are rule choices in the “widest” nonterminal (e.g., if a
grammar has a nonterminal with five production rules and
no nonterminal with six, then there will be five rule selec-
tor symbols). We also add special root selector symbols for
the possible choices among initial nonterminals (those des-
ignated as top-level in the grammar). We can imagine that
the set of internal symbols is the set of terminals, while the
set of opening and closing symbols are derived from the non-
terminal identifiers.

For each nonterminal, we build an automaton fragment in
the following way (illustrated in Fig. 2). First, we allocate
an initial node and a final node (every node has a unique
integer index; our stack symbols are just integers). Starting
from the initial node, every production rule induces an in-
ternal transition to a fresh state with the corresponding rule
selector symbol. Each production step of each rule is either
a terminal or a nonterminal. If it is a terminal, we extend a
new internal edge with that terminal from the current state to
a placeholder state. If it is a nonterminal, we create tempo-
rary call and return edges with that nonterminal’s identifier
and add them to a list of references to be resolved later (the

current state’s index is used as the stack symbol). The call
edge is extended from the current state and the return edge
is pointed to a placeholder state. If there are more steps in
the rule, the placeholder state is replaced with a freshly al-
located state and we continue with the next step; otherwise,
the placeholder state is replaced with the nonterminal’s end
state. We also make a pseudo-nonterminal for the root of the
grammar with one production rule for each top-level nonter-
minal and construct its fragment in the same way.

To construct the full automaton, we start by connecting all
the nonterminal fragments together by resolving the targets
and sources of the temporary edges. The call edges are at-
tached to the target nonterminal’s initial node and the return
edges are attached from the nonterminal’s final node. The
automaton’s initial and final nodes are the initial and final
nodes of the root fragment.

Answering Queries

Enumerating all outputs of an SVPA is similar to enumer-
ating outputs from a finite automaton. It must be extended
in two ways: first, to allow for stack operations by includ-
ing the stack in the search state and updating it during calls
and returns; and second, to go from an abstract path where
each element is a set predicate to potentially many concrete
paths where each element is a terminal or nonterminal pro-
duction. Some grammars are essentially not enumerable be-
cause they have so many possible outputs, but even these can
be addressed well using something like iterative deepening
search. Finding a single output is a special case; often, we
want to find the shortest output so we can apply a dynamic
programming approach to find the fixpoint of the state reach-
ability relation—this gives all-pairs shortest paths between
states, and we can take the first found path between any start
and end state as our output.

We can address the targeted generation problem by com-
bining output-sampling with SVPA intersection using the
standard product construction (as implemented in SVPAlib).
The approach here is to create an SVPA for our property, for
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example an SVPA that recognizes sequences of calls with
the desired tags, and then intersect that SVPA with the one
derived from our grammar. The resulting automaton will
only generate those outputs of the original grammar which
have the desired property. We can enumerate outputs using
the algorithm outlined above; moreover we can efficiently
ask whether the automaton’s language is empty, i.e., whether
it is impossible to generate an output with the given property.

To handle cases where queries also contain forbidden
tags, we can consider two low-level properties: a tag is
present somewhere in the output or it is absent. If we can
describe these low-level properties using automata we can
proceed to create any combination of present tags and ab-
sent tags by intersecting these together. A tag-present au-
tomaton comprises one initial state and one final state; there
is an edge from the initial state to the final state when a call
matching the desired tag is made. All other possible transi-
tions are embedded as self-loops from initial to initial and
self-loops from final to final. In other words, the automa-
ton advances to its terminal state when the tag is found. The
tags-absent automaton is identical, still built of two states,
but initial state and final state are the same state, while the
other state which is the target of the tag-matching call is not
final and has no path back to a final state.

We can also build more sophisticated property automata
describing any visibly pushdown property: some tags in or-
der, no repetition of a particular production rule or termi-
nal, some set of tags if and only if another tag is found,
matched pairs of tags (e.g., every problem is eventually fol-
lowed by a matching resolution), and so on. Testing any
property is roughly as easy as testing any other property.
This is a key benefit of the automata-based approach: one
algorithm solves arbitrary expressible property queries.

Output counting has a more efficient algorithm than just
exhaustive enumeration. We implemented the standard dy-
namic programming formulation of finite automaton path
counting, extending it for the symbolic setting by letting a
single edge induce multiple paths (as described above for
output enumeration) and for the pushdown setting by track-
ing stack state as well as automaton state and matching calls
and returns. Briefly, we want to know how many strings
are in the automaton’s language; in other words, how many
paths there are from initial to final states. Because in general
automata may have loops, we can rephrase our question to
ask how many strings of length exactly k are in the language,
and sum from k = 0 to k = kmax. Expressionist grammars
may not have loops, so we take the longest path through the
induced SVPA as a bound on k.

