
Evolutionary MCTS with Flexible Search Horizon

Hendrik Baier, Peter I. Cowling
Digital Creativity Labs

University of York
hendrik.baier@gmail.com, peter.cowling@york.ac.uk

Abstract

In turn-based multi-action adversarial games each player turn
consists of several atomic actions, resulting in an extremely
high branching factor. Many strategy board, card, and video
games fall into this category, which is currently best played
by Evolutionary MCTS (EMCTS) – searching a tree with
nodes representing action sequences as genomes, and edges
representing mutations of those genomes. However, regular
EMCTS is unable to search beyond the current player’s turn,
leading to strategic short-sightedness. In this paper, we extend
EMCTS to search to any given search depth beyond the cur-
rent turn, using simple models of its own and the opponent’s
behavior. Experiments on the game Hero Academy show that
this Flexible-Horizon EMCTS (FH-EMCTS) convincingly out-
performs several baselines including regular EMCTS, Online
Evolutionary Planning (OEP), and vanilla MCTS, at all tested
numbers of atomic actions per turn. Additionally, the separate
contributions of the behavior models and the flexible search
horizon are analyzed.

1 Introduction
In order to play adversarial games, computer programs typi-
cally use a search algorithm which aims at desirable future
game states, such as those that maximize e.g. a heuristic eval-
uation function. Monte Carlo Tree Search (MCTS) (Kocsis
and Szepesvári 2006; Coulom 2007) is a search framework
which has been successfully applied to a variety of board
games with branching factors of up to a few hundred (Silver
et al. 2017), as well as many card games, video games, and
non-game domains (Browne et al. 2012).

However, in turn-based multi-action adversarial games
each turn consists of a sequence of atomic actions, instead of
just a single action – which can lead to much higher branching
factors. Board games such as Arimaa and Risk fall into this
category, just like mobile games such as Battle of Polytopia
(Midjiwan AB 2016), and PC games such as Civilization (Fi-
raxis Games 2016a), XCOM (Firaxis Games 2016b), Might
& Magic Heroes (Limbic Entertainment 2015), and Into the
Breach (Subset Games 2018). If each player turn for example
consists of moving nine units with ten available actions each,
the resulting branching factor is 109. This complexity is too
high for vanilla MCTS, even using various enhancements for

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

reducing the effective branching factor. It can be a challeng-
ing search problem in such domains to just find a good action
sequence for a single turn, even ignoring the future turns.

One possible approach is searching a tree in which each
edge represents an atomic action instead of a complete turn.
However, MCTS can often not search these trees deeply
enough, and optimizes earlier actions too much compared
to later actions. If MCTS searches action by action (Schadd
et al. 2012), it still suffers from the problem that search de-
cisions on earlier actions can influence later actions, but
not vice versa. Justesen et al. therefore proposed a dif-
ferent, tree-less approach: Online Evolutionary Planning
(OEP), an evolutionary algorithm that treats atomic actions
as genes and complete turns as genomes (Justesen 2015;
Justesen et al. 2017). OEP can optimize each action equally
and simultaneously as it searches over the space of possible
next turns. In recent work, we proposed a hybrid approach
called Evolutionary MCTS (EMCTS), combining some of
the features of MCTS and evolutionary algorithms (Baier and
Cowling 2018). It searches a tree with nodes representing ac-
tion sequences as genomes, and edges representing mutations
of those genomes. EMCTS therefore explores the mutation
space of evolutionary algorithms in a systematic, best-first
manner, providing evolution with lookahead search.

EMCTS is the current state of the art in multi-action ad-
versarial games. However, just like OEP it is still unable
to search beyond the current player’s turn, often leading to
myopic and greedy behavior. In this paper, we propose a sim-
ple but effective way of extending the search of EMCTS to
any desired depth beyond the current turn, naming the result
Flexible Horizon EMCTS (FH-EMCTS).

As in prior work, we use the game Hero Academy as
our testbed. We compare FH-EMCTS to vanilla EMCTS,
OEP, and three other baseline search algorithms including
two vanilla MCTS variants specifically designed for Hero
Academy, at different numbers of actions per turn. We addi-
tionally analyze the separate effects of two integral parts of
FH-EMCTS.

