

CatSAT: A Practical, Embedded, SAT Language for Runtime PCG

Ian Douglas Horswill
Northwestern University, Evanston IL, USA

ian@northwestern.edu

Abstract
Answer-set programming (ASP), a family of SAT-based
logic programming systems, is attractive for procedural con-
tent generation. Unfortunately, current solvers present sig-
nificant barriers to runtime use in games. In this paper, I dis-
cuss some of the issues involved, and present CatSAT, a
solver designed to better fit the run-time resource constraints
of modern games. Although intended only for small prob-
lems, it allows designers to compactly specify simple PCG
problems such as NPC generation, solve them in a few tens
of microseconds, and to adapt solutions dynamically based
on the changing needs of gameplay. We hope that by making
adoption as convenient as possible, we can increase the up-
take of declarative techniques among developers.

Introduction
Many procedural content generation (PCG) programs
amount to making a set of random choices subject to domain
constraints. Constraint programming (Rossi, Van Beek, &
Walsh, 2006) is an attractive approach for such systems be-
cause it allows designers to specify the choices and con-
straints without having to develop a bespoke search algo-
rithm for solving them (G. Smith, Whitehead, & Mateas,
2011).
 Boolean Satisfiability (SAT) has been extensively studied
as a constraint programming framework, since it is highly
expressive and supports surprisingly fast solvers (Biere,
Heule, Maaren, & Walsh, 2009). Answer-set programming
(ASP) is a particularly convenient way to formulate SAT
problems for PCG (A. M. Smith, 2017; A. M. Smith,
Andersen, & Mateas, 2012; A. M. Smith, Nelson, & Mateas,
2010; A. M. Smith & Mateas, 2011). It allows programmers
to specify finite-domain constraint satisfaction problems as
a set of Prolog-like first-order rules. The ASP system ex-
pands them into an equisatisfiable SAT problem, a process
known as grounding, and solves the resulting problem, gen-
erally using some variant of Contradiction-Driven Clause
Learning (Marques-Silva & Sakallah, 1999), a backtrack-
ing-based systematic search algorithm.

Copyright © 2018, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

 As a simple example, suppose we want to generate a party
of 3 non-player characters. Characters have:

• Three possible races (human, electroid, insectoid)
• Four possible classes (fighter, magic user, cleric, thief).
• Humans additionally have one of 3 possible nationalities
• Clerics have one of 4 possible religions.

In addition, there are constraints on the possible solutions:

• Party members should have different classes.
• Electroids can’t be clerics.
• One of the religions is outlawed in one of the nations
• Another religion is mandatory in one of the other nations.

This can be written as a 17-line ASP program. Clingo (Eiter,
Faber, Fink, & Woltran, 2008), the most commonly used
ASP solver, can generate a party in 6ms on a modern laptop.
 This is very appealing. It makes it easy to phrase PCG
problems and solve them efficiently. Designers are free to
incrementally add options and constraints as they see fit,
without having to redesign the generator algorithm each
time they make a change.
 Moreover, it’s easy to tailor generation on the fly by add-
ing and removing constraints based on immediate gameplay
needs. Provided the constraints aren’t inconsistent, the sys-
tem will simply “solve around” whatever those needs are.

Barriers to in-game execution
Unfortunately, using ASP for in-game PCG faces several
challenges.
Designer transparency
One of the key factors in the success of behavior trees was
the existence of designer-facing tools that allowed non-pro-
grammers to understand and manipulate them (Isla, 2005).
Equivalent tools for constraint-based PCG, such as (G.

Proceedings of the Fourteenth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE 2018)

