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Abstract

Players of digital games face numerous choices as to what
kind of games to play and what kind of game content or in-
game activities to opt for. Among these, game content plays
an important role in keeping players engaged so as to increase
revenues for the gaming industry. However, while nowadays
a lot of game content is generated using procedural content
generation, automatically determining the kind of content that
suits players’ skills still poses challenges to game develop-
ers. Addressing this challenge, we present matrix- and tensor
factorization based game content recommender systems for
recommending quests in a single player role-playing game.
We discuss the theory behind latent factor models for recom-
mender systems and derive an algorithm for tensor factoriza-
tions to decompose collections of bipartite matrices. Extensive
online bucket type tests reveal that our novel recommender
system retained more players and recommended more en-
gaging quests than handcrafted content-based and previous
collaborative filtering approaches.

Introduction
Recommender systems have become important tools of the
trade in e-commerce, where they provide personalized sug-
gestions to users who have to browse vast product portfo-
lios (Smith and Linden 2017). Players of digital games, too,
face numerous decisions, both in-game (e.g. choosing quests,
characters, or tactics) and out-game (e.g. buying additional
downloadable content packages in semi-persistent games,
making In-App Purchases in free-to-play (F2P) games, or
switching to different games on online gaming platforms)
(Runge et al. 2014; Sifa, Bauckhage, and Drachen 2014;
Ryan et al. 2015b; Saas, Guitart, and Perianez 2016). Such
decisions impact their gameplay experience and result in
player retention or churn. Game producers are therefore inter-
ested in building recommendation systems to provide tailored
game content to their users in order to keep them engaged. In
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this work, we focus on recommender systems for game con-
tent, in particular, on recommending quests in an F2P hack
and slash styled role-playing game known as Trollhunters:
Adventures in the Troll Caves. In addition to the scripted main
quests that contribute to the overall progression of the game,
players are offered side quests which are pre-generated by
procedural content generation. In order to keep the players
engaged and increase player retention, the difficulty of these
side quests should match with user’s skills maintaining a feel-
ing of flow (Chen 2007) i.e. the difficulty is neither so hard
that the users give up nor so easy that they get bored from
the lack of challenge. Several other factors contribute to the
level of enjoyment such as the type of quests, quest duration,
weapons available in each quest etc. However, identifying
such features require a lot of analysis, given the number
of players is large, such an approach is highly impractical.
Therefore, we mainly focus on data-driven approaches such
as learning representations from player-quest interactions and
build a recommender system based on latent factor analysis.

Developing this in-game quest recommender system posed
a number of challenges. Primarily, due to a large number of
players and its inherent online nature, any such system has
to be trained incrementally online. Secondly, the game itself
was being developed along with the recommender system,
bundled together and released to the users as a one-time de-
liverable. This means that the traditional process of building
a recommender system by build, test and tune approach is
not a viable option in our case. Also, the evaluation metrics
used in an off-line batch setting is not well suited. Therefore,
our contributions in this paper mainly focus on addressing
these challenges in building a framework for such an online
quest recommender system. First, we derive an extension of a
tensor factorization method which could be trained iteratively.
Next, to evaluate our models, we perform bucket testing of
our models on different user groups and consider player re-
tention as our evaluation metric since it implicitly measures
player engagement. Finally, we compare three different en-
gagement metrics of each group to further assess the quality
of the recommendations.
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Recommender Systems in Games
Grouping the previous work based on the type of input data
used to generate the recommendations, we observe that most
of the work on recommender systems has been built on con-
textual game related as well as in-game behavioral data.

Previous work in the former group includes contextual
data in the form of text and the proposed recommendation
approaches take advantages of vector space models when
finding similar players that we will also consider for our con-
tent recommender systems. The work from (Meidl, Lytinen,
and Raison 2014) applies information theoretic approach to
co-cluster occurrences of adjectives and context words in user
reviews to find similar games for recommendations. The pro-
posed method represents each user review in a vector space
that is defined by the frequencies of all the co-occurrences of
its adjectives and context words and was evaluated off-line
based on reviews from ten players. Following that, a matrix
factorization based game recommender system in form of
a search engine has been proposed by (Ryan et al. 2015b).
Building on that work, (Ryan et al. 2015a) utilize matrix
factorization to build a context based recommender system,
that recommends games to players based on their game re-
views. The authors evaluate their recommendation results
based on surveying ten people and conclude that matrix fac-
torization provides a significant increase compared to the
baseline recommender in terms of matching accuracy.