This paper begins with a brief review of relevant related
work in Section 2. Section 3 describes our testbed, Hero
Academy, outlines the baseline algorithms we are comparing
to, and introduces FH-MCTS. Section 4 presents our experi-
mental setup and results, and Section 5 gives our conclusions
and suggests future work.

Proceedings of the Fourteenth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE 2018)

2

M

addition
in tree

O

M R

M

S

addition in rollout

P uSM §

Figure 1: Tree structure of vanilla MCTS and its variants.
Nodes represent partial action sequences, or the states result-
ing from them. Edges represent the addition of an atomic
action to an action sequence, or the application of an atomic
action to a state. After each node expansion, a rollout is per-
formed for evaluation. (We use symbols to represent different
atomic actions. Adapted from (Baier and Cowling 2018).)

2 Background and Related Work
This section reviews MCTS, and outlines previous ap-
proaches specifically for playing turn-based multi-action ad-
versarial games: OEP and EMCTS.

2.1 Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) (Kocsis and Szepesvári
2006; Coulom 2007) is a best-first tree search algorithm. The
algorithm typically constructs a search tree with nodes repre-
senting game states, and edges representing actions leading
from one state to another. In a deterministic game, this can
also be seen as a tree in which nodes represent the list of
actions that have been applied from the root state to reach
their respective state. MCTS begins its search at a root node
corresponding to the current game state. It then repeats the
following four-phase loop until computation time runs out:

1. In the selection phase, a selection policy is used to
traverse the tree until an unexpanded action is chosen.

2. In the expansion phase, the unexpanded action and a
node representing its successor state are added to the tree.

3. In the rollout phase, a rollout policy is used to play out
(part of) the remaining part of the simulated game, starting
from the state represented by the newly added node.

4. In the backpropagation phase finally, the value estimates
of all states traversed during the simulation are updated with
the result of the finished game.

Several MCTS variants and enhancements have been pro-
posed over time for increasingly complex games. We are
using two specifically adapted variants of MCTS as baselines
in our experiments, described in Subsection 3.2. They search
a game tree as shown in Figure 1, in which each edge repre-
sents an additional action for the state under consideration.

2.2 Online Evolutionary Planning
Evolutionary algorithms (EAs) are a class of optimization
algorithms inspired by natural selection that has been used
extensively for evolving and training AI agents for games
(Lucas and Kendall 2006; Risi and Togelius 2017). In the

classic, offline evolutionary approach, an AI’s parameters are
evolved over many games, using its performance at playing
the game as a fitness function (Cole, Louis, and Miles 2004;
Chaslot et al. 2008; Alhejali and Lucas 2013). Online evolu-
tion is a newer approach, in which evolutionary algorithms
are applied during gameplay – for example for evolving the
next move(s) (Perez-Liebana et al. 2013; Gaina et al. 2017).

Online Evolutionary Planning (OEP) (Justesen 2015;
Justesen et al. 2017) is a recent online evolutionary approach
that can be applied to multi-action adversarial games. It opti-
mizes the action sequence of the current turn, without looking
ahead to future turns of the player or the opponent.

OEP begins its search by creating an initial population of
genomes. Each genome represents a complete turn, a fixed-
length sequence of actions. These actions can be sampled
randomly, or another initialization strategy φ can be used.
The population is then improved from generation to genera-
tion until computation time runs out. Each generation consists
of the following four phases:

1. All genomes are translated to their phenotypes, the game
states resulting from applying their action sequence to the
current game state. Their fitness is then evaluated with the
help of a static heuristic evaluation function.

2. A number of genomes with the lowest fitness is removed
from the population.

3. The surviving genomes are each paired with a randomly
chosen different genome, and create an offspring through
uniform crossover (Syswerda 1989). If this leads to an illegal
action in the offspring, it is repaired by a repair strategy ψ –
in the simplest case by picking random legal actions.

4. A proportion of the offspring undergoes mutation. One
randomly chosen action of the sequence is changed to another
action randomly chosen from all legal actions. If this leads to
illegal actions later in the sequence, they are replaced using
the repair strategy ψ as well.

When the time budget is exhausted, OEP returns the action
sequence represented by the current best genome, so it can
be executed action by action. In the words of Wang et al. “the
action selection problem is seen as an optimization problem
rather than a planning problem” (Wang et al. 2016).