38

Smith, Whitehead, & Mateas, 2010), will be necessary for
constraint-based PCG to have significant impact on the
practice of game design.
Performance
Although 6ms is fast from the perspective of AI research, it
is unacceptable for many game applications. Moreover,
Clingo’s working set size for the problem above was
700KB, and for more complex problems can easily be in the
100s of MB. Although it will fail entirely for large prob-
lems, our system solves the party generation problem in
11𝜇𝜇𝜇𝜇 using on the order of 4KB of RAM.
Run-time issues
ASP solvers are primarily designed to run standalone. The
ASP system is either run in advance with the results stored
to a file, or run in a separate process, communicating over
TCP or file I/O. This is cumbersome for desktop games and
untenable for console and mobile games. Although it is pos-
sible to link the Clingo DLL directly into a game, this re-
quires a more intimate knowledge of Clingo than most de-
velopers or researchers are willing to invest in. It also re-
quires allocating a separate, dedicated heap for the DLL,
which is problematic for mobile and console platforms. The
only game I’m aware of to use Clingo at runtime is Smith’s
(2017) ProofDoku. Smith experimented with a JavaScript
port of the clasp solver that ran in-browser, although it
wasn’t used in the final game.
Determinism
Mainstream solvers default to deterministic behavior, which
is inappropriate for PCG. While there are ways of forcing
Clingo to behave in a random manner, the necessary com-
mand-line options are no longer included in the documenta-
tion. The Z3 SMT solver (De Moura & Bjørner, 2008) al-
lows a random seed to be specified, but many of its compo-
nents are still fully deterministic. One must also disable cer-
tain heuristics and/or optimizations to get proper random be-
havior, and these are often poorly documented. Many of the
instructions posted in on-line forums for getting random be-
havior for Clingo don’t actually disable these optimizations.
In the case of Z3, it’s unclear what optimizations are being
done, so it’s hard to know what to turn off or how.

PCG as a sampling problem
In-game PCG is more like a sampling problem than a deci-
sion problem. The search space may be large, but it is gen-
erally dense with solutions. The goal is to quickly generate
a solution with sufficient randomness that the player won’t
perceive bias in the selection process.
 There is a strain of work on using hashing functions with
complete solvers, such as CDCL, to sample the space of so-
lutions to SAT problems approximately uniformly (Gomes,
Sabharwal, & Selman, 2006). This work is primarily moti-
vated by the desire to compute approximate solutions to #𝑃𝑃-

complete problems. As a result, these methods go to con-
siderable effort to try to ensure a uniform distribution, for
example by repeatedly solving successively constrained in-
stances of the problem.
 However, actual uniform sampling isn’t necessarily de-
sirable. In our example above, humans and clerics have ad-
ditional attributes that other classes and races do not. As a
result, most characters, if uniformly sampled, would specif-
ically be human clerics. For parties, 98% of models have a
human and/or a cleric, so designer tunability is more im-
portant than uniformity. Chakraborty et al. (2014) use sim-
ilar hashing techniques to allow sampling with a distribution
specified by a weighting function, but their algorithms in-
volve enumerating or counting all solutions to the hashed
problems, which is too slow for use in-game.
Stochastic local search
Stochastic local search algorithms (Hoos & Stützle, 2004)
are an attractive approach for constraint-based PCG. These
algorithms typically begin with a random truth assignment
and use a combination of random walk and greedy search to
find a solution, thus avoiding the determinacy issues typical
of DPLL and CDCL-based SAT solvers without having to
resort to hashing. While they do not guarantee uniform sam-
pling, or any other particular distribution, designers are
likely to want to intervene to tune the distribution in any case
(see Probability Patching, below).
 Stochastic methods such as genetic algorithms have been
used extensively for PCG applications, see (Shaker,
Togelius, & Nelson, 2014) for a recent survey. But there
has been surprisingly little work on them for constraint-
based PCG or ASP. Despite some initial experiments with
stochastic ASP solvers in the early 2000s (Bertoni et al.,
2000; Nicolas, Saubion, & Stéphan, 2002), work has fo-
cused almost entirely on deterministic search, save for un-
published work by Gebser, Schaub, and Schneider on hash-
ing in an experimental version of Clingo (xorro).
 Research on SLS SAT algorithms has largely focused
solving random 3-SAT problems (Selman, Kautz, & Cohen,
1995). Relatively little work has been done on SLS algo-
rithms for highly structured SAT problems with large
clauses, such as one finds in ASP programs. However,
promising initial results were found with UnitWalk
(Hirsch & Kojevnikov, 2005). This paper shows SLS is a
viable, general, framework for solving simple run-time PCG
problems.

CatSAT
CatSAT is a stochastic solver for an ASP-like language. It
is open source and can be used as a drop-in DLL in any
Unity game. It is an embedded, domain-specific language
(DSL) within C#, similar to Rosette (Torlak & Bodik, 2013).
This allows it to function without a separate grounder; a

39

CatSAT program is simply a C# program that grounds itself
when executed. This strategy has several advantages: code
can be more tightly integrated with other components of the
game; domain properties can be leveraged to reduce the size
of the grounded problem; and the system can leverage host-
language tooling, such as type checking, IDE support, etc.
 CatSAT is not appropriate for difficult SAT problems.
However, for the kinds of simple problems it’s designed for,
it makes it very easy for designers to add constraint solving
to their games and incrementally adapt it as needed.