Continuing with the studies related to using in-game behav-
ioral data for building recommender systems, we note simi-
larities to the former case in terms of utilizing vector space
representations for performing recommendations, however,
we observe more variety in terms of applications. In (Sifa,
Bauckhage, and Drachen 2014) the authors proposed the use
of a constrained two-way matrix factorization model to build
a game recommender system based on playtime information,
which (unlike any type of game rating) in the recommender
systems literature is classified as a type of implicit feedback.
The authors evaluated the generalization of their methods
in an off-line fashion by predicting the playtime of holdout
games. Similarly the industry case study from (Weber 2015)
includes neighborhood based recommendation approaches
that for each user rank in game items with respect to item
inventory of other similar players. (Sifa et al. 2018) propose
a hybrid profiling based playstyle recommender system using
matrix factorization and evaluated their system in an online
fashion by conducting a survey about the motivation of the
analyzed thirty players.

Our work differs from the previous work in several re-
spects. First, to the best of our knowledge, our work is the to
first to publish about an architecture of a large scale recom-
mender system for game content. Second, our work provides
an online evaluation by bucket testing the performance of
different recommendation algorithms and their settings in
the context of game analytics. Third, our work is the first to
build tensor factorization based recommender systems for
collaborative filtering in games. To this end, we extend the
algorithm from (Sifa et al. 2016) to factorize tensors of cer-
tain structural constraints and derive algorithm to decompose
tensors that contain a collection of bipartite matrices.

Trollhunters: Adventures in the Troll Caves
We perform our evaluation via a video game. Its original
title is: Trolljäger: Abenteuer in den Trollhöhlen 1. It is an
ad-driven free-to-play role-playing hack and slash dungeon
crawler (see Fig. 1), where users take control of the protag-
onist, who is accompanied by two AI non-player characters
(NPCs). The core loop of the game consists of the player
starting in a dungeon marketplace, choosing a quest offered
by two out of three NPCs, entering a procedurally gener-
ated dungeon, completing the quest, and finally returning to
the marketplace. The quest phases can include finding gems,
fighting enemies, and, occasionally, finding lost friends. Com-
pletion of each quest gives experience points which increase
the player level. These levels can be invested in one of the
three player attributes of strength (health), agility (movement
and attack speed) and damage. The player character maxes
out at level 30 and can invest only ten points in each attribute.
Each quest has one to three phases. Quests are classified into
two types: story quests and side-quests, that are randomly
generated using a procedural content generation algorithm.

The generator for the latter takes the difficulty value, and
seed as parameters and the difficulty value defines how strong
the enemies will be. The players can complete a quest if
they finish all phases. They can also fail it if they die or
can abandon/quit it from the in-game menu if they dislike
it. The procedural quest generator uses pre-built dungeon
pieces which are put together to generate a complete level.
It was used to create 85,000 quests. Using a client-server
architecture, the game is rendered at the client-end, and the
recommendation algorithms run at the server-end.

Following a tutorial quest, in order to familiarize the player
with the game, build a user profile, and avoid the cold start
problem, the user is given a completely random pool of quests
by the server up until level 3. Following that we continue to
send random quests in the case of our control group (Base-
line), and all other groups receive quests from their respective
recommendation algorithms.

A Content Based Recommender System
Our content-based (CB) quest recommendation approach
is an intricate and iteratively developed rule-based solution
inspired by (Leskovec, Rajaraman, and Ullman 2014) and
divided into a profile learner and a filtering component. Since
we generate our content procedurally, we do not need to
categorize our quests as each quest’s discrete information
is already known. The primary focus of the profile learner
is to find the most suitable quest for players based on their
skill. Its secondary focus is to use players’ preferences to find
the most like-able quest. With our content-based method, we
work with the assumption that the player’s skill is not always
deducible from the player’s progress in the game.