We use an improved variant of OEP as one baseline in
our experiments, with the φ and ψ strategies described in
Subsection 3.2.

2.3 Evolutionary MCTS
Evolutionary MCTS (EMCTS) (Baier and Cowling 2018)
is the state of the art for playing multi-action turn-based
adversarial games. It combines the tree search of MCTS with
the genome-based approach of evolutionary algorithms such
as OEP.

Instead of the vanilla MCTS tree seen in Figure 1, EMCTS
builds a tree as shown in Figure 2. EMCTS does not start
from an empty turn in the root, but from a complete sequence
of actions – just like the genomes of OEP. EMCTS does
not grow a tree that adds one action to the current sequence
with every edge, but a tree that mutates the current sequence
with every edge – using the same mutation operator as OEP.
And EMCTS does not use rollouts to complete the game or
the current turn and then evaluate it as our vanilla MCTS

3

R S sOM

R sOM R S s2M

3 § sOM R § PO1

§ u

_ s

repair
in tree

mutation
in tree (no rollouts)

Figure 2: Tree structure of Evolutionary MCTS. Nodes rep-
resent complete action sequences (genomes), or the states
resulting from them. Edges represent the mutation of an
atomic action within a genome. Repairs can be necessary
if those mutations can lead to illegal genomes. After each
node expansion, the evaluation function is called instead of a
rollout. (We use symbols to represent different atomic actions.
Adapted from (Baier and Cowling 2018).)

baselines do (see Subsection 3.2), but it simply evaluates the
sequences at the leaf nodes1. Backpropagation is unchanged.

EMCTS does not apply mutations randomly, but can pick
precisely which action in the sequence to mutate and which
other legal action to mutate it to2. While OEP turned the
planning of the action sequence into an optimization prob-
lem, EMCTS thus takes the evolutionary optimization of the
sequence and turns it back into a planning problem. It can be
seen as tree search, but it can also be seen as a systematic ex-
ploration of the mutation landscape of OEP, giving evolution
the benefit of lookahead.

EMCTS needs two more elements to be well-defined. First,
it needs an initialization strategy φ for the root of its search
tree, just like EAs such as OEP need a starting population
of solutions. Second, EMCTS needs a method to handle
mutations that lead to illegal action sequences – a repair
strategy ψ just like in OEP. The φ and ψ strategies used in
this paper, improved versions of those in (Baier and Cowling
2018), are described in Subsection 3.2.

3 Methods
This section briefly describes our testbed, lists the search
algorithms we are comparing to, and finally presents our
approach: Flexible-Horizon Evolutionary MCTS.

3.1 Test Domain: Hero Academy
Rules. Our test domain is a simplified Java clone (Niels Juste-
sen 2015) of Hero Academy (Robot Entertainment 2012), a
two-player turn-based tactics game. Players can use a variety
of combat units, items, and spells by first drawing them from
a card deck onto their hand, and then deploying, casting, or
moving them on a battlefield of 9×5 squares. Special squares
on this battlefield allow for unit deployment, boost the stats
of individual units, or represent a player’s two crystals. The
game is won by the first player who either eliminates all en-

1Evaluating at the leaf nodes is a well-known MCTS variant
that was successfully employed for example in AlphaGo Zero and
AlphaZero (Silver et al. 2017).

2No crossover operator is used.

Figure 3: The testbed game Hero Academy. The six symbols
at the bottom represent the current player’s hand. Adapted
from (Baier and Cowling 2018).

emy units, or destroys both enemy crystals. More details on
implementation and rules can be found in (Justesen 2015).

A central mechanic of Hero Academy are the action points
(APs). For each turn, the player to move receives a number
of APs – five in the standard form of the game. Each AP can
be used for any one atomic action such as deploying a unit
from the player’s hand onto the battlefield, moving a unit,
attacking an enemy unit, healing a friendly unit, and others.
The player can spend any number of APs on a single unit, for
example by moving it several times. With an average of 30-60
actions available per game state, depending on the player, the
full branching factor of a 5-AP turn can be roughly estimated
to be 305 ≈ 2.4 × 106 to 605 ≈ 7.8 × 108. Especially at
higher AP per turn, finding the best sequence of actions for
any given turn can therefore be a challenging search problem
in itself.