Logic programming as an embedded DSL
We start by introducing objects to represent problems, prop-
ositions, rules, and solutions. A Problem is a collection of
propositions and rules. A Proposition is identified by a
name, an arbitrary host-language object. Rules specify suf-
ficient conditions for a Proposition to be true, and So-
lutions map propositions to their truth values. The frag-
ment:

var problem = new Problem();
var p = (Proposition)"p";
var q = (Proposition)"q";
var r = (Proposition)"r";
problem.Assert(p <= q, p <= r);

creates a new problem, stipulating that 𝑝𝑝 is true iff 𝑞𝑞 or 𝑟𝑟 is
true. We can then solve the problem for a random solution
(model) and test it for the truth of a proposition:

var s = problem.Solve();
if (s[p])
 Console.WriteLine("p is true!")

Under CatSAT’s semantics, this program has four solutions:
{𝑝𝑝, 𝑞𝑞}, {𝑝𝑝, 𝑟𝑟}, {𝑝𝑝, 𝑞𝑞, 𝑟𝑟}, and {}. We can also force the truth
value of a proposition:

problem[q] = false;

to constrain it to generate only the solutions {𝑝𝑝, 𝑟𝑟} and {}.
Grounding first-order rules
We model predicates as host-language functions from arbi-
trary arguments to Propositions. Suppose the domain
𝐷𝐷 is a finite collection of strings. Then the first-order rule
∀𝑥𝑥 ∈ 𝐷𝐷. 𝑝𝑝(𝑥𝑥) ⇒ 𝑞𝑞(𝑥𝑥) can be expressed in CatSAT as the C#
code:

foreach(var x in D)
 problem.Assert(q(x) <= p(x));

1 The => construction in C# is a lambda expression. 𝑥𝑥 => 𝑦𝑦 means 𝜆𝜆𝑥𝑥. 𝑦𝑦.

where 𝐷𝐷, 𝑝𝑝, and 𝑞𝑞 are declared as:

var D = new string[] {"a","b","c"};
var p = Predicate<string>("p");
var q = Predicate<string>("q");

As before, we can solve the problem and query the solution
for the truth value of predicates:

var s = problem.Solve();
if (s[p("a")])
 Console.WriteLine("p(a) is true");

Again, predicates are just normal C# functions and they can
perform arbitrary computation. If the value of the predicate
is fixed in advance, the predicate can return a Boolean con-
stant rather than a Proposition. The system simplifies
rules, removing those whose bodies are constants. Rules can
thereby test game engine data directly.
 We can also encode problem structure in the predicates
themselves. For example, the SymmetricPredicate
function is identical to the Predicate function above, ex-
cept that it guarantees that its output will map 𝑝𝑝(𝑖𝑖, 𝑗𝑗) and
𝑝𝑝(𝑗𝑗, 𝑖𝑖) to the same internal Proposition object, reducing
the search space and memory footprint of the solver.
Quantification
Quantified rules can be expressed using loops, as above.
However, one can also add generalized cardinality con-
straints on solutions. For example, the statement1:

program.Exists(D, d => p(d));

adds the requirement that ∃𝑑𝑑 ∈ 𝐷𝐷. 𝑝𝑝(𝑑𝑑). Changing Ex-
ists to Unique imposes the requirement that there be ex-
actly one such 𝑑𝑑. Other quantifiers supported include
Quantify, which allows the programmer to give specific
upper- and lower-bounds, and its special cases, All, Ex-
actly, AtMost, and AtLeast. These are the equiva-
lents of ASP’s choice rules.