To estimate a user’s skill level based on the updated profile,
we apply linear smoothing to Health Lost and Accuracy of all
quests completed so far, giving the most recent ones a higher
weight than older ones. Reason being, as the players learn
the mechanics, their performance will improve. Similarly, a

1The game is an HTML5 application hosted on Toggo at the
link: http://www.toggo.de/serien/trolljaeger/index-4310.htm
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(a) interaction with a quest giver (b) the quest dialogue (c) a combat scene

Figure 1: The core loop of Trollhunters: Adventures in the Troll Caves (original: Trolljäger: Abenteuer in den Trollhöhlen)
consists of choosing a quest offered by NPCs and entering the dungeon to complete all phases of the quest. Hack and slash styled
combat is the primary game mechanic. (a) shows one of the three NPC quest givers where the exclamation point and circle
indicate that a quest is available. (b) shows the quest dialogue for the quest phases (three in this case) and steps of each phase. (c)
shows the protagonist and AI companion (in the back) in combat with two trolls (on the right).

player returning to the game after a hiatus might perform
poorly, so we would like to reduce the difficulty before ramp-
ing it up again. For the total number of m quests completed
by a user and a normalization coefficient for the jth quest
wj = j

/∑m
i=1 i we define the weighted averages of Ac-

curacy and Health Lost respectively as au =
∑m

j=1 wjaj
and hu =

∑m
j=1 wjhj , where aj and hj are respectively the

recorded accuracy and health loss values of quest qj .
We then calculate the average and standard deviation of

the Accuracy represented by Aa and As respectively across
the complete set of quest results performed by all users of
the group. We will use this as a baseline when computing
the difficulty value of an individual user. We set the average
Health Lost Ha to a heuristic value of 40% and calculated
its standard deviation Hs from all user results. This heuris-
tic complies with our previous discussion about flow (Chen
2007) i.e. the difficulty level should neither be too easy nor
too hard. The consensus of using this value was reached dur-
ing several rounds of playtesting. We apply linear smoothing
to the failure rate ru as well, but it takes on a slightly differ-
ent form. Firstly, we take the ratio of quests failed at each
level qfl versus the total quests attempted at each level ql
weighted in the order of the player level l when the quest was
attempted, where L is the maximum level which is 30. Given
our weighting coefficient wl = l

/∑L
i=1 i we define the fail-

ure rate as ru =
∑L

i=1 wi(qfi/qi). We also give the failure
rate a heuristic value. In the pilot study, the average failure
rate Ra was set at 10% with a standard deviation of Rs of 5%
which resulted in a player failure rate of 25.94%. We reduced
the average failure rate to 1% with the standard deviation of
0.5% which as presented in the evaluation section, reduced
the actual player failure rate.

Following that, using the three mentioned measures, we
estimate the player’s difficulty value. Player levels range
from 1 to 30, and our Baseline receives quests that have a
difficulty equivalent to their level. In content-based approach,
the difficulty, need not be equal to the player’s level. We
compute it by measuring how better or worse the player is
performing compared to our global or heuristic averages for
which we use piecewise linear functions. The difference or

what we call, the variance between the player’s Health Lost,
Accuracy and Failure Rate values compared to the global or
heuristic values, allows us to compute how much the player’s
preferred difficulty value might vary from the player’s default
difficulty, i.e. the player level. In the case of Health Lost
and Accuracy, if the player’s values are above the global or
heuristic values, our difficulty variance is positive, and if they
are below, our difficulty variance is negative. However, the
Failure Rate only influences the difficulty variance if it drops
below the heuristic value; otherwise, its variance is set to
zero.

Once we have the three variance values, we take their
weighted sum. The weights in this case are set based on how
much they should impact a player’s difficulty value. We set
the weights for Accuracy, Health Lost and Failure Rate to
18.33%, 15% and 66.67% respectively. We note that the dif-
ficulty variance range is set in the interval [−3, 3], rounded
up to the nearest integer. The weights and the intervals both
were computed during playtesting by iterating through sev-
eral variations. The variance is added to or subtracted from
the player’s level to compute the new difficulty value. This
value is then stored permanently as part of the player infor-
mation and is recomputed each time the player finishes a
quest. Whenever the player needs a fresh batch of quests to
choose from, we recommend the quests that have the player’s
difficulty value instead of their level.