The order of cards in the deck as well as the opponent’s
cards are unknown to the Hero Academy player. However,
this paper focuses on the challenge of multi-action turns,
ignoring the aspects of hidden information and indeterminism
like (Justesen et al. 2017) and (Baier and Cowling 2018).

In line with the prior work on Hero Academy, we use game
knowledge for both state evaluation as well as action pruning
and ordering:

State evaluation. All algorithms compared in this paper
use the same heuristic evaluation function. This function is a
linear combination of features such as the current health of
individual units, whether they are equipped with certain items,
and whether they are standing on special squares. Improving
this hand-tuned function with machine learning could be
interesting future work.

Action ordering. The two MCTS variants considered as
baselines also make use of static action ordering, giving the
more promising actions priority in their expansion and rollout
phases. The heuristics used for this are simpler and faster
than those of the evaluation function. Unlike vanilla EMCTS
(Baier and Cowling 2018), FH-EMCTS also utilizes this fast
ordering, as explained in Subsection 3.3.

The interested reader can refer to (Justesen 2015) for a full

4

definition of the heuristic evaluation function and the action
ordering strategy.

3.2 Baseline Approaches
In order to make our results directly comparable to the lit-
erature, we test our approach against five of the algorithms
described in (Justesen et al. 2017) and (Baier and Cowling
2018). One of them is a fast greedy search, two are vanilla
MCTS variants, one is the evolutionary algorithm OEP, and
one is EMCTS representing the state of the art for Hero
Academy.

Greedy Action. The Greedy Action AI chooses the first
action of its turn with a simple one-ply search of all legal ac-
tions, maximizing the heuristic evaluation of the immediately
resulting state. This is repeated for each action of the turn.

Non-exploring MCTS. This AI is the first MCTS variant
adapted for multi-action adversarial games in (Justesen et al.
2017). It searches a game tree as shown in Figure 1, in which
each edge represents an additional action for the turn under
consideration (or its application). The opponent’s next turn
can be reached if the tree grows deeper than the number of
action points. The selection policy of this MCTS variant is
UCB, and the rollout policy deterministically follows the ac-
tion ordering heuristics. It was found to improve performance
when rollouts are just long enough to complete the current
turn of the player to act in the leaf node, calling the heuristic
state evaluator at the end of the turn for a rollout result. The
MCTS exploration factor is set to C = 0 in an attempt to
grow a deep enough tree (pure exploitation).

Bridge-burning MCTS (BB-MCTS). This MCTS vari-
ant searches the same kind of tree shown in Figure 1. In-
stead of deterministic rollouts, it uses ε-greedy rollouts with
ε = 0.5, which also only reach to the end of the current turn
of the leaf node. Its exploration factor is C = 1/

√
2. In order

to grow a deep enough tree for multi-action turns however, it
employs a technique called “bridge burning” in (Justesen et
al. 2017).

The idea of “bridge burning” is to split the time budget
for the current turn’s search into several phases, equal to the
number of actions per turn. During each phase, the MCTS
search proceeds normally, but at the end of each phase, the
most promising action at the root is executed, leading to the
root state for the next phase. This can be implemented as the
hard pruning strategy shown in Figure 4.

Greedy OEP. The Online Evolutionary Planning baseline
is as described in Subsection 2.2. In our experiments, we
use the same parameter settings as suggested in (Justesen
et al. 2017): A population size of 100, a kill rate of 0.5, a
mutation rate of 0.1, and uniform crossover and mutation
operators. Additionally, we apply the Greedy Action AI as
both initialization strategy φ and repair strategy ψ within
OEP, leading to the improved greedy OEP as introduced by
us in (Baier and Cowling 2018)3.

Vanilla EMCTS. The Evolutionary MCTS baseline is as
described in Subsection 2.3. As with OEP, we again follow

3To be precise, 20% of the starting population are filled with
Greedy Action sequences, and 80% with random sequences. This
kick-starts the search with higher-quality starting solutions.