Semantics
CatSAT’s semantics are somewhat different from ASP’s,
and both are different from classical logic. In classical logic
the meaning of a set of statements is the set of models that
are consistent with all the statements.
 The history of semantic theories of logic programs is
complicated, and a general survey is outside the scope of
this paper. All theories seek to limit the models of a logic
program to some small set that can be reached using some

40

specific deductive system. The earliest semantics for logic
programs is van Emden and Kowalski’s demonstration that
programs consisting only of Horn clauses have a unique
minimal model, of which all other models are supersets
(Van Emden & Kowalski, 1976). This model has classically
been taken as the “meaning” of logic programs without ne-
gation. Introducing negation complicates matters. ASP
takes the acceptable models to be so-called stable models
(Gelfond & Lifschitz, 1988). Intuitively, a stable model is a
model in which every proposition is justified by a rule that
concludes it and there are no circular justifications. A pro-
gram that doesn’t allow circular justifications is said to be
tight (Van Gelder, Ross, & Schlipf, 1991). A program is
tight iff the propositions form an acyclic dependency graph.
 ASP works by converting the program into a SAT prob-
lem whose models are exactly the stable models of the ASP
program. The stable models for tight programs are com-
puted using the program’s completion. If a proposition is
defined by a set of rules 𝑝𝑝 ← 𝑏𝑏1, 𝑝𝑝 ← 𝑏𝑏2, … , 𝑝𝑝 ← 𝑏𝑏𝑛𝑛, then the
completion of the that proposition, 𝑝𝑝 ↔ 𝑏𝑏1 ∨ …∨ 𝑏𝑏𝑛𝑛, states
that 𝑝𝑝 is true iff some 𝑏𝑏𝑖𝑖 is true. A proposition that has no
rules that conclude it is always false. The stable models of
𝑝𝑝 are exactly the (classical logic) models of 𝑝𝑝’s completion.
 Finding stable models for non-tight programs requires
adding an additional set of constraints called loop formulae
to rule out circular justifications. Since there can be an ex-
ponential number of loop formulae, ASP solvers add them
only on demand. The SAT solver co-routines with a checker
that inspects generated models for justification loops. When
a loop is found, the checker adds a loop formula to rule it
out, and the solver backtracks.
 Stable model semantics limits programs to a single model
if it contains no negations, or a small number if it uses ne-
gation. This is not a feature for PCG. However, ASP in-
cludes choice rules that introduce propositions that don’t re-
quire justifications. The standard structure of an ASP pro-
gram is a set of choice rules to generate candidate solutions,
rules to generate inferences from the candidates, and con-
straints to rule out unwanted candidates.
CatSAT’s semantics
ASP essentially defaults to propositions having stable model
semantics unless they appear in a choice rule. CatSAT
adopts the opposite convention: only propositions that ap-
pear as conclusions of rules are constrained to stable models

of those rules; the generator is free to assign other proposi-
tions as it likes, modulo any explicit constraints.
 CatSAT requires programs to be tight. Although this
hasn’t been a major issue in practice, it causes issues with
certain recursive definitions, such as the standard definition
of connectedness in a graph:

connected(𝑥𝑥,𝑦𝑦) ← edge(𝑥𝑥, 𝑦𝑦)
connected(𝑥𝑥,𝑦𝑦) ← edge(𝑥𝑥, 𝑧𝑧) ∧ connected(𝑧𝑧, 𝑦𝑦)

This definition is not tight. Worse, there can be no tight
program because the class of connected graphs is not first-
order definable. That said, the connected graphs of size 𝑉𝑉
can be axiomatized using the Floyd-Warshall algorithm:

connected(𝑥𝑥,𝑦𝑦) ← 𝑐𝑐(𝑥𝑥, 𝑦𝑦,𝑉𝑉)
𝑐𝑐(𝑥𝑥,𝑦𝑦, 0) ← edge(𝑥𝑥, 𝑦𝑦)
𝑐𝑐(𝑥𝑥,𝑦𝑦, 𝑘𝑘) ← 𝑐𝑐(𝑥𝑥,𝑦𝑦, 𝑘𝑘 − 1)
𝑐𝑐(𝑥𝑥,𝑦𝑦, 𝑘𝑘) ← 𝑐𝑐(𝑥𝑥, 𝑘𝑘, 𝑘𝑘 − 1) ∧ 𝑐𝑐(𝑘𝑘,𝑦𝑦, 𝑘𝑘 − 1)

This program is tight and generates a problem of size 𝑂𝑂(𝑉𝑉3)
rather than 𝑂𝑂(2𝑉𝑉). That said, given that a connected graph
can be generated in 𝑂𝑂(𝑉𝑉) time for sparse graphs and 𝑂𝑂(𝑉𝑉2)
for dense graphs, using SAT to make a random graph may
not be the best use of resources. Instead, a hybrid approach
in which a fast algorithm chooses the topology of the graph
and CatSAT fills it with other information (labels for nodes
or edges) would be faster for many applications.

