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Abstract 
Answer-set programming (ASP), a family of SAT-based 
logic programming systems, is attractive for procedural con-
tent generation.  Unfortunately, current solvers present sig-
nificant barriers to runtime use in games.  In this paper, I dis-
cuss some of the issues involved, and present CatSAT, a 
solver designed to better fit the run-time resource constraints 
of modern games.  Although intended only for small prob-
lems, it allows designers to compactly specify simple PCG 
problems such as NPC generation, solve them in a few tens 
of microseconds, and to adapt solutions dynamically based 
on the changing needs of gameplay.  We hope that by making 
adoption as convenient as possible, we can increase the up-
take of declarative techniques among developers. 

Introduction   
Many procedural content generation (PCG) programs 
amount to making a set of random choices subject to domain 
constraints.  Constraint programming (Rossi, Van Beek, & 
Walsh, 2006) is an attractive approach for such systems be-
cause it allows designers to specify the choices and con-
straints without having to develop a bespoke search algo-
rithm for solving them (G. Smith, Whitehead, & Mateas, 
2011). 
 Boolean Satisfiability (SAT) has been extensively studied 
as a constraint programming framework, since it is highly 
expressive and supports surprisingly fast solvers (Biere, 
Heule, Maaren, & Walsh, 2009).  Answer-set programming 
(ASP) is a particularly convenient way to formulate SAT 
problems for PCG (A. M. Smith, 2017; A. M. Smith, 
Andersen, & Mateas, 2012; A. M. Smith, Nelson, & Mateas, 
2010; A. M. Smith & Mateas, 2011).  It allows programmers 
to specify finite-domain constraint satisfaction problems as 
a set of Prolog-like first-order rules.  The ASP system ex-
pands them into an equisatisfiable SAT problem, a process 
known as grounding, and solves the resulting problem, gen-
erally using some variant of Contradiction-Driven Clause 
Learning (Marques-Silva & Sakallah, 1999), a backtrack-
ing-based systematic search algorithm. 
                                                 
Copyright © 2018, Association for the Advancement of Artificial Intelli-
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 As a simple example, suppose we want to generate a party 
of 3 non-player characters.  Characters have: 
 
• Three possible races (human, electroid, insectoid) 
• Four possible classes (fighter, magic user, cleric, thief). 
• Humans additionally have one of 3 possible nationalities 
• Clerics have one of 4 possible religions. 
 
In addition, there are constraints on the possible solutions: 
 
• Party members should have different classes. 
• Electroids can’t be clerics. 
• One of the religions is outlawed in one of the nations 
• Another religion is mandatory in one of the other nations. 
 
This can be written as a 17-line ASP program.  Clingo (Eiter, 
Faber, Fink, & Woltran, 2008), the most commonly used 
ASP solver, can generate a party in 6ms on a modern laptop. 
 This is very appealing.  It makes it easy to phrase PCG 
problems and solve them efficiently.  Designers are free to 
incrementally add options and constraints as they see fit, 
without having to redesign the generator algorithm each 
time they make a change. 
 Moreover, it’s easy to tailor generation on the fly by add-
ing and removing constraints based on immediate gameplay 
needs. Provided the constraints aren’t inconsistent, the sys-
tem will simply “solve around” whatever those needs are. 