Figure 4: The “bridge burning” search strategy (adapted from
(Justesen et al. 2017)). (a) After phase 1, all branches but the
best one are pruned at the root. (b,c) After phases 2, 3, . . . n,
pruning is applied at depth 2, 3, . . . n. The partial tree below
the best branch is retained.

(Baier and Cowling 2018) in using the Greedy Action AI
as both φ (for a quick and greedy root solution) and ψ (for
mutations leading to illegal action sequences).

Finally, EMCTS searches trees with relatively large branch-
ing factors compared to vanilla MCTS. While the branching
factor in Hero Academy games between the MCTS baselines
is between 30 and 40, the branching factor of the EMCTS
tree is about 30 per action point – so around 60-450 for the
range of APs considered in this paper. In prior work (Baier
and Cowling 2018), we dealt with this through “bridge burn-
ing”, just as applied to the vanilla MCTS tree by BB-MCTS.
Instead of executing the most promising action at the root
after every search phase like BB-MCTS, EMCTS executes
the most promising mutation at the root after each phase. The
number of bridge burning phases, of successive searches and
prunings/mutations, was the only EMCTS parameter tuned
in (Baier and Cowling 2018), and we keep the value of 40
phases for 1 second searches unmodified at all numbers of
action points per turn. The MCTS exploration factor was set
to C = 0. The selection policy is UCB as in the other MCTS
variants.

3.3 Flexible-Horizon Evolutionary MCTS
This subsection proposes our improved search algorithm,
Flexible-Horizon Evolutionary MCTS or FH-EMCTS, as ap-
plied to playing multi-action turn-based adversarial games.
It allows to extend the search horizon of EMCTS to any de-
sired depth beyond the current turn, resulting in the strongest
current AI for the test domain Hero Academy.

There are two major differences between vanilla EMCTS
and FH-EMCTS: The first allows for deeper searches, and
the second consists of faster behavior models that make these
deeper searches effective at short time controls.

First, while the genomes in EMCTS encode only the ac-
tions of the current turn that is being searched, the genome
length/search horizon h in FH-EMCTS is a parameter that
can be set to any higher value as well. In the game of Hero
Academy for example, the minimum length for its genomes is
the number ap of action points per turn, but there is no upper
limit (except for that imposed by diminishing performance on
increasingly huge search spaces). Figure 5 illustrates this for
the case of ap = 3: The EMCTS genome consists of the next

5

ROM

(a) Genome of regular EMCTS

SsP _ROM SsP _ROM

generated by π

(b) Genome of Flexible Horizon EMCTS

Figure 5: Example genomes of regular EMCTS and FH-
EMCTS. Action points = 3, search horizon chosen for FH-
EMCTS here = 7.

3 actions, but the FH-EMCTS genome is (an arbitrarily cho-
sen) 4 actions longer, consisting of actions of the searching
player shown on grey background, as well as actions of the
opponent shown on white background. The basic idea is that
all future actions of the searching player can be mutated and
optimized during search, while opponent actions are always
generated by an opponent model π. For every mutation in the
tree, future actions of the searching player are only repaired
by ψ when they become illegal, while opponent actions are
always updated by policy π. This effectively turns the oppo-
nent into a part of the game’s state transitions. As the fastest
approximative model of reasonable behavior available to us
in Hero Academy, we use the Greedy Action AI as opponent
model π in this paper.

Second, since these longer genomes can lead to many more
legal mutations per tree node, as well as many more calls
to the Greedy Action AI (which is now used as a universal
behavior model for φ, ψ, and π) per mutation, the computa-
tional cost needs to be reduced to make FH-EMCTS effective
at equal search times. We have achieved this mainly by re-
stricting each choice of the Greedy Action AI to the most
promising 10 actions as ranked by same static action ordering
also used by BB-MCTS and non-expl. MCTS. In addition,
we employ lazy generation of the mutation actions in the
tree search, and a number of other MCTS code optimiza-
tions. In Subsection 4.2, we analyze the separate effects of
these improvements and the flexible search horizon on the
performance of FH-EMCTS vs. vanilla EMCTS.

4 Experimental Results

This section describes our three sets of experiments for testing
the proposed Flexible-Horizon Evolutionary MCTS in Hero
Academy, as well as the results.