Solving
The system generates a SAT problem in conjunctive normal
form (conjunction of disjunctions). The individual disjunc-
tions, called clauses, require at least one of their literals to
be true, however we allow arbitrary minimum and maxi-
mum numbers to be specified, as is common. This allows
quantifications, such as Unique and AtMost, discussed
above, to compile to a single “clause.” The solver maintains
counts of how many literals from each clause are satisfied,
allowing it to quickly determine the effects of a given
change to its truth assignment.
Optimization
Programmers can optionally run unit resolution over the
program to find variables whose values are fixed across all

Program clauses Classical Minimal Completion Completion models Tight? Stable models
𝑝𝑝 ← 𝑞𝑞 {}, {𝑝𝑝}, {𝑝𝑝, 𝑞𝑞} {} 𝑝𝑝 ↔ 𝑞𝑞, ¬𝑞𝑞 {} Yes {}
𝑝𝑝 ← 𝑞𝑞, 𝑞𝑞 {𝑝𝑝, 𝑞𝑞} {𝑝𝑝, 𝑞𝑞} 𝑝𝑝 ↔ 𝑞𝑞, 𝑞𝑞 {𝑝𝑝, 𝑞𝑞} Yes {𝑝𝑝, 𝑞𝑞}
𝑝𝑝 ← 𝑞𝑞, 𝑝𝑝 ← 𝑟𝑟, 𝑞𝑞 {𝑝𝑝, 𝑞𝑞}{𝑝𝑝, 𝑞𝑞, 𝑟𝑟} {𝑝𝑝, 𝑞𝑞} 𝑝𝑝 ↔ 𝑞𝑞 ∨ 𝑟𝑟, 𝑞𝑞, ¬𝑟𝑟 {𝑝𝑝, 𝑞𝑞} Yes {𝑝𝑝, 𝑞𝑞}
𝑝𝑝 ← 𝑞𝑞, 𝑞𝑞 ← 𝑝𝑝 {}, {𝑝𝑝, 𝑞𝑞} {} 𝑝𝑝 ↔ 𝑞𝑞 {}, {𝑝𝑝, 𝑞𝑞} No {}
𝑝𝑝 ← ¬𝑞𝑞, 𝑞𝑞 ← ¬𝑝𝑝 {𝑝𝑝}, {𝑞𝑞} None 𝑝𝑝 ↔ ¬𝑞𝑞, 𝑞𝑞 ↔ ¬𝑝𝑝 {𝑝𝑝}, {𝑞𝑞} Yes {𝑝𝑝}, {𝑞𝑞}

Table 1: Semantics of logic programming rules

41

models. This reduces the search space the solver needs to
search, and for some problems, it can reduce it dramatically.
Solving
CatSAT uses a variant of WalkSAT (Selman et al., 1995), a
stochastic local search algorithm, modified to support gen-
eralized cardinality constraints:

procedure Solve
 𝐴𝐴 = random truth assignment
 repeat until timeout
 𝐶𝐶 = unsatisfied clause
 𝑝𝑝 = proposition within 𝐶𝐶
 𝐴𝐴[𝑝𝑝] = ¬𝐴𝐴[𝑝𝑝]

 if all clauses satisfied, return 𝐴𝐴

The choices of initial truth assignment and unsatisfied
clause are uniform random. Many variants of the policies to
choose 𝑝𝑝 from within 𝐶𝐶 have been studied (Hoos & Stützle,
2004). The current version of CatSAT uses a variant of the
Novelty+ algorithm to choose 𝑝𝑝 from within 𝐶𝐶. It
chooses randomly with probability 𝜙𝜙, otherwise chooses the
𝑝𝑝 that will lead to the most satisfied clauses. Here 𝜙𝜙 is a
parameter that controls the greediness of the search, smaller
𝜙𝜙 being more greedy. We use the adaptive strategy of
(Hoos, 2002) to dynamically adjust 𝜙𝜙. This allows it to be
greedy when it’s doing well, but to detect when it reaches a
local minimum and gradually increase the noise in the
search until it is kicked out of the local minimum.
 This algorithm has several advantages from the stand-
point of a game designer. It’s simple to implement, fast for
modest sized problems, has good cache locality, doesn’t al-
locate memory while solving, and only has one parameter
(timeout).

Evaluation
Table 2 shows the performance of the system on several
PCG problems. Tests were run single-threaded on a 2015
laptop with a 2.6GHz Intel i7-6600U processor and 16GB
RAM. Line counts for code omit comments and blank lines.