Barriers to in-game execution 
Unfortunately, using ASP for in-game PCG faces several 
challenges. 
Designer transparency 
One of the key factors in the success of behavior trees was 
the existence of designer-facing tools that allowed non-pro-
grammers to understand and manipulate them (Isla, 2005).  
Equivalent tools for constraint-based PCG, such as (G. 
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Smith, Whitehead, & Mateas, 2010), will be necessary for 
constraint-based PCG to have significant impact on the 
practice of game design. 
Performance 
Although 6ms is fast from the perspective of AI research, it 
is unacceptable for many game applications.  Moreover, 
Clingo’s working set size for the problem above was 
700KB, and for more complex problems can easily be in the 
100s of MB.  Although it will fail entirely for large prob-
lems, our system solves the party generation problem in 
11𝜇𝜇𝜇𝜇 using on the order of 4KB of RAM.   
Run-time issues 
ASP solvers are primarily designed to run standalone.  The 
ASP system is either run in advance with the results stored 
to a file, or run in a separate process, communicating over 
TCP or file I/O.  This is cumbersome for desktop games and 
untenable for console and mobile games.  Although it is pos-
sible to link the Clingo DLL directly into a game, this re-
quires a more intimate knowledge of Clingo than most de-
velopers or researchers are willing to invest in.  It also re-
quires allocating a separate, dedicated heap for the DLL, 
which is problematic for mobile and console platforms.  The 
only game I’m aware of to use Clingo at runtime is Smith’s 
(2017) ProofDoku.  Smith experimented with a JavaScript 
port of the clasp solver that ran in-browser, although it 
wasn’t used in the final game.   
Determinism 
Mainstream solvers default to deterministic behavior, which 
is inappropriate for PCG.  While there are ways of forcing 
Clingo to behave in a random manner, the necessary com-
mand-line options are no longer included in the documenta-
tion. The Z3 SMT solver (De Moura & Bjørner, 2008) al-
lows a random seed to be specified, but many of its compo-
nents are still fully deterministic.  One must also disable cer-
tain heuristics and/or optimizations to get proper random be-
havior, and these are often poorly documented.  Many of the 
instructions posted in on-line forums for getting random be-
havior for Clingo don’t actually disable these optimizations.  
In the case of Z3, it’s unclear what optimizations are being 
done, so it’s hard to know what to turn off or how. 

PCG as a sampling problem 
In-game PCG is more like a sampling problem than a deci-
sion problem.  The search space may be large, but it is gen-
erally dense with solutions.  The goal is to quickly generate 
a solution with sufficient randomness that the player won’t 
perceive bias in the selection process. 
 There is a strain of work on using hashing functions with 
complete solvers, such as CDCL, to sample the space of so-
lutions to SAT problems approximately uniformly (Gomes, 
Sabharwal, & Selman, 2006).  This work is primarily moti-
vated by the desire to compute approximate solutions to #𝑃𝑃-

complete problems.  As a result, these methods go to con-
siderable effort to try to ensure a uniform distribution, for 
example by repeatedly solving successively constrained in-
stances of the problem. 
 However, actual uniform sampling isn’t necessarily de-
sirable.  In our example above, humans and clerics have ad-
ditional attributes that other classes and races do not.  As a 
result, most characters, if uniformly sampled, would specif-
ically be human clerics.  For parties, 98% of models have a 
human and/or a cleric, so designer tunability is more im-
portant than uniformity.  Chakraborty et al. (2014) use sim-
ilar hashing techniques to allow sampling with a distribution 
specified by a weighting function, but their algorithms in-
volve enumerating or counting all solutions to the hashed 
problems, which is too slow for use in-game. 
Stochastic local search 
Stochastic local search algorithms (Hoos & Stützle, 2004) 
are an attractive approach for constraint-based PCG.  These 
algorithms typically begin with a random truth assignment 
and use a combination of random walk and greedy search to 
find a solution, thus avoiding the determinacy issues typical 
of DPLL and CDCL-based SAT solvers without having to 
resort to hashing.  While they do not guarantee uniform sam-
pling, or any other particular distribution, designers are 
likely to want to intervene to tune the distribution in any case 
(see Probability Patching, below). 
 Stochastic methods such as genetic algorithms have been 
used extensively for PCG applications, see (Shaker, 
Togelius, & Nelson, 2014) for a recent survey.  But there 
has been surprisingly little work on them for constraint-
based PCG or ASP.  Despite some initial experiments with 
stochastic ASP solvers in the early 2000s (Bertoni et al., 
2000; Nicolas, Saubion, & Stéphan, 2002), work has fo-
cused almost entirely on deterministic search, save for un-
published work by Gebser, Schaub, and Schneider on hash-
ing in an experimental version of Clingo (xorro). 
 Research on SLS SAT algorithms has largely focused 
solving random 3-SAT problems (Selman, Kautz, & Cohen, 
1995).  Relatively little work has been done on SLS algo-
rithms for highly structured SAT problems with large 
clauses, such as one finds in ASP programs.  However, 
promising initial results were found with UnitWalk 
(Hirsch & Kojevnikov, 2005).  This paper shows SLS is a 
viable, general, framework for solving simple run-time PCG 
problems. 

