
Expanding Expressive Range: Evaluation
Methodologies for Procedural Content Generation

Adam Summerville
California State Polytechnic University, Pomona

asummerville@cpp.edu

Abstract
Procedural Content Generation (PCG) has been a part of
video games for the majority of their existence and have
been an area of active research over the past decade. How-
ever, despite the interest in PCG there is no commonly ac-
cepted methodology for assessing and analyzing a generator.
Furthermore, the recent trend towards machine learned PCG
techniques commonly state the goal of learning the design
within the original content, but there has been little assess-
ment of whether these techniques actually achieve this goal.
This paper presents a number of techniques for the assess-
ment and analysis of PCG systems, allowing practitioners and
researchers better insight into the strengths and weaknesses of
these systems, allowing for better comparison of systems, and
reducing the reliance on ad-hoc, cherry-picking-prone tech-
niques.

Introduction
Procedural Content Generation (PCG) has been a part of
video games for the majority of their existence. Beneath Ap-
ple Manor (Worth 1986), the first known game with PCG,
was released in 1978. In the last decade, PCG has be-
come a focus area for research (Smith and Mateas 2011;
Smith, Whitehead, and Mateas 2011; Togelius et al. 2010),
with a goal being the understanding of different techniques,
the properties they afford, and the ability to generate levels
with certain properties or style.

While the foremost goal of most procedural generation
systems is that of producing high quality, novel content there
is still no agreed upon methodology for assessing whether a
generator has achieved that goal. Furthermore, recently there
has been a focus on PCG via Machine Learning (PGCML)
(Summerville et al. 2017) wherein the generator is trained on
content with the goal of learning the design latent within that
content – but methods to assess whether these techniques
succeed in that goal are still in their infancy.

This paper introduces a number of techniques focused on
analyzing the capabilities of a generator. Broadly, these fall
into two categories – the analysis of the generative space of
a generator and the selection of pieces of content for show-
casing. Each is important in its own right – these generators
are capable of producing a large (if not infinite) amount of

Copyright © 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

content, meaning that it is impossible to assess the genera-
tor solely on the basis of individual pieces of content, which
is why generative space analysis is important, while on the
other hand all that matters is the generated content, hence
why assessing individual pieces is important.

The contributions of this paper are three-fold:

1. A method for visualizing the expressive range of a set of
content that works across a large number of dimensions
and in low sample size situations

2. A method for testing how well a generator has learned the
latent distribution of its original dataset

3. Methods for the selection of content that are robust to
cherry-picking and help illuminate properties of the gen-
erator that produced the content

Related Work
In the domain of procedural generation of game level con-
tent, expressive range has been the dominant qualitative ex-
ploration tool. Expressive range is an idea put forth by Smith
and Whitehead (Smith and Whitehead 2010; Smith et al.
2011) whereby two metrics are chosen (e.g., for platformers
Smith and Whitehead settled on linearity, a measure of how
closely the ground of a level follows a line, and leniency, a
proxy for how difficult a level is) as the axes for a density
plot, showing which areas of the generative space a gener-
ator tends to explore. While the metrics that make up the
expressive range are usually quantitative in nature, the act of
the analysis is qualitative, in that it relies on the subjective
analysis of the reader.

Danesh, a tool from Cook et al. (Cook, Gow, and Colton
2016), is designed to help bridge the gap between a genera-
tor and its expressive range. For many generators, it can be
difficult to determine which set of parameters will achieve
the desired outcome. Danesh displays the expressive range
of a generator and allows users to target areas of the expres-
sive range they find desirable, and then tries to find parame-
terizations that target that region of the expressive range.