The secondary function of the content-based approach is
to predict user preferred quests. A quest can take place in one
of two environments, one of the three quest giver NPCs can
offer it, and it can have one out of the three unique phases.
To create the user’s preference profile, we divide the number
of quests played with the mentioned features, by the total
number of quest played. This gives us probabilities of each
choice of each of the three features. While recommending
quests, we favor the quests with the features that the player
prefers. One pitfall of this method and any other content-
based approach, in general, is over-specialization (Leskovec,
Rajaraman, and Ullman 2014) to avoid which, 30% of the
quests we send to the user are chosen randomly.
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Collaborative Filtering For Quest
Recommendations

One of the fundamental problems of rule-based recommender
systems such as the one we described above is the diversity
in user behavior. This makes it very expensive to build and
maintain new systems; as even slight changes in the recom-
mendations usually require numerous iterations and extensive
playtesting to find the right balance in the game and not lead
to player churn. Data-driven methods, in particular, collab-
orative filtering algorithms, aim to circumvent these issues
by automatically capturing different behavioral aspects and
being straightforward to train to model inherently distinct
user behavior (Smith and Linden 2017).

In the context of games, among numerous data-driven
recommender systems techniques, neighborhood oriented
collaborative methods have been widely adopted due to their
easiness of implementation and success in practical appli-
cations (Sifa, Bauckhage, and Drachen 2014; Weber 2015;
Ryan et al. 2015a). The main idea behind such methods
is to recommend the (active) players new content-based
on matching their content consumption history against the
one from other similar players. Akin players, in this case,
can be found by considering their similarity in the con-
tent space, which is the vector space defined by the ana-
lyzed content features. A commonly used similarity measure
that is bounded and (unlike the euclidean distance) rather
concentrates on tendencies than size is the cosine similar-
ity, which for given two vectors vi,vj ∈ Rm can be real-
ized by normalizing the dot product between two vectors
by both their distances as σ(vi,vj) =

vT
i vj

||vi|| ||vj || . Exam-
ple recommender systems that make use of player repre-
sentations in vector spaces include the (weighted) bag of
words when modeling game reviews in (Ryan et al. 2015a;
Meidl, Lytinen, and Raison 2014) or playtime representations
from (Sifa, Bauckhage, and Drachen 2014).

Considering the task of quest recommendation in our
game, as we do not possess any explicit feedback to quantify
player’s satisfaction level we consider the implicit feedback
by means of their behavioral activities for the played quests.
Following that, unlike conventional single item-user repre-
sentations as bipartite matrices, we consider a more gener-
alized approach for our case and adopt a third-order tensor
representation (Kolda and Bader 2009; Zook et al. 2012;
Sifa et al. 2016), where we build our recommender systems
by grouping different bipartite matrices containing certain be-
havioral aspects. That is, given n players, m quests and d dif-
ferent behavioral aspects that are related to the played quests,
we consider a collection of matrices X = {X1, . . . ,Xd},
where each slice Xc ∈ Rm×n ∀ 1 ≤ c ≤ d and xcji rep-
resents the performance of the cth feature of ith player at
the jth quest. For our case, we consider d = 7 behavioral
aspects that include user level, strength, agility, damage, ac-
curacy, health lost and completion time. Given that, we can
build a neighborhood oriented (NO) recommender system
by individually calculating the cosine similarity between two
arbitrary players for each content matrix Xc and combine
the results as a weighted sum over the slices by considering

the composite similarity measure

σ̂(X::i,X::j) =
d∑

c=1

wcσ(xc:i,xc:j), (1)

where w ∈ Rd is a stochastic (nonnegative) vector, σ(·, ·)
represents the cosine similarity, X::i ∈ Rm×d represents the
matrix containing the ith columns of each slice and xc:i ∈
Rm represents the ith column of the cth slice of X .