CatSAT 
CatSAT is a stochastic solver for an ASP-like language.  It 
is open source and can be used as a drop-in DLL in any 
Unity game.   It is an embedded, domain-specific language 
(DSL) within C#, similar to Rosette (Torlak & Bodik, 2013).  
This allows it to function without a separate grounder; a 
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CatSAT program is simply a C# program that grounds itself 
when executed.  This strategy has several advantages: code 
can be more tightly integrated with other components of the 
game; domain properties can be leveraged to reduce the size 
of the grounded problem; and the system can leverage host-
language tooling, such as type checking, IDE support, etc. 
 CatSAT is not appropriate for difficult SAT problems.  
However, for the kinds of simple problems it’s designed for, 
it makes it very easy for designers to add constraint solving 
to their games and incrementally adapt it as needed.  

Logic programming as an embedded DSL 
We start by introducing objects to represent problems, prop-
ositions, rules, and solutions.  A Problem is a collection of 
propositions and rules.  A Proposition is identified by a 
name, an arbitrary host-language object.  Rules specify suf-
ficient conditions for a Proposition to be true, and So-
lutions map propositions to their truth values.  The frag-
ment: 
 
var problem = new Problem(); 
var p = (Proposition)"p"; 
var q = (Proposition)"q"; 
var r = (Proposition)"r"; 
problem.Assert( p <= q, p <= r); 

 
creates a new problem, stipulating that 𝑝𝑝 is true iff 𝑞𝑞 or 𝑟𝑟 is 
true.  We can then solve the problem for a random solution 
(model) and test it for the truth of a proposition: 
 
var s = problem.Solve(); 
if (s[p]) 
   Console.WriteLine("p is true!") 

 
Under CatSAT’s semantics, this program has four solutions: 
{𝑝𝑝, 𝑞𝑞}, {𝑝𝑝, 𝑟𝑟}, {𝑝𝑝, 𝑞𝑞, 𝑟𝑟}, and {}.  We can also force the truth 
value of a proposition: 
 
problem[q] = false; 

 
to constrain it to generate only the solutions {𝑝𝑝, 𝑟𝑟} and {}. 
Grounding first-order rules 
We model predicates as host-language functions from arbi-
trary arguments to Propositions.  Suppose the domain 
𝐷𝐷 is a finite collection of strings.  Then the first-order rule 
∀𝑥𝑥 ∈ 𝐷𝐷. 𝑝𝑝(𝑥𝑥) ⇒ 𝑞𝑞(𝑥𝑥) can be expressed in CatSAT as the C# 
code: 
 
foreach(var x in D) 
  problem.Assert(q(x) <= p(x)); 

                                                 
1 The => construction in C# is a lambda expression.  𝑥𝑥 => 𝑦𝑦 means 𝜆𝜆𝑥𝑥. 𝑦𝑦. 

 
where 𝐷𝐷, 𝑝𝑝, and 𝑞𝑞 are declared as: 
 
var D = new string[] {"a","b","c"}; 
var p = Predicate<string>("p"); 
var q = Predicate<string>("q"); 

 
As before, we can solve the problem and query the solution 
for the truth value of predicates: 
 
var s = problem.Solve(); 
if (s[p("a")]) 
   Console.WriteLine("p(a) is true"); 

 
Again, predicates are just normal C# functions and they can 
perform arbitrary computation.  If the value of the predicate 
is fixed in advance, the predicate can return a Boolean con-
stant rather than a Proposition.   The system simplifies 
rules, removing those whose bodies are constants.  Rules can 
thereby test game engine data directly. 
 We can also encode problem structure in the predicates 
themselves.  For example, the SymmetricPredicate 
function is identical to the Predicate function above, ex-
cept that it guarantees that its output will map 𝑝𝑝(𝑖𝑖, 𝑗𝑗) and 
𝑝𝑝(𝑗𝑗, 𝑖𝑖) to the same internal Proposition object, reducing 
the search space and memory footprint of the solver.  
Quantification 
Quantified rules can be expressed using loops, as above.  
However, one can also add generalized cardinality con-
straints on solutions.  For example, the statement1: 
 
program.Exists(D, d => p(d)); 

 
adds the requirement that ∃𝑑𝑑 ∈ 𝐷𝐷. 𝑝𝑝(𝑑𝑑).  Changing Ex-
ists to Unique imposes the requirement that there be ex-
actly one such 𝑑𝑑.  Other quantifiers supported include 
Quantify, which allows the programmer to give specific 
upper- and lower-bounds, and its special cases, All, Ex-
actly, AtMost, and AtLeast.  These are the equiva-
lents of ASP’s choice rules. 