 The NPC and party generators are for the problem used in
the introduction. Sudoku is a minimal board genera-
tor/solver for standard Sudoku. It forces uniqueness of num-
bers in rows and columns, but does not choose clues to give.
 The “Storyteller demo” is a reimplementation of original
demo of Daniel Benmergui’s forthcoming Storyteller game
(Benmergui, 2013, 2018), in which players arrange charac-
ters in comic-book-style panels and the system determines
the underlying story events that would explain the configu-
rations, and their effects on the characters. The problem en-
coding uses 10 predicates: rich(𝑥𝑥), caged(𝑥𝑥), evil(𝑥𝑥),
has_sword(𝑥𝑥), kill(𝑥𝑥,𝑦𝑦), loves(𝑥𝑥,𝑦𝑦), dead(𝑥𝑥),
has_tombstone(𝑥𝑥), one proposition (someone_free), and
13 axioms.
 The Inverse Floyd-Warshall tests are provided as an ex-
ample of what the system is not good at. These use the FW
axiomatization given above to solve for a random set of
edges that will give a graph with a specified transitive clo-
sure. While it works, there are much faster ways of solving
this problem, as discussed above.

Hybrid solving
The embedded nature of the system makes it easy to con-
struct pipelines of special-purpose solvers in which each
stage fixes particular aspects of the solution and passes it on
to the next stage. If a given pipeline stage cannot find a so-
lution, the previous stage is restarted to produce a new solu-
tion. However, if the problem is separable, meaning that a
solution is guaranteed to exist for any set of choices made
by the previous stages, then no backtracking is required.
The use of a specialized random graph generator, discussed
above, is one example of a hybrid generator.
 As an example, we wrote a simple solver for numeric in-
equality constraints. It is essentially a simplified implemen-
tation of the WalkSMT algorithm for stochastic SMT solv-
ing (Griggio, Phan, Sebastiani, & Tomasi, 2011), and can be
written as:

procedure CatSMT
 repeat until success or timeout

Table 2: Timing results for simple PCG problems

Task Problem object 𝝁𝝁𝝁𝝁 SAT problem Solution time 𝝁𝝁𝝁𝝁
Description Code (lines) Create Generate SAT Clauses Vars Average Max
NPC generator 10 - - 26 16 3.2 6.9
NPC generator w/stats 24 - - 15 21 1.7 6.5
Party generator 33 - - 82 46 11 84
Sudoku generator/solver 15 - - 243 730 45 815
Storyteller demo 42 1127 136 202 74 68 189
Inverse Floyd-Warshall (V=5) 22 632 217 500 226 41 121
Inverse Floyd-Warshall (V=20) 22 27,087 64,720 38,000 15,601 38,923 70,440

42

 𝑚𝑚 = CatSAT.Solve()
 𝑐𝑐 = all inequalities marked as true in 𝑚𝑚
 Use rejection sampling to solve the inequalities 𝑐𝑐

The rejection sampler here is very simple (<230 lines of C#),
but is sufficient to add the generation of stats to our NPC
generator, including different class-dependent constraints,
such as requiring fighters to have higher strength than intel-
ligence, or magic users to have higher intelligence than
strength. Results are shown in Table 2 under “NPC genera-
tor with stats”

Probability patching
One issue with any random generator is that some kinds of
configurations have more solutions than others, and so are
chosen more frequently. As discussed above, 98% of pos-
sible parties in our example involve a human and/or a cleric.
If this doesn’t bother the designer or player, then it’s not a
problem. If it is problematic, various techniques can be used
to adjust the sample distribution.
 The simplest is a to decide a race and class in advance
using a random number generator, then force their values in
the Problem object. This gives the designer direct control
over the distribution of those specific variables, and allows
the SAT solver to run faster. This is another example of
hybrid solving.
 The probability of particular combinations can be in-
creased by giving those combinations extra, hidden attrib-
utes to choose values for. This increases the number of no-
tional solutions for those combinations, and thereby their
frequency of occurrence. The additional attributes can then
be ignored.
 Conversely, combinations that are judged to occur too
frequently can be controlled using rejection sampling. To
reduce the frequency of insectoid fighters by 50%, check the
generated character to see if they’re an insectoid fighter. If
so, regenerate it with a probability of 50%.