We begin by allocating a matrix M of dimensions k×|S|,
where S is the set of states in the SVPA. Each entry in the
matrix is a set of (Q,N) pairs with Q a stack state (i.e., a list
of integers) and N an integer. M0,s is initialized to {((), 1)}
if state s is an initial state and {} otherwise. For each value of
k up to the limit, we fill in the next layer of the matrix based
on the previous layer, with the values of the states whose
edges enter each state s at k − 1 contributing to the values
of Mk,s. Each state’s (Q,N) values for a given k represent
how many ways a state can be reached from the initial con-
figuration within k steps. If at any time we add new ways to

Grammar Creation Counting

Small 1.9 3.4
Medium 6.2 5.1
Large 2.3 2.9
Extra-Large 24 17

Table 1: Times (in seconds) to create an automaton from rep-
resentative grammars and to count its possible outputs.

Difficulty Intersection Check

Easy 0.2 0.4
Moderate 0.01 0.02
Hard 11.3 19.0

Table 2: For each test case, times (in seconds) to intersect
each constructed automaton with properties of interest (cor-
responding to realistic content requests) and to check for
(and produce) a satisfying output.

reach a final state, we accumulate those as part of our final
return value. We also accumulate how many strings there are
of each intermediate length. In this way, we can determine
the size of grammars with over 1064 possible outputs in sec-
onds, which Table 1 shows (as explained below). We refer
the interested reader to our source code for more detail (Os-
born 2017).

Evaluation and Discussion

To evaluate our approach as a practical solution to the prob-
lem formulated above—satisfying content requests specify-
ing the set of tags that generated content should have (re-
quired tags) and the set of tags it should not have (forbidden
tags)—we applied it to four actual Expressionist grammars
that have been authored for videogame applications (and
range in size). The first grammar was authored for character
dialogue generation in the ongoing project Talk of the Town
(Ryan, Mateas, and Wardrip-Fruin 2016); it has 2.8M gen-
erable outputs, which in the context of Expressionist makes
it our small grammar, and its expressive range spans 333 ex-
pressible meanings, i.e., unique sets of tags that may be at-
tached to generated outputs. Our medium grammar was au-
thored for the hacker level of the released game Project Per-
fect Citizen, honorable mention for the Independent Games
Festival’s Nuovo Award; it has 65 quadrillion generable
outputs and 37 expressible meanings. The large grammar
was authored for character thoughts in the in-development
game Juke Joint (Ryan et al. 2016a) and features 6.3 quintil-
lion generable outputs and 1,918 expressible meanings. Fi-
nally, our extra-large grammar was authored for an exper-
imental natural language generation system for Talk of the
Town (Summerville et al. 2016)—it has a staggering 1064

outputs and an unknown number of expressible meanings
(the algorithm previously used by Expressionist to count
these exhausts available RAM and fails).

To carry out our evaluation procedure, we first reduced
each grammar to a SVPA using the method described above
and then counted the number of generable outputs for each
(which could be a useful authoring metric). Table 1 shows
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how long this procedure took for each grammar on a work-
station laptop from late 2013 (2.6 GHz Intel Core i7 CPU, 16
GB RAM). While the durations may appear large, we note
that this procedure only has to be carried out once prior to
any session of querying the resulting SVPA. For considera-
tions of targeted generation at runtime, this could still hap-
pen offline, e.g., during compilation of the game code. When
it comes to authoring support, however, waits of several sec-
onds could be too long if each edit is followed by a fresh re-
duction of the grammar. Interestingly, the medium grammar
took longer to reduce than the large grammar—this must be
due to structural characteristics of each, but further investi-
gation remains for future work.

Next, for each grammar, we formulated an example con-
tent request that could realistically be encountered at run-
time and demanded content that satisfied this request (these
examples are available alongside our source code as part of
its unit tests). These content requests represented three in-
creasing levels of technical difficulty: as an easy test case,
a content request for the small grammar with two required
tags and two forbidden tags; as a moderate test case, a con-
tent request for the medium grammar with two required tags
and two forbidden tags; and as a hard test case, a content
request for the large grammar with three required tags and
three forbidden tags. To execute a test case (and thereby sat-
isfy the example content request), we must first intersect the
reduced grammar SVPA with a property SVPA (capturing
the required and forbidden tags at hand).