Semantics 
CatSAT’s semantics are somewhat different from ASP’s, 
and both are different from classical logic.  In classical logic 
the meaning of a set of statements is the set of models that 
are consistent with all the statements. 
 The history of semantic theories of logic programs is 
complicated, and a general survey is outside the scope of 
this paper.  All theories seek to limit the models of a logic 
program to some small set that can be reached using some 
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specific deductive system.  The earliest semantics for logic 
programs is van Emden and Kowalski’s demonstration that 
programs consisting only of Horn clauses have a unique 
minimal model, of which all other models are supersets 
(Van Emden & Kowalski, 1976).  This model has classically 
been taken as the “meaning” of logic programs without ne-
gation. Introducing negation complicates matters. ASP 
takes the acceptable models to be so-called stable models 
(Gelfond & Lifschitz, 1988).  Intuitively, a stable model is a 
model in which every proposition is justified by a rule that 
concludes it and there are no circular justifications.  A pro-
gram that doesn’t allow circular justifications is said to be 
tight (Van Gelder, Ross, & Schlipf, 1991).  A program is 
tight iff the propositions form an acyclic dependency graph. 
 ASP works by converting the program into a SAT prob-
lem whose models are exactly the stable models of the ASP 
program.  The stable models for tight programs are com-
puted using the program’s completion.  If a proposition is 
defined by a set of rules 𝑝𝑝 ← 𝑏𝑏1, 𝑝𝑝 ← 𝑏𝑏2, … , 𝑝𝑝 ← 𝑏𝑏𝑛𝑛, then the 
completion of the that proposition, 𝑝𝑝 ↔ 𝑏𝑏1 ∨ …∨ 𝑏𝑏𝑛𝑛, states 
that 𝑝𝑝 is true iff some 𝑏𝑏𝑖𝑖 is true.  A proposition that has no 
rules that conclude it is always false.  The stable models of 
𝑝𝑝 are exactly the (classical logic) models of 𝑝𝑝’s completion.  
 Finding stable models for non-tight programs requires 
adding an additional set of constraints called loop formulae 
to rule out circular justifications.  Since there can be an ex-
ponential number of loop formulae, ASP solvers add them 
only on demand.  The SAT solver co-routines with a checker 
that inspects generated models for justification loops.  When 
a loop is found, the checker adds a loop formula to rule it 
out, and the solver backtracks. 
 Stable model semantics limits programs to a single model 
if it contains no negations, or a small number if it uses ne-
gation.  This is not a feature for PCG.  However, ASP in-
cludes choice rules that introduce propositions that don’t re-
quire justifications.  The standard structure of an ASP pro-
gram is a set of choice rules to generate candidate solutions, 
rules to generate inferences from the candidates, and con-
straints to rule out unwanted candidates. 
CatSAT’s semantics 
ASP essentially defaults to propositions having stable model 
semantics unless they appear in a choice rule.  CatSAT 
adopts the opposite convention: only propositions that ap-
pear as conclusions of rules are constrained to stable models 

of those rules; the generator is free to assign other proposi-
tions as it likes, modulo any explicit constraints. 
 CatSAT requires programs to be tight.  Although this 
hasn’t been a major issue in practice, it causes issues with 
certain recursive definitions, such as the standard definition 
of connectedness in a graph: 
 

connected(𝑥𝑥,𝑦𝑦) ← edge(𝑥𝑥, 𝑦𝑦) 
connected(𝑥𝑥,𝑦𝑦) ← edge(𝑥𝑥, 𝑧𝑧) ∧ connected(𝑧𝑧, 𝑦𝑦) 
 