In Smith’s thesis (Smith 2012) she discusses the expres-
sive range of Launchpad (Smith et al. 2011), stating “There
is good coverage of the generative space for both linear-
ity and leniency.” However, this claim goes unexplored.
This question is tangentially addressed by Teng (Teng and

Proceedings of the Fourteenth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE 2018)

116

Bidarra 2017). Exploring the expressive range of his gener-
ator, he finds a region of the expressive range of two metrics
(the connectivity and density of road networks) goes uncov-
ered by his generator (e.g., the generator can not produce
road networks of high density and low connectivity, as these
properties are entangled); however, this is not a failure of
the generator, but rather a sign that the generator is produc-
ing plausible road networks – a victory for the approach. As
such, it is incorrect to say that a large expressive range is
unequivocally a good quality for a generator.

A practice that is common in the field of procedural con-
tent generation is to pick some subset of metrics, and, in-
stead of displaying the expressive range density plots, list
summary statistics for the generator (Dahlskog, Togelius,
and Nelson 2014; Shaker et al. 2012; Stephenson and Renz
2016; Mariño and Lelis 2016). While the pragmatics are
understandable, as authors have limited space to report re-
sults and large scale comparisons require a table to report all
combinations; however, for generator evaluation, this is an
unsatisfactory approach. The shape and density of the sam-
pling distributions is important, and simple measures such
as mean and standard deviation (and by extension, tests such
as Student’s t-test which rely on said measures) tell a very
incomplete story.

Anscombe’s Quartet (Anscombe 1973) is quartet of
datasets, each demonstrating pairs of < x, y > coordinates
that all have the same mean, variance, correlation coeffi-
cient, maximum likelihood linear regression, and coefficient
of determination for the linear regression. However, upon
visual inspection, it is quite easy to see that the the data-
generating distribution for the four examples is quite differ-
ent. This speaks to the danger of only reporting statistical
properties, showcasing the need for the visual inspection of
the sampling distributions and qualitative evaluation of both
generated artifacts. However, while summary statistics are
not sufficient, it is desirable to have statistics that allow for
the comparison of generators’ distributions, but these statis-
tics must be holistic, so as to actually capture the shape and
density of the distributions and can not just be univariate
measures.

As generative models have become more popular in the
image generation domain, the desire to find metrics that de-
termine whether a generator is achieving its goal have begun
to be researched by that community. One such measure that
has become the de facto standard for Generative Adversar-
ial Network based approaches is that of Inception Score (IS)
(Salimans et al. 2016). IS utilizes a pre-existing image clas-
sification model, the Inception v3 Network (Szegedy et al.
) pre-trained on the ImageNet corpus (Deng et al. 2009).
However, while the approach is appealing (and has been
shown to correlate well with human perceptual ratings (Sal-
imans et al. 2016)), it has two limitations that make it unap-
pealing for procedural game content generators. First, it re-
lies on a pre-existing vetted classification system. While im-
age classification has been an area of research for decades,
there is no such community (or even an analogue for a simi-
lar problem domain) in the field of games. Any such clas-
sifier would, almost by necessity, have to be trained in a
bespoke manner for every new game, and would lack the

(a) Expressive range plot
of the above and below
ground rooms of Super
Mario Bros. Note that
only one cell has more
than one data point (the
white data cell).

(b) Density estimate for
Super Mario Bros. The
contours represent the
25th,50th, and 75th per-
centiles of the estimate.
The KDE makes it much
easier to see the pear
shaped relationship be-
tween linearity and le-
niency in Super Mario
Bros.

Figure 1

external validation that a state-of-the-art network like the In-
ception v3 comes ready with. However, while this practical
consideration likely precludes using a measure such as the
Inception Score (or similar Inception based measures such
as the Fréchet Inception Distance (Heusel et al. 2017)), there
are fundamental flaws in the Inception Score as discussed by
Baratt and Sharma (Barratt and Sharma 2018).

Analysis of the Generative Space
Expressive range analysis is a qualitative visual assessment
of the generative space of a generator. While this is a good
practice in general, it is especially important for a machine
learned generator, but only in so far as a comparison tool
between the metric space of the generator and that of the
original corpus. The goal of a PCGML system is to match
the metric properties of the original corpus – the design la-
tent within. While this qualitative analysis is insufficient for
rigorous comparisons between generators, it allows for ex-
ploratory understanding of the type of content producible by
a generator – and ways in which the generator is biased away
from the type of content found in the original corpus.