Unless specified otherwise, all comparisons were done
with a search time limit of 1 second per turn, and each compar-
ison consisted of 1000 games, with FH-EMCTS playing 500
games as the first player and 500 games as the second player.
Games that had no winner after 200 turns were counted as
draws, i.e. half a win for each player.

All algorithms used the parameter settings described in
Section 3. Hero Academy was modified to allow for different
numbers of action points per turn – from 2 to 15 APs – in
order to vary the challenge for the search algorithms.

4.1 Tuning FH-EMCTS
In the first set of experiments, we tested FH-EMCTS against
vanilla EMCTS at all action points per turn ap ∈ {2, . . . , 15}
and all search horizons h ∈ {ap, . . . , ap + 15}, with 400
games per comparison. The page limit does not allow a full
presentation of the parameter landscape here, but FH-EMCTS
performed best at the genome lengths given in Table 1. De-
spite some noise, searches with h > ap were clearly most
successful for relatively low ap, while at the highest tested
ap the optimal setting was h = ap. These high ap lead to
such large search spaces that it is not worth risking to miss a
good current turn by spending limited search time on actions
beyond the turn. Mainly due to the faster behavior models
however, FH-EMCTS still consistently outperformed vanilla
EMCTS significantly at all ap.

Table 1: The best-performing genome lengths/search hori-
zons for FH-EMCTS vs. vanilla EMCTS. 1 second per move.

Actions per turn ap:
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Best genome length/search horizon h for FH-EMCTS:
15 7 8 10 8 9 9 11 12 13 14 13 14 15

Win rates of FH-EMCTS vs. EMCTS in % (rounded):
85 69 64 62 61 57 58 61 60 60 59 61 59 62

4.2 What makes FH-EMCTS strong?
If both flexible search horizons h and faster behavior models
φ, ψ, and π improve EMCTS, how much improvement comes
from either factor alone? In the second set of experiments,
we tested this by letting FH-EMCTS play against vanilla
EMCTS with h = ap, i.e. with the search horizon restricted
to the current turn. This showed the impact of the faster be-
havior models alone. Additionally, we let FH-EMCTS play
with the search horizons found to be optimal in Subsection
4.1, but against a version of vanilla EMCTS that was also
using the faster behavior models. This showed the genuine
improvement through deeper searches, given that faster be-
havior models are available.

Figure 6 compares these two conditions to the combined ef-
fect, i.e. the performance of full FH-EMCTS vs. unenhanced
vanilla EMCTS. It shows that the improved behavior models
are most useful with longer turns, as they require many more
calls to φ, ψ, and π. The flexible search horizons however
are most valuable at shorter turns, because those allow even
a 1 second search to go far beyond the current turn. Long
turns provide enough of a search challenge that trying to
search them more deeply (h > ap) can lead to missing good
immediate actions.

4.3 FH-EMCTS vs. all baselines
In the third set of experiments, we tested FH-EMCTS as
tuned in Section 4.1 against a variety of baselines, in order to
confirm its effectiveness. The opponents were the state-of-the-
art vanilla EMCTS and the greedy OEP approach as proposed

6

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0%

20%

40%

60%

80%

100%

action points per turn ap

w
in

ra
te

of
FH

-E
M

C
T

S

effect of better behavior models
effect of flexible search horizons

combined effect (all vs. vanilla EMCTS)

Figure 6: Performance of FH-EMCTS vs. vanilla EMCTS:
the effects of the improved behavior models φ, ψ, and π, of
searching beyond the current turn, and their combined effect.
Search time is 1 second per turn. 1000 games per data point.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0%

20%

40%

60%

80%

100%

action points per turn ap

w
in

ra
te

of
FH

-E
M

C
T

S

vs. Greedy Action (Justesen et al. 2017)
vs. BB-MCTS (Justesen et al. 2017)

vs. non-expl. MCTS (Justesen et al. 2017)
vs. greedy OEP (Baier and Cowling 2018)

vs. vanilla EMCTS (Baier and Cowling 2018)

Figure 7: Performance of FH-EMCTS vs. all baselines. 1
second per turn. 1000 games per data point.

by us in (Baier and Cowling 2018), as well as the BB-MCTS,
non-exploring MCTS, and Greedy Action techniques first
used as baselines in (Justesen et al. 2017). Greedy Action is
using action ordering and pruning here as well.