This definition is not tight.  Worse, there can be no tight 
program because the class of connected graphs is not first-
order definable.  That said, the connected graphs of size 𝑉𝑉 
can be axiomatized using the Floyd-Warshall algorithm: 
 

connected(𝑥𝑥,𝑦𝑦) ←  𝑐𝑐(𝑥𝑥, 𝑦𝑦,𝑉𝑉) 
𝑐𝑐(𝑥𝑥,𝑦𝑦, 0) ← edge(𝑥𝑥, 𝑦𝑦) 
𝑐𝑐(𝑥𝑥,𝑦𝑦, 𝑘𝑘) ← 𝑐𝑐(𝑥𝑥,𝑦𝑦, 𝑘𝑘 − 1) 
𝑐𝑐(𝑥𝑥,𝑦𝑦, 𝑘𝑘) ← 𝑐𝑐(𝑥𝑥, 𝑘𝑘, 𝑘𝑘 − 1) ∧ 𝑐𝑐(𝑘𝑘,𝑦𝑦, 𝑘𝑘 − 1) 

 
This program is tight and generates a problem of size 𝑂𝑂(𝑉𝑉3) 
rather than 𝑂𝑂(2𝑉𝑉).  That said, given that a connected graph 
can be generated in 𝑂𝑂(𝑉𝑉) time for sparse graphs and 𝑂𝑂(𝑉𝑉2) 
for dense graphs, using SAT to make a random graph may 
not be the best use of resources.  Instead, a hybrid approach 
in which a fast algorithm chooses the topology of the graph 
and CatSAT fills it with other information (labels for nodes 
or edges) would be faster for many applications. 

Solving 
The system generates a SAT problem in conjunctive normal 
form (conjunction of disjunctions).  The individual disjunc-
tions, called clauses, require at least one of their literals to 
be true, however we allow arbitrary minimum and maxi-
mum numbers to be specified, as is common.  This allows 
quantifications, such as Unique and AtMost, discussed 
above, to compile to a single “clause.”  The solver maintains 
counts of how many literals from each clause are satisfied, 
allowing it to quickly determine the effects of a given 
change to its truth assignment. 
Optimization 
Programmers can optionally run unit resolution over the 
program to find variables whose values are fixed across all 

Program clauses Classical Minimal Completion Completion models Tight? Stable models 
𝑝𝑝 ← 𝑞𝑞 {}, {𝑝𝑝}, {𝑝𝑝, 𝑞𝑞} {} 𝑝𝑝 ↔ 𝑞𝑞, ¬𝑞𝑞 {} Yes {} 
𝑝𝑝 ← 𝑞𝑞, 𝑞𝑞 {𝑝𝑝, 𝑞𝑞} {𝑝𝑝, 𝑞𝑞} 𝑝𝑝 ↔ 𝑞𝑞, 𝑞𝑞 {𝑝𝑝, 𝑞𝑞} Yes {𝑝𝑝, 𝑞𝑞} 
𝑝𝑝 ← 𝑞𝑞, 𝑝𝑝 ← 𝑟𝑟, 𝑞𝑞 {𝑝𝑝, 𝑞𝑞}{𝑝𝑝, 𝑞𝑞, 𝑟𝑟} {𝑝𝑝, 𝑞𝑞} 𝑝𝑝 ↔ 𝑞𝑞 ∨ 𝑟𝑟, 𝑞𝑞, ¬𝑟𝑟 {𝑝𝑝, 𝑞𝑞} Yes {𝑝𝑝, 𝑞𝑞} 
𝑝𝑝 ← 𝑞𝑞, 𝑞𝑞 ← 𝑝𝑝 {}, {𝑝𝑝, 𝑞𝑞} {} 𝑝𝑝 ↔ 𝑞𝑞 {}, {𝑝𝑝, 𝑞𝑞} No {} 
𝑝𝑝 ← ¬𝑞𝑞, 𝑞𝑞 ← ¬𝑝𝑝 {𝑝𝑝}, {𝑞𝑞} None 𝑝𝑝 ↔ ¬𝑞𝑞, 𝑞𝑞 ↔ ¬𝑝𝑝 {𝑝𝑝}, {𝑞𝑞} Yes {𝑝𝑝}, {𝑞𝑞} 