The analyses presented here will be focused on Super
Mario Bros. with the data being shown coming from the set
of above and below ground levels (there are no dungeons or
underwater levels) and generated levels coming from Snod-
grass and Ontañón (Snodgrass and Ontañón 2015), Guz-

117

dial and Riedl (Guzdial and Riedl 2015), and Summerville
and Mateas (Summerville and Mateas 2016) – with most
analysis having been performed on the most easily ac-
cessible – https://www.dropbox.com/sh/3mwie9yg3oznve0/
AAAC9iMYgXuwyuTMrNGy20y athe publicly available
levels of Summerville and Mateas.

The classic two dimensional histogram used by Smith and
Whitehead is poorly suited to the evaluation of the met-
ric space of the rooms of most games. Smith and White-
head focused on the analysis of generators that could eas-
ily create thousands of pieces of content, for which the his-
togram acted as a good estimate of density. However, most
games tend to have a relatively small number of rooms –
on the order of a few dozen – (although a few reach into
the thousands, e.g. N++), which leads to extremely sparse
histograms, hence the need for density estimation. The his-
togram for the above and below ground rooms from Super
Mario Bros. with the same number of bins as used by Smith
(Smith 2012) can be seen in figure 1a. Note that only one
cell has more than one data point.

Kernel Density Estimation (KDE) (Rosenblatt 1956) is
a statistical method for estimating the probability density
function of a distribution from a set of sampled data. The
heat density plots of Smith and Whitehead were an attempt
to analyze these distributions; however, KDE seeks to find
analytic functions that best describe the sampled results. The
result is a cleaner system to determine the actual generative
space of a PCG system, and a way to more accurately com-
pare two generators.

Given (x1, x2, ..., xn) samples, then the kernel density es-
timator of the true probability density function, f , is:
f̂H(x) =

1
n ∑

n
i=1KH(x − xi)

where H is a positive definite symmetric bandwidth matrix
of the KDE, and K is the multi-variate kernel. The band-
width is a hyper-parameter of the KDE that acts to smooth
the supplied data points. As H → ∞ the KDE become
smoother and smoother, loosing all shape. Conversely, as
H → 0 the KDE becomes closer and closer to the sup-
plied data. The smoothness of the density estimate allows
for much easier understanding of the density function of the
data as can be seen in figure 1b.

While this two dimensional comparison is useful, as
shown in the previous chapter, there are a large number
of metrics that one might wish to explore. While Danesh
allows for the switching of what metrics are viewed, this
interaction pattern makes it difficult to discern higher di-
mensional structure in the generative space. While a three
dimensional plot can be navigable in an interactive set-
ting (Ryan et al.), it is difficult to discern the the struc-
ture via a static image. Corner plots (Foreman-Mackey
2016) are a visualization technique that allows for an arbi-
trary number of dimensions to be viewed holistically, and
have been used previously (Summerville and Mateas 2016;
Summerville et al. 2016). Figure 2 shows a comparison be-
tween the generated levels of Summerville and Mateas com-
pared to those from the original game across a larger set of
metrics. The metrics shown here are:

• e – The frequency of the room taken up by empty space

Figure 2: Corner plot for Super Mario Bros. (Red) and the
Summerville and Mateas generator (Blue)

• n – The negative space of the room, i.e., the percentage of
empty space that is actually reachable by the player

• d – The frequency of the room taken up by “interesting”
tiles, i.e., tiles that are not simply solid or empty

• p – The frequency of the room taken up by the optimal
path through the room

• l – The leniency of the room, which is defined as the num-
ber of enemies plus the number of gaps minus the number
of rewards

• R2 – The linearity of the room, i.e., how close the room
can be fit to a line

• j – The number of jumps in the room, i.e., the number of
times the optimal path jumped

• ji – The number of meaningful jumps in the room. A
meaningful jump is a jump that was induced either via
the presence of an enemy or the presence of a gap.