Future work
There are many obvious additions that would make the sys-
tem more useful. The most obvious of these would be to
integrate SMT support in the solver. It would also be useful
for the system to ship with a standardized implementation
of a floating-point solver, perhaps based on Craft (Horswill,
2015). Another useful and straightforward extension would
be to modify the solver to support MAXSAT (optimization).
Another possible improvement would be to add optional in-
cremental generation of loop formulae, allowing the use of
non-tight programs. However, it’s unclear how well this
would work with stochastic local search.

 There are many performance improvements that are pos-
sible, as the current system is not especially well optimized.
The use of watched literals (Moskewicz, Madigan, Zhao,
Zhang, & Malik, 2001) instead of counters, for example,
may improve performance.
 Finally, although it may be easier to write a Sudoku gen-
erator in CatSAT than in raw C#, it still requires considera-
ble comfort with both C# programming and logical axio-
matization. A designer-facing tool, a la Tracery (Compton,
Filstrup, & Mateas, 2014), that would help designers build
generators will be important in the future.

Conclusion
SAT-based systems provide a flexible and highly expressive
framework for finite-domain PCG problems, but have tradi-
tionally been difficult to implement in a running game.
CatSAT shows that modest-sized problems can be effi-
ciently expressed, solved, and integrated with a performance
profile that’s acceptable for a wide range of games. Gener-
ators can be easily created with a few lines of code, and
solved in tens of microseconds. No search algorithms need
be written or debugged. Generators can be incrementally
tuned, both in terms of their constraints, and their generation
frequencies. Moreover, their behavior can be dynamically
steered at run-time to suit gameplay needs.
 In addition to making it easier to add PCG to a game, the
steerability of the system allows it to be put to unusual uses.
It could, for example, be used for dynamic difficulty adjust-
ment (DDA) to adjust the level of challenge of enemies or
puzzles. It can be used for bespoke boss and item generation
to fit the narrative needs of the game, based on the player’s
current stats and inventory. And it can be used as an aid in
configuration interfaces (e.g. character or ship designers) to
allow the player to specify some attributes, while allowing
the system to generate reasonable default values for the re-
maining attributes. If the player doesn’t like a chosen value,
they can change it or just ask the system to choose a different
random configuration.
 Most excitingly, easy constraint satisfaction could allow
the creation of fundamentally new game mechanics, such as
the narrative puzzles of Benmergui’s Storyteller. The best
way to discover such mechanics is to get deployable ver-
sions of these new technologies into the hands of practicing
game designers.

Acknowledgements
I would like to thank Ethan Robison, Adam Smith, Rob
Zubek, Robby Findler, Spencer Florence, and the reviewers
for their helpful references, advice, and comments.

43

References
Benmergui, D. (2013). Storyteller. In Experimental Gameplay
Sessions, Game Developer’s Conference. San Francisco, CA:
UBM Techweb.
Benmergui, D. (2018). Storyteller. Retrieved from
http://www.storytellergame.com
Bertoni, a, Bertoni, A., Grossi, G., Grossi, G., Provetti, A.,
Provetti, A., … Tari, L. (2000). The Prospect for Answer Sets
Computation by a Genetic Model. In AAAI Spring Symposium on
Answer-Set Programming (pp. 1–5).
Biere, A., Heule, M., Maaren, H. van, & Walsh, T. (2009).
Handbook of Satisfiability. New York.
Chakraborty, S., Fremont, D. J., Meel, K. S., Seshia, S. A., &
Vardi, M. Y. (2014). Distribution-Aware Sampling and Weighted
Model Counting for SAT. In AAAI-14.
Compton, K., Filstrup, B., & Mateas, M. (2014). Tracery :
Approachable Story Grammar Authoring for Casual Users. Papers
from the 2014 AIIDE Workshop, Intelligent Narrative
Technologies (7th INT, 2014), 64–67.
De Moura, L., & Bjørner, N. (2008). Z3: An efficient SMT Solver.
In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics).
Eiter, T., Faber, W., Fink, M., & Woltran, S. (2008). A user’s guide
to gringo, clasp, clingo, and iclingo. Annals of Mathematics and
Artificial Intelligence.
Gelfond, M., & Lifschitz, V. (1988). The stable model semantics
for logic programming. 5th International Conf. of Symp. on Logic
Programming.
Gomes, C. P., Sabharwal, A., & Selman, B. (2006). Near-uniform
sampling of combinatorial spaces using XOR constraints.
Advances In Neural Information Processing Systems.
Griggio, A., Phan, Q.-S., Sebastiani, R., & Tomasi, S. (2011).
Stochastic Local Search for SMT: Combining Theory Solvers with
WalkSAT. In T. C. & S.-S. V. (Eds.), Frontiers of Combining
Systems. FroCoS 2011. Lecture Notes in Computer Science, vol
6989 (pp. 163–178). Berline, Heidelberg: Springer.
Hirsch, E. A., & Kojevnikov, A. (2005). UnitWalk: A new SAT
solver that uses local search guided by unit clause elimination.
Annals of Mathematics and Artificial Intelligence.
Hoos, H. H. (2002). An Adaptive Noise Mechanism for WalkSAT.
Proceedings of the 18th National Conference on Artificial
Intelligence - AAAI’02, 655–660.
Hoos, H. H., & Stützle, T. (2004). Stochastic Local Search:
Foundations and Applications. Stochastic Local Search
Foundations and Applications.
Horswill, I. D. (2015). Craft: A Constraint-Based Random Number
Generator. In Foundations of Digital Games (FDG-15).
Isla, D. (2005). Handling Complexity in the Halo 2 AI. Game
Developer’s Conference 2005. San Francisco, CA, USA: CMP,
Inc.
Marques-Silva, J. P., & Sakallah, K. A. (1999). GRASP: A search
algorithm for propositional satisfiability. IEEE Transactions on
Computers.
Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., & Malik,
S. (2001). Chaff: engineering an efficient SAT solver. In
Proceedings of the 38th Design Automation Conference (DAC
2001).