Table 1: Semantics of logic programming rules 
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models.  This reduces the search space the solver needs to 
search, and for some problems, it can reduce it dramatically. 
Solving 
CatSAT uses a variant of WalkSAT (Selman et al., 1995), a 
stochastic local search algorithm, modified to support gen-
eralized cardinality constraints: 
 

procedure Solve 
 𝐴𝐴 = random truth assignment 
 repeat until timeout 
  𝐶𝐶 = unsatisfied clause 
  𝑝𝑝 = proposition within 𝐶𝐶 
  𝐴𝐴[𝑝𝑝] = ¬𝐴𝐴[𝑝𝑝] 

 if all clauses satisfied, return 𝐴𝐴 
 
The choices of initial truth assignment and unsatisfied 
clause are uniform random.  Many variants of the policies to 
choose 𝑝𝑝 from within 𝐶𝐶 have been studied (Hoos & Stützle, 
2004).  The current version of CatSAT uses a variant of the 
Novelty+ algorithm to choose 𝑝𝑝 from within 𝐶𝐶.  It 
chooses randomly with probability 𝜙𝜙, otherwise chooses the 
𝑝𝑝 that will lead to the most satisfied clauses.  Here 𝜙𝜙 is a 
parameter that controls the greediness of the search, smaller 
𝜙𝜙 being more greedy.  We use the adaptive strategy of 
(Hoos, 2002) to dynamically adjust 𝜙𝜙.  This allows it to be 
greedy when it’s doing well, but to detect when it reaches a 
local minimum and gradually increase the noise in the 
search until it is kicked out of the local minimum. 
 This algorithm has several advantages from the stand-
point of a game designer.  It’s simple to implement, fast for 
modest sized problems, has good cache locality, doesn’t al-
locate memory while solving, and only has one parameter 
(timeout). 

Evaluation 
Table 2 shows the performance of the system on several 
PCG problems.  Tests were run single-threaded on a 2015 
laptop with a 2.6GHz Intel i7-6600U processor and 16GB 
RAM.  Line counts for code omit comments and blank lines. 

 The NPC and party generators are for the problem used in 
the introduction.  Sudoku is a minimal board genera-
tor/solver for standard Sudoku.  It forces uniqueness of num-
bers in rows and columns, but does not choose clues to give. 
 The “Storyteller demo” is a reimplementation of original 
demo of Daniel Benmergui’s forthcoming Storyteller game 
(Benmergui, 2013, 2018), in which players arrange charac-
ters in comic-book-style panels and the system determines 
the underlying story events that would explain the configu-
rations, and their effects on the characters.  The problem en-
coding uses 10 predicates: rich(𝑥𝑥), caged(𝑥𝑥), evil(𝑥𝑥), 
has_sword(𝑥𝑥), kill(𝑥𝑥,𝑦𝑦), loves(𝑥𝑥,𝑦𝑦), dead(𝑥𝑥), 
has_tombstone(𝑥𝑥), one proposition (someone_free), and 
13 axioms. 
 The Inverse Floyd-Warshall tests are provided as an ex-
ample of what the system is not good at.  These use the FW 
axiomatization given above to solve for a random set of 
edges that will give a graph with a specified transitive clo-
sure.  While it works, there are much faster ways of solving 
this problem, as discussed above. 

Hybrid solving 
The embedded nature of the system makes it easy to con-
struct pipelines of special-purpose solvers in which each 
stage fixes particular aspects of the solution and passes it on 
to the next stage.  If a given pipeline stage cannot find a so-
lution, the previous stage is restarted to produce a new solu-
tion.  However, if the problem is separable, meaning that a 
solution is guaranteed to exist for any set of choices made 
by the previous stages, then no backtracking is required.  
The use of a specialized random graph generator, discussed 
above, is one example of a hybrid generator. 
 As an example, we wrote a simple solver for numeric in-
equality constraints.  It is essentially a simplified implemen-
tation of the WalkSMT algorithm for stochastic SMT solv-
ing (Griggio, Phan, Sebastiani, & Tomasi, 2011), and can be 
written as: 
 

procedure CatSMT 
    repeat until success or timeout 

Table 2: Timing results for simple PCG problems 

Task Problem object 𝝁𝝁𝝁𝝁 SAT problem Solution time 𝝁𝝁𝝁𝝁 
Description Code (lines) Create Generate SAT Clauses Vars Average Max 
NPC generator 10 - - 26 16 3.2 6.9 
NPC generator w/stats 24 - - 15 21 1.7 6.5 
Party generator 33 - - 82 46 11 84 
Sudoku generator/solver 15 - - 243 730 45 815 
Storyteller demo 42 1127 136 202 74 68 189 
Inverse Floyd-Warshall (V=5) 22 632 217 500 226 41 121 
Inverse Floyd-Warshall (V=20) 22 27,087 64,720 38,000 15,601 38,923 70,440 
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       𝑚𝑚 = CatSAT.Solve()  
       𝑐𝑐 = all inequalities marked as true in 𝑚𝑚 
      Use rejection sampling to solve the inequalities 𝑐𝑐 