While a broader expansion of expressive range is useful as
a design paradigm, it is only one way in which the generative
space of a generator can be analyzed. Snodgrass et al. Ex-
pressive volume represents a natural, quantitative follow on
to the, now standard, expressive range analysis of procedu-
ral generators. In particular, it allows one to understand the
“width” of the generative space via a metric that is relatively
robust. However, as discussed, it is insufficient as the sole
evaluative criterion, as a desirable criterion should assess not
just the relative sizes of the metric spaces of generators, but
also the location and shapes of these metric spaces. In the
following section, I will discuss a robust multi-dimensional
method for the comparison of generative spaces.

Where expressive volume has failings in terms of not cap-
turing the locality of the density function, many traditional

118

Data Set e-distance p-value
Summerville and Mateas 8.2941 0.4419
Snodgrass and Ontañón MdMC 560.85 0.0233
Snodgrass and Ontañón MdMC , Playability Constrained 44.592 0.04651
Guzdial and Riedl 497.15 0.0233
Original Levels 10-fold Bootstrapping 12.039 0.1395

Table 1: Comparison using e-distance for a linearity, leniency, number of jumps, and negative space. Lower e-distance represents
a smaller distance between the distributions, leading to a higher probability that null hypothesis of equal distributions is not
rejected.

one-dimensional tests succeed. There are a number of uni-
dimensional tests for whether two samples came from the
same distribution. In the case of evaluation for a PCGML,
we know a priori that the samples came from different dis-
tributions, but the goal is still the same. If two samples (e.g.,
a sample of levels from a generator and the original levels)
are believed to have come from the same distribution, then
the generator has achieved its goal.

The most common of these tests is that of Student’s t-
test, a common test for whether two samples came from the
same distribution. However, a key assumption of the t-test
is that the underlying distributions are Gaussian Normal dis-
tributions. From visual inspection, it is easy to see that most
of the metrics considered are not normally distributed. Of
the metrics considered in figure 2 only path length, p, and
number of jumps, j, might plausibly be normally distributed.
Thus, the t-test is unsuitable for the general case of compar-
ing two distributions. The Mann-Whitney test does not have
the same normality assumption, but the test relies on the as-
sumption that the two distributions will both have identical
shape and scale for the test to be valid, again an unlikely as-
sumption. This holds true for the Kruskal–Wallis one-way
analysis of variance, as it is based on the same ranking and
summing as the Mann-Whitney test.
e-distance by Székely and Rizzo (Székely and Rizzo

2013) is a statistical comparison meant to alleviate these
concerns. e-distance (e for energy, as the metric takes in-
spiration from Newton’s gravitation potential energy) is ro-
tationally invariant in a multidimensional space, meaning
that it is not subject to the distance scaling concerns of the
Wasserstein distance.
p-values are given via a bootstrap procedure where

the populations are repeatedly resampled B times, the
Tn1n2,0<b<B is calculated for each resampling, and the hy-
pothesis is rejected if the observed Tn1n2 is greater than
100(1 − α)% of the resampled values (for confidence level
α).

This statistic is exactly what is desired for the comparison
of two generative spaces.

• It makes no assumptions about the shape or scale of the
distributions

• It allows for a multi-dimensional comparison of metric
spaces

• It is rotation invariant and scale equivariant
• It provides a distance metric in addition to a statistical

test, allowing for the comparison of how close a genera-

tive space is to another even if a statistically significant
difference is found.

Table 1 shows the results of an experiment comparing
multiple generators’ multivariate expressive range distribu-
tions against that of the original rooms from Super Mario
Bros.. The experiment compares the distributions using e-
distance for a linearity, leniency, number of jumps, and neg-
ative space. Lower e-distance represents a smaller distance
between the distributions, leading to a higher probability
that null hypothesis of equal distributions is not rejected. In-
cluded for comparison is a 10-fold bootstrapping whereby
the original levels are repeatedly split into different groups
and compared against each other – shown is the average e-
distance and associated p-value.