Nicolas, P., Saubion, F., & Stéphan, I. (2002). Answer Set
Programming by Ant Colony Optimization. In Proc. 8th European
Conf. Artificial Intelligence (JELIA).
Rossi, F., Van Beek, P., & Walsh, T. (2006). Handbook of
Constraint Programming. (F. Rossi, P. Van Beek, & T. Walsh,
Eds.), Change (Vol. 35). Elsevier. Retrieved from
Selman, B., Kautz, H., & Cohen, B. (1995). Local Search
Strategies for Satisfiability Testing. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 00.
Shaker, N., Togelius, J., & Nelson, M. J. (2014). Procedural
Content Generation in Games: A Textbook and an Overview of
Current Research.
Smith, A. M. (2017). Answer Set Programming in Proofdoku. In
Proceedings of the Fourth Workshop on Experimental AI in Games
(EXAG 4).
Smith, A. M., Andersen, E., & Mateas, M. (2012). A Case Study
of Expressively Constrainable Level Design Automation Tools for
a Puzzle Game. In International Conference on the Foundations of
Digital Games. Raleigh: ACM Press.
Smith, A. M., & Mateas, M. (2011). Answer Set Programming for
Procedural Content Generation : A Design Space Approach. IEEE
Transactions on Computational Intelligence and AI in Games,
3(3), 187–200.
Smith, A. M., Nelson, M. J., & Mateas, M. (2010). LUDOCORE :
A Logical Game Engine for Modeling Videogames. Elements, 91–
98.
Smith, G., Whitehead, J., & Mateas, M. (2010). Tanagra: A Mixed-
Initiative Level Design Tool. In 5th International Conference on
the Foundations of Digital Games FDG 2010 (pp. 209–216).
ACM.
Smith, G., Whitehead, J., & Mateas, M. (2011). Tanagra : Reactive
Planning and Constraint Solving for Mixed-Initiative Level
Design. IEEE Transactions on Computational Intelligence, AI and
Computer Games, 3(3), 201–215.
Torlak, E., & Bodik, R. (2013). A lightweight symbolic virtual
machine for solver-aided host languages. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language
Design and Implementation - PLDI ’14.
Van Emden, M. H., & Kowalski, R. a. (1976). The Semantics of
Predicate Logic as a Programming Language. Journal of the ACM,
23(4), 733–742.
Van Gelder, A., Ross, K. A., & Schlipf, J. S. (1991). The well-
founded semantics for general logic programs. Journal of the
ACM, 38(3), 619–649.

44

	Abstract
	CatSAT
	Logic programming as an embedded DSL
	Semantics
	Solving
	Evaluation
	Hybrid solving
	Probability patching
	Future work
	Conclusion
	Acknowledgements
	References