 
The rejection sampler here is very simple (<230 lines of C#), 
but is sufficient to add the generation of stats to our NPC 
generator, including different class-dependent constraints, 
such as requiring fighters to have higher strength than intel-
ligence, or magic users to have higher intelligence than 
strength.  Results are shown in Table 2 under “NPC genera-
tor with stats” 

Probability patching 
One issue with any random generator is that some kinds of 
configurations have more solutions than others, and so are 
chosen more frequently.  As discussed above, 98% of pos-
sible parties in our example involve a human and/or a cleric.  
If this doesn’t bother the designer or player, then it’s not a 
problem.  If it is problematic, various techniques can be used 
to adjust the sample distribution. 
 The simplest is a to decide a race and class in advance 
using a random number generator, then force their values in 
the Problem object.  This gives the designer direct control 
over the distribution of those specific variables, and allows 
the SAT solver to run faster.  This is another example of 
hybrid solving. 
 The probability of particular combinations can be in-
creased by giving those combinations extra, hidden attrib-
utes to choose values for.  This increases the number of no-
tional solutions for those combinations, and thereby their 
frequency of occurrence.  The additional attributes can then 
be ignored. 
 Conversely, combinations that are judged to occur too 
frequently can be controlled using rejection sampling.  To 
reduce the frequency of insectoid fighters by 50%, check the 
generated character to see if they’re an insectoid fighter.  If 
so, regenerate it with a probability of 50%. 

Future work 
There are many obvious additions that would make the sys-
tem more useful.  The most obvious of these would be to 
integrate SMT support in the solver.  It would also be useful 
for the system to ship with a standardized implementation 
of a floating-point solver, perhaps based on Craft (Horswill, 
2015).  Another useful and straightforward extension would 
be to modify the solver to support MAXSAT (optimization).  
Another possible improvement would be to add optional in-
cremental generation of loop formulae, allowing the use of 
non-tight programs.  However, it’s unclear how well this 
would work with stochastic local search. 

 There are many performance improvements that are pos-
sible, as the current system is not especially well optimized.  
The use of watched literals (Moskewicz, Madigan, Zhao, 
Zhang, & Malik, 2001) instead of counters, for example, 
may improve performance. 
 Finally, although it may be easier to write a Sudoku gen-
erator in CatSAT than in raw C#, it still requires considera-
ble comfort with both C# programming and logical axio-
matization.  A designer-facing tool, a la Tracery (Compton, 
Filstrup, & Mateas, 2014), that would help designers build 
generators will be important in the future. 

Conclusion 
SAT-based systems provide a flexible and highly expressive 
framework for finite-domain PCG problems, but have tradi-
tionally been difficult to implement in a running game.  
CatSAT shows that modest-sized problems can be effi-
ciently expressed, solved, and integrated with a performance 
profile that’s acceptable for a wide range of games.  Gener-
ators can be easily created with a few lines of code, and 
solved in tens of microseconds.  No search algorithms need 
be written or debugged.  Generators can be incrementally 
tuned, both in terms of their constraints, and their generation 
frequencies.  Moreover, their behavior can be dynamically 
steered at run-time to suit gameplay needs.  
 In addition to making it easier to add PCG to a game, the 
steerability of the system allows it to be put to unusual uses.  
It could, for example, be used for dynamic difficulty adjust-
ment (DDA) to adjust the level of challenge of enemies or 
puzzles.  It can be used for bespoke boss and item generation 
to fit the narrative needs of the game, based on the player’s 
current stats and inventory.  And it can be used as an aid in 
configuration interfaces (e.g. character or ship designers) to 
allow the player to specify some attributes, while allowing 
the system to generate reasonable default values for the re-
maining attributes.  If the player doesn’t like a chosen value, 
they can change it or just ask the system to choose a different 
random configuration. 
 Most excitingly, easy constraint satisfaction could allow 
the creation of fundamentally new game mechanics, such as 
the narrative puzzles of Benmergui’s Storyteller.  The best 
way to discover such mechanics is to get deployable ver-
sions of these new technologies into the hands of practicing 
game designers.  
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