Included in this experiment are the levels generated by
the generator of Guzdial and Riedl, two generators from
Snodgrass and Ontañón, and the Snaking-Depth-Path gen-
erator of Summerville and Mateas (chosen as it had the
best reported playability percentage). The levels from Snod-
grass and Ontañón include a baseline Multi-dimensional
Markov Chain (MdMC) generator discussed in (Snodgrass
and Ontañón 2015) and a MdMC generator with playability
constraints as discussed in (Snodgrass and Ontañón 2016).

We see that both of the two MdMC methods and the gen-
erator of Guzdial and Riedl are found to be statistically dif-
ferent from the original rooms. However, we see that the
generator of Summerville and Mateas is not found to be sta-
tistically significantly different from the original levels. In
fact, it is closer to the distribution of original rooms than a
repeated sampling of the original rooms against themselves.
This is in part due to the wide variability in the original
rooms and, certainly, some subsets of the original rooms
are much closer (e.g., e-distance 3.5136, p-value 0.9302)
than others (e.g., e-distance 18.015, p-value 0.04651). Of
course, a caveat of this approach is that a generator that sim-
ply copied from the original dataset would have a very low
e-distance from the originals. This can be remedied by de-
tecting plagiarism (as discussed below).

Analysis of Individual Pieces of Content
The previous section discussed methods for the large-scale
analysis and comparison of the generative space covered by
a generator. While this is certainly a useful practice for PCG
researchers and practitioners, at some level, all that matters
is the actual individual pieces of content themselves. How-
ever, the practice of showing content for a generator is a

119

(a) Random seed 692 from Summerville and Mateas.

(b) World 1-3 from Super Mario Bros. 2 (JP).

Figure 3: The room generated by the Summerville and
Mateas generator with the highest amount of plagiarism
from the original rooms (top) and the room it takes from
(bottom). While the portion is of decent size (45% of the
original room), the generated room is very different, using
the copied piece as a minor segment of the total room.

(a) Random seed 100 from Summerville and Mateas.

(b) Random seed 478 from Summerville and Mateas.

Figure 4: The two rooms generated by the Summerville and
Mateas generator with the highest amount of self plagia-
rism. The two rooms start off identically (the first 20% of the
rooms are identical), but they quickly diverge. This amount
of plagiarism is not too terribly different than that found be-
tween the original rooms.

fraught one, as so far there has been little principle in ac-
tually assessing the quality of a generator via the individual
content.

The PCG community as a whole has not adopted any
methodology towards addressing these concerns and up to
now have taken an ad-hoc approach toward choosing con-
tent. Snodgrass and Ontañón (Snodgrass and Ontañón 2014;
Snodgrass and Ontañón 2015; Snodgrass and Ontañón 2016)
show content based on parameterizations of their models.
Hoover et al. chose a famous piece of content to build off of
(Hoover, Togelius, and Yannakis 2015). Guzdial and Riedl
choose “representative” content (Guzdial and Riedl 2015),
but make no distinction as to what that means. Summerville
and Mateas (Summerville and Mateas 2016) show “ran-
domly” selected content in addition to making a wider set
available.

The following sections will discuss two ways of selecting
from a pool of content, such that the worst possible selec-
tions are presented (for various definitions of worst), pro-
viding a lower-bound on the capabilities of a generator.