Table 2 shows how long our method took to perform the
intersection and checking steps for satisficing outputs for
each test case (note that checking also yields a witness out-
put satisfying the property). Again, we find unintuitive non-
linear behavior, with the easy test case taking an order of
magnitude longer than the moderate case; this will also re-
quire investigation beyond the scope of this paper to in-
terpret. More troublingly, the results demonstrate a thresh-
old between content requests that can be satisfied extremely
quickly and ones that take far too long. We note that inter-
section of more than one property on the extra-large gram-
mar was not possible for us to carry out due to extreme
memory usage. Finally, we attempted to check harder test
cases on the smaller grammars (with content requests con-
taining 15-30 total stipulated tags), but these also timed out.
All of these results suggest that the structure of the gram-
mar is very important to the success of our method, and
in particular the performance of automata intersection algo-
rithms is key. Initial profiling suggests that the timeouts and
memory exhaustion occur after the intersection algorithm is
complete, when checking the intersected automata for un-
reachable states; perhaps we can find some shortcuts here to
improve our performance.

Conclusion and Future Work
The method that we have introduced here, which works by
reducing Expressionist grammars to symbolic visibly push-
down automata, represents a first demonstration of targeted
generation in pursuit of multiple requested meanings. As
mentioned above, earlier work could only target a single
required tag, and for additional desired tags the heretofore

leading approach resorted to a greedy search that could
not guarantee that generated content would have all the re-
quested meanings. While the results here represent a clear
leap forward in grammar-based text authoring, our evalua-
tion revealed some troubling nonlinear qualities in the com-
putational task, which manifest in a mysterious threshold
between trivial and intractable test cases. This may be due
to the specific library we are using, or there may be inher-
ent considerations of computational complexity that we have
not anticipated; in future work, we will deeply investigate
these matters, considering alternative related approaches.
Keep in mind, however, the magnitude of technical chal-
lenge that this task represents. Our moderate test case, for
example, requires implicitly searching through a space of 65
quadrillion possible outputs to find one that has two specific
properties and does not have two others. This is a monu-
mental search task, and our method carries it to completion
in 1/50th of a second. Still, we can check moderately com-
plex properties on complex grammars, but we cannot yet
check complex properties even on relatively simple (order
107) grammars.

Another avenue for future work pertains to a feature of
Expressionist that we have not yet mentioned: authors can
attach to production rules probabilities of application, which
makes the underlying grammar formalism a probabilistic
CFG. As such, we would like to extend our SVPA approach
to handle such probabilism, both for design support (con-
cerning the likelihood of generable content with properties
of interest) and runtime support (probabilistic generation).
Moreover, some Expressionist authors have exploited the
free-text nature of tags in the tool to make use of special con-
dition logic tags, which gate the expansion of nonterminals
according to the system state (Ryan et al. 2016b). Handling
the semantics of preconditions is another possible extension,
especially since SVPAs offer symbolic guards which can be
from any Boolean algebra.

Text generation in games and interactive storytelling is
typically carried out iteratively: outputs may occur in se-
ries, or may be constrained according to the context or ear-
lier outputs, or may affect the generation contexts of future
outputs. As such, we are beginning to think about how an
SVPA could capture these dynamical aspects of text gener-
ation to provide even more advanced design support at au-
thoring time—for instance, about the space of possible se-
quences of generated outputs.

While we have focused on Expressionist in this paper, due
to its reification of properties of interest as tags, we antici-
pate this approach being applicable to other tools and meth-
ods, too, such as Tracery and templated dialogue. Here, the
work will be in determining a set of properties of interest
and a method for discerning them. For example, in lieu of
Expressionist-like tags, we could recognize surface charac-
teristics of terminal symbols in Tracery (such as their length)
and then build property automata whose edges are associ-
ated with these properties. This would make it possible to
generate outputs with desired surface characteristics.

We are particularly interested in the artistic affordances
of grammar sculpting. By this, we mean the direct construc-
tion of new grammars using the operations of intersection,
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union, concatenation, and subtraction, since these can be ap-
plied between pairs of grammars just as we have done with
property-grammar pairs. An author could form a permissive
grammar and subtract out a smaller grammar of repetitive
phrases or unpleasant juxtapositions; or combine two gram-
mars on related themes to obtain a new grammar synthesiz-
ing those themes, perhaps along their shared tags or nonter-
minal IDs; or instantiate the same base grammar differently
for different regional dialects in a fictional world (or indeed,
for different characters in the world). While this would be
very experimental, especially since the resulting grammars
may only be machine understandable, we can already imag-
ine some interesting use cases—for example, authoring a
permissive grammar and then automatically subtracting out
classes of undesirable outputs.
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