Figure 7 shows the results. FH-EMCTS consistently and
significantly outperforms all baselines at all tested turn
lengths. Notably, FH-EMCTS removes a weakness of vanilla
EMCTS against non-expl. MCTS at very low APs per turn,
where the ability to search beyond the current turn is cru-
cial. Non-expl. MCTS and FH-EMCTS have this ability,
while vanilla EMCTS does not. Furthermore, the weak per-
formance of the Greedy Action AI demonstrates that the
behavior models φ, ψ, and π used by FH-EMCTS do not
have to be strong standalone players to make for adequate
initialization/repair/opponent policies.

5 Conclusions and Future Work
This paper proposes a number of effective enhancements
for EMCTS, the current state of the art search algorithm for
playing turn-based multi-action adversarial games. In such

games, each turn consists of multiple actions, which creates
the challenge of extremely large branching factors per turn
and has led previous approaches such as EMCTS and OEP to
focus exclusively on optimizing the current turn. We identi-
fied this as a shortcoming of EMCTS in (Baier and Cowling
2018). With our enhancements, the proposed Flexible Hori-
zon EMCTS (FH-EMCTS) can effectively search to greater
depths (depending on turn length and search time), making
it an even more promising approach for Hero Academy and
similar turn-based multi-action adversarial games.

Several directions remain interesting for future work, some
of which we already mentioned in (Baier and Cowling 2018)
as well. First, the searching player’s actions beyond the cur-
rent turn are optimized by FH-EMCTS, but the opponent’s
actions are generated by an opponent model. Other variants
could be imagined, in which the searching player’s future
actions are also coming from a fixed model, or in which
the opponent’s actions are also optimized online (possibly
through an approach similar to (Hong, Huang, and Lin 2001)).
Second, FH-EMCTS should be tested in other tactics and
strategy games. In many Civilization-type games for exam-
ple, the number of actions per turn varies over the course
of the game, and flexible search horizons could therefore
be most effective. Third, generalizing to larger classes of
games will require dealing with randomness and partial ob-
servability. Fourth, generalization to commercial games will
pose interesting challenges around replacing the game knowl-
edge used by EMCTS (and OEP) with machine learning
approaches. We have simply chosen to use the same policy
as initialization strategy, repair strategy, and opponent model
here—this could offer much room for improvement. Fourth,
FH-EMCTS could just like OEP also be generalized to other
problems such as micro battles (Wang et al. 2016) or online
build order adaptation (Justesen and Risi 2017) in real-time
strategy games. In these applications, the genomes would
not represent a sequence of future actions for the player, but
e.g. a list of scripts representing simple policies assigned to
each unit, or a sequence of future units and buildings to be
constructed, respectively. Fifth, it could be interesting to ex-
tend OEP to work with flexible search horizons as well, and
check whether the resulting FH-OEP is still outperformed
by FH-EMCTS as OEP is outperformed by vanilla EMCTS.
And finally, the most interesting long-term task could be the
exploration of algorithmic similarities between Evolutionary
MCTS and certain local search algorithms and evolution-
ary algorithms, in order to further study the idea of EMCTS
providing evolution with lookahead search.

References
Alhejali, A. M., and Lucas, S. M. 2013. Using genetic
programming to evolve heuristics for a Monte Carlo Tree
Search Ms Pac-Man agent. In 2013 IEEE Conference on
Computational Intelligence and Games, CIG 2013, 1–8.
Baier, H., and Cowling, P. I. 2018. Evolutionary MCTS
for Multi-Action Adversarial Games. In 2018 IEEE Confer-
ence on Computational Intelligence and Games, CIG 2018.
Forthcoming.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;