Plagiarism As Selection Criterion
A major goal for PCGML systems is to generalize from a
– usually small – pool of input, so as to be able to generate
new content that is similar, but not identical (i.e., it could
conceivably have come from the same designer). While it is
undesirable for a PCGML system to copy wholesale from
the input corpus, it is something of a philosophical ques-
tion as to what the dividing line is that delineates between
a piece of content that is copying from the input corpus and
that which has learned from and generalized. Certainly, all

of the individual words found in this document can be found
in other documents. The same is most likely true for a large
percentage of the pairs of words. So on for triplets of words.
While these base atoms of content (words) are found in other
documents, it would be absurd to claim this as plagiarism.
That being said, there is certainly some point at which a
certain string of words being found together would be pla-
giarism. 10? Maybe, if it were a very important 10 words.
100? It would have to be a very extenuating set of circum-
stances for this to not read as plagiarism. 1000? Most cer-
tainly. Sidestepping this, the goal of this is to not to provide
that line in the sand, but merely to draw it to the attention of
the reader who can make their own judgment.

For a PCGML system, determining the amount of pla-
giarism is relatively straight-forward. The author selects an
original piece of content, according to some criterion, and
then shows it alongside the generated content that has the
most amount of plagiarism from that piece of content.

Potential criteria for selecting the exemplar content:

• The pair that has the most plagiarism – For each piece
of content in the input corpus, find the piece of generated
content with the most plagiarism. Present the pair with the
highest amount of plagiarism (absolute or as percentage
of the content pieces – for variable sized content)

• Pick a particularly important piece of original content
– Perhaps there is a particularly iconic piece of content
(e.g., Super Mario Bros. World 1-1). Find the piece of
generated content that has the highest amount of plagia-
rism from the iconic content.

• The most self-plagiarized original content – For all pairs
of content from the input corpus, find the pair that plagia-
rize the most from each other.

This last criterion gives us insight into providing a guid-
ing principle for when plagiarism is an issue. By assess-
ing the amount of plagiarism found in the original dataset,
we can determine how much plagiarism might be expected
from a similar piece of content. While, in a vacuum, it might
seem bad for a room to copy 25% of its geometry from a
piece of the original content, if the average amount of self-
plagiarism is 35%, then this is to be expected. E.g., in Super
Mario Bros. the highest amount of self-plagiarism accounts
for 16% of the levels. By presenting the piece of generated
content that takes the most amount of content, a reader can
inspect the content to determine the degree to which the
generator is memorizing from the original dataset. Figure
3 shows the room generated by the Summerville and Mateas
generator which plagiarizes the most from the original Su-
per Mario Bros. Furthermore, while the first two criteria
are not suitable to classic PCG systems, the amount of self-
plagiarism is useful to understand how likely the generator
is to generate content that will be deemed sameish.

Metric Distance as Selection Criterion
Given the importance placed on metrics as evaluative cri-
teria for understanding the generative space of a generator,
it seems important to map this understanding back to the
individual pieces of content. While acting as a principled

120

(a) World 1-1 from Super Mario Bros.

(b) Random seed 447 from Summerville and Mateas.
World 1-1 and the Summerville and Mateas generated room
closest to it in the metrics of negative space, linearity, leniency,
and jumps. The generated room has a few more gaps but is a
relatively straight forward experience, like 1-1.

(c) World 4-2 from Super Mario Bros. 2 (JP)

(d) Random seed 186 from Summerville and Mateas.
The room generated by Summerville and Mateas (bottom),
closer to any of the original content than any other piece of gen-
erated content, and its closest touchstone, World 4-2 (top) in the
metrics of negative space, linearity, leniency, and jumps.

(e) World 6-3 from Super Mario Bros. 2 (JP)

(f) Random seed 177 from Summerville and Mateas.
The room generated by Summerville and Mateas (bottom), fur-
ther away from the original content than any other, and its clos-
est touchstone, World 6-3 (top)in the metrics of negative space,
linearity, leniency, and jumps. The generated room has large
gaps and progresses from a relatively straight forward ground
based room to a floating platform based room at the final third,
as in World 6-3.

Figure 5: Three examples of choosing based on metric dis-
tance. (a) and (b) showcase picking based on distance to an
Exemplar piece of content. (c) and (d) showcase the Closest
pair of levels. (e) and (f) showcase the Furthest pair of levels
found in the original and generated sets.

methodology for selecting which content to showcase, it also
acts as a check on the metrics themselves.

The Exemplar methodology is quite simply:

1. Choose an exemplar piece of content – say a particularly
important piece of content from the input corpus

2. Using the metrics used elsewhere in the analysis of the
generator, find the generated content that is closest to that
piece of content or furthest to that piece of content

The Closest methodology, to find the piece of content
most like any of the original content:

1. For all pieces of original content find the generated con-
tent that is closest to that piece of content

Or the Furthest methodolgy to find the generated content
furthest from the all of the pieces of original content:

1. For all pieces of generated content find the original con-
tent with which it is closest.

2. Find the generated content that is further from its closest
content than any other piece of generated content

These three methods each answer different questions
about the generative space of the generator.

• Exemplar — The most subjective of the methodologies,
but it can help to showcase particular strengths and weak-
nesses of the generator by choosing exemplars that have
certain unique properties (e.g. choosing a room in the
original corpus that is singular and showing how the gen-
erator either did or did not learn to match the properties
of that content.)

• Closest — This acts as both a check on plagiarism (al-
though at a more global scale) and on the metrics them-
selves. If two pieces are found to be very similar in metric
space but do not seem so in visual inspection, then, ob-
viously, there is some aspect of the metrics that is poorly
related to the actual qualities that are being attempted to
be measured.

• Furthest — This acts as both a check on the generaliza-
tion of the generator and as a sanity check on the genera-
tor. If the furthest piece of generated content still appears
very similar to all of the original content, then the genera-
tor is not learning to generalize beyond the bounds of the
original content. On the other hand, if the furthest piece
of content is incomprehensible, then the generator is not
doing a sufficient job of learning the latent design.

The distance is determined via the Euclidean distance of
the whitened metrics, a process that centers all metrics at
0 with a variance of 0. Whitening is a common practice in
machine learning techniques that rely on distance (e.g. k-
means, k nearest neighbors, etc.), which makes the dimen-
sional scaling less of an issue. Figure 5 shows the three tech-
niques applied.

Conclusion and Future Work
This paper has presented techniques that will hopefully
move the field of PCG research forward. While Expres-
sive Range has been a crucial tool for PCG researchers,
it has flaws that make it unsuitable in certain cases. This
work presents extensions to Expressive Range that expand
its uses, hopefully becoming a useful tool for the field of
PCG research. Furthermore, while visual assessment is im-
portant, a technique for the quantitative assessment of gen-
erators is presented which is particularly useful for machine
learned generation systems. Also presented are a set of tech-
niques for the selection of content for showcasing – as in a
research paper. These techniques show a number of differ-
ent fail-cases for the generators – memorization and copy-
ing (plagiarized content) and mode collapse and repetition
(self-plagiarized content) – in addition to showing how well
a generator has learned the design (proximity to examples
and proximity to closest content) as well as learned to gen-
eralize (proximity to furthest content).

This work is not the end-point for assessing PCG systems,
just Expressive Range analysis was not the end-point. It is
intended as another part of the conversation, hopefully see-
ing adoption by the community and allowing for the better

121

understanding of generated content. Future work will de-
pend on the assessed gaps in the coverage of these tech-
niques.