7

Cowling, P.; Rohlfshagen, P.; Tavener, S.; Perez-Liebana,
D.; Samothrakis, S.; and Colton, S. 2012. A survey of
Monte Carlo Tree Search methods. IEEE Transactions on
Computational Intelligence and AI in Games 4(1):1–43.
Chaslot, G. M. J. B.; Winands, M. H. M.; Szita, I.; and
van den Herik, H. J. 2008. Cross-entropy for Monte-Carlo
Tree Search. ICGA Journal 31(3):145–156.
Cole, N.; Louis, S. J.; and Miles, C. 2004. Using a genetic
algorithm to tune first-person shooter bots. In 2004 Congress
on Evolutionary Computation (CEC 2004), 139–145.
Coulom, R. 2007. Efficient selectivity and backup operators
in Monte-Carlo Tree Search. In 5th International Conference
on Computers and Games, CG 2006. Revised Papers, volume
4630 of Lecture Notes in Computer Science, 72–83.
Firaxis Games. 2016a. Civilization VI.
https://civilization.com/.
Firaxis Games. 2016b. XCOM 2. https://xcom.com/.
Gaina, R. D.; Liu, J.; Lucas, S. M.; and Perez-Liebana, D.
2017. Analysis of Vanilla Rolling Horizon Evolution Param-
eters in General Video Game Playing. In Squillero, G., and
Sim, K., eds., 20th European Conference on Applications of
Evolutionary Computation, EvoApplications 2017, volume
10199 of Lecture Notes in Computer Science, 418–434.
Hong, T.; Huang, K.; and Lin, W. 2001. Adversarial Search
by Evolutionary Computation. Evolutionary Computation
9(3):371–385.
Justesen, N., and Risi, S. 2017. Continual Online Evo-
lutionary Planning for In-game Build Order Adaptation in
StarCraft. In Bosman, P. A. N., ed., Proceedings of the Ge-
netic and Evolutionary Computation Conference, GECCO
2017, 187–194. ACM.
Justesen, N.; Mahlmann, T.; Risi, S.; and Togelius, J. 2017.
Playing Multi-Action Adversarial Games: Online Evolution
versus Tree Search. IEEE Transactions on Computational
Intelligence and AI in Games. Forthcoming.
Justesen, N. 2015. Artificial Intelligence for Hero Academy.
Master’s thesis, IT University of Copenhagen.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo planning. In 17th European Conference on Machine
Learning, ECML 2006, volume 4212 of Lecture Notes in
Computer Science, 282–293.
Limbic Entertainment. 2015. Might & Magic Heroes
VII. https://www.ubisoft.com/en-gb/game/might-and-magic-
heroes-7/.
Lucas, S. M., and Kendall, G. 2006. Evolutionary Computa-
tion and Games. IEEE Computational Intelligence Magazine
1(1):10–18.
Midjiwan AB. 2016. The Battle of Polytopia.
http://www.midjiwan.com/polytopia.html.
Niels Justesen. 2015. Hero AIcademy. Available at
https://github.com/njustesen/hero-aicademy.
Perez-Liebana, D.; Samothrakis, S.; Lucas, S. M.; and Rohlf-
shagen, P. 2013. Rolling Horizon Evolution versus Tree
Search for Navigation in Single-Player Real-Time Games. In

Blum, C., and Alba, E., eds., 2013 Genetic and Evolutionary
Computation Conference, GECCO ’13, 351–358. ACM.
Risi, S., and Togelius, J. 2017. Neuroevolution in Games:
State of the Art and Open Challenges. IEEE Transactions on
Computational Intelligence and AI in Games 9(1):25–41.
Robot Entertainment. 2012. Hero Academy. Available at
http://www.robotentertainment.com/games/heroacademy/.
Schadd, M. P. D.; Winands, M. H. M.; Tak, M. J. W.; and
Uiterwijk, J. W. H. M. 2012. Single-Player Monte-Carlo Tree
Search for SameGame. Knowledge-Based Systems 34:3–11.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; Lillicrap, T. P.; Simonyan, K.; and Hassabis, D. 2017.
Mastering Chess and Shogi by Self-Play with a General
Reinforcement Learning Algorithm. CoRR abs/1712.01815.
Subset Games. 2018. Into the Breach.
https://subsetgames.com/itb.html.
Syswerda, G. 1989. Uniform Crossover in Genetic Algo-
rithms. In 3rd International Conference on Genetic Algo-
rithms, ICGA 1989, 2–9.
Wang, C.; Chen, P.; Li, Y.; Holmgard, C.; and Togelius, J.
2016. Portfolio Online Evolution in StarCraft. In Twelfth
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, AIIDE-16, 114–120.

8