References
Metanet Software. 2015. N++.
Anscombe, F. 1973. Graphs in statistical analysis. The
American Statistician 27(1):17–21.
Barratt, S., and Sharma, R. 2018. A note on the inception
score. arXiv preprint arXiv:1801.01973.
Cook, M.; Gow, J.; and Colton, S. 2016. Danesh: Help-
ing bridge the gap between procedural generators and their
output.
Dahlskog, S.; Togelius, J.; and Nelson, M. J. 2014. Linear
levels through n-grams. In Proceedings of the 18th Interna-
tional Academic MindTrek Conference.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR09.
Foreman-Mackey, D. 2016. corner.py: Scatterplot matrices
in python. The Journal of Open Source Software 24.
Guzdial, M., and Riedl, M. O. 2015. Toward game level
generation from gameplay videos. In Proceedings of the
PCG Workshop.
Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.;
Klambauer, G.; and Hochreiter, S. 2017. Gans trained by
a two time-scale update rule converge to a nash equilibrium.
arXiv preprint arXiv:1706.08500.
Hoover, A. K.; Togelius, J.; and Yannakis, G. N. 2015. Com-
posing video game levels with music metaphors through
functional scaffolding. Comp. Creativity & Games at ICCC.
Mariño, J. R., and Lelis, L. H. 2016. A computational model
based on symmetry for generating visually pleasing maps of
platform games.
Rosenblatt, M. 1956. Remarks on some nonparametric es-
timates of a density function. The Annals of Mathematical
Statistics 832–837.
Ryan, J.; Kaltman, E.; Fisher, A. M.; Owen-Milner, T.;
Mateas, M.; and Wardrip-Fruin, N. Gamespace: An ex-
plorable visualization of the videogame medium.
Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Rad-
ford, A.; and Chen, X. 2016. Improved techniques for train-
ing gans. In Advances in Neural Information Processing
Systems, 2234–2242.
Shaker, N.; Nicolau, M.; Yannakakis, G. N.; Togelius, J.;
and O’Neill, M. 2012. Evolving levels for super mario bros
using grammatical evolution. In 2012 IEEE CIG, 304–311.
Smith, A. M., and Mateas, M. 2011. Answer set program-
ming for procedural content generation: A design space ap-
proach. IEEE TCIAIG 3(3).
Smith, G., and Whitehead, J. 2010. Analyzing the expres-
sive range of a level generator. In Proceedings of the 2010
Workshop on Procedural Content Generation in Games, 4.
ACM.

Smith, G.; Whitehead, J.; Mateas, M.; Treanor, M.; March,
J.; and Cha, M. 2011. Launchpad: A rhythm-based level
generator for 2-d platformers. IEEE TCIAIG 3(1).
Smith, G.; Whitehead, J.; and Mateas, M. 2011. Tanagra:
Reactive planning and constraint solving for mixed-initiative
level design. IEEE TCIAIG (99).
Smith, G. M. 2012. Expressive design tools: Procedural
content generation for game designers. Ph.D. Dissertation,
University of California, Santa Cruz.
Snodgrass, S., and Ontañón, S. 2014. A hierarchical ap-
proach to generating maps using markov chains. In Tenth
Artificial Intelligence and Interactive Digital Entertainment
Conference.
Snodgrass, S., and Ontañón, S. 2016. Learning to generate
video game maps using Markov models. TCIAIG.
Snodgrass, S., and Ontañón, S. 2015. A hierarchical MdMC
approach to 2D video game map generation. AIIDE.
Snodgrass, S., and Ontañón, S. 2016. Controllable proce-
dural content generation via constrained multi-dimensional
Markov chain sampling. In 25th International Joint Confer-
ence on Artificial Intelligence.
Stephenson, M., and Renz, J. 2016. Procedural generation
of levels for angry birds style physics games.
Summerville, A., and Mateas, M. 2016. Super Mario
as a string: Platformer level generation via LSTMs. Di-
GRA/FDG.
Summerville, A.; Guzdial, M.; Mateas, M.; and Riedl, M.
2016. Learning player tailored content from observation:
Platformer level generation from video traces using LSTMs.
In AIIDE.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2017. Procedural content generation via machine learning
(pcgml). ToG.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.;
et al. Going deeper with convolutions.
Székely, G. J., and Rizzo, M. L. 2013. Energy statistics: A
class of statistics based on distances. Journal of statistical
planning and inference 143(8):1249–1272.
Teng, E., and Bidarra, R. 2017. A semantic approach to
patch-based procedural generation of urban road networks.
In Proceedings of the 12th FDG, 71. ACM.
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2010. Search-Based Procedural Content Generation. In
Applications of Evolutionary Computation. Springer. 141–
150.
Worth, D. 1986. Beneath Apple Manor.

122