Yet, one particular characteristic of neighborhood-oriented
methods is that they naturally favor assigning high similar-
ity values to players that have only played the same games
together and might not produce recommendations for similar
quests. To circumvent that, we can use matrix factorization
methods, that can reveal the hidden structures in the quest
dataset by giving similar weights to similar quests in the
latent factor space. This can be realized by individually fac-
torizing each slice of Xi into combination of two factor ma-
trices (Furnas et al. 1988; Cremonesi, Koren, and Turrin 2010;
Sifa, Bauckhage, and Drachen 2014) by considering the trun-
cated Singular Value Decomposition as

Xi = U iΣiV
T
i = U iΣ

1
2
i Σ

1
2
i V

T
i = QiP i, (2)

where for k ≤ rank(Xi), the diagonal Σi ∈ Rk×k contains

the value-sorted highest k singular values, Σ
1
2
i is its square

rooted values, U i ∈ Rm×k and V i ∈ Rn×k are respectively
the truncated left and right basis matrices, Qi ∈ Rm×k is
the factor matrix for the quests and P i ∈ Rk×n is the factor
matrix for the players. Similar to our neighborhood oriented
recommendation approach, combining each individual player
factor matrix as P = {P 1, . . . ,P d}, we can build a recom-
mender system by finding similarities between players by
means of (1) for P in the latent factor spaces (instead of X )
corresponding to the players. In the following, we will refer
to this recommendation method as the matrix factorization
(MF) approach.

Introducing Tensor Factorization for Game
Content Recommender Systems

Although our matrix factorization approach is designed to
capture latent similarities between the available quests and
players for each of our d behavioral aspects, it does not
consider patterns among these aspects. This is especially im-
portant for our case as each slice of X encodes different
behavioral aspects of the exact same players. Tensor factor-
ization methods tackle this issue by representing the data
using local as well as global factors (Kolda and Bader 2009;
Sifa et al. 2016). In this section we will introduce the tensor
factorization model called Relaxed Tensor Dual Decomposi-
tion into Directed Components (RTDD), aka the TUCKER-II
decomposition (Tucker 1966; Kolda and Bader 2009), derive
an easy-to-implement algorithm to find its factors and finally
show how we can use the resulting decomposition for game
content recommendation.

Given a tensor containing bipartite column data matrices
Y = {Y 1, . . . ,Y d}, where Y i ∈ Rm×n ∀ 1 ≤ i ≤ d,
RTDD represents each slice of Y as

Y i = AWi B
T (3)
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Figure 2: Generalization of DEDICOM for factorizing a col-
lection bipartite matrices for game content recommendations.
The model partitions each slice Y i ∈ Rm×n of the data ten-
sor Y = {Y 1, . . . ,Y d} as a combination of two global basis
matrices A ∈ Rm×p and B ∈ Rn×q and the corresponding
local weighting matrix W i ∈ Rp×q .

where A ∈ Rm×p is the left basis matrix, Wi ∈ Rp×q

is the coefficient matrix and B ∈ Rn×q is the right basis
matrix. RTDD is a generalization of Dual Tensor DEDICOM,
Tensor DEDICOM, and INDSCAL (Harshman 1978; Sifa et
al. 2016) to provide low rank representations of collections
of bipartite tensors, while the other methods work on square
similarity matrices (see Fig.2).

Turning our attention to finding RTDD factors, we note
that similar to Tensor DEDICOM and INDSCAL (Kolda and
Bader 2009; Sifa et al. 2016), given a data tensor Y and a
set of desired factor parameters (p, q), RTDD factors can
be found by minimizing the sum of the reconstruction error,
which is usually represented as the sum of the squared matrix
norm. Namely, we aim to find optimal factors A, B and
W = {W 1, . . . ,W d} minimizing

ERTDD(A,B,W) =
d∑

i=1

∥∥∥Y i −AWi B
T
∥∥∥2. (4)

It is important to note that, since (4) is not convex on the
multiplied factors, optimal factors minimizing (4) are found
in an alternating least squares (ALS) fashion (Kolda and
Bader 2009; Sifa et al. 2016). In this case we iteratively
minimize our error function over individual factors while
keeping the others fixed.

We now turn our attention to deriving updates for an ALS
algorithm minimizing (4), which we will group under three
different types with respect to their algebraic structure for
A, B and each slice of W . We will particularly concentrate
on updates constraining the basis matrices A and B to be
column orthonormal, i.e. ATA = Ip and BTB = Iq .

Similar to case for Tensor DEDICOM (Sifa et al. 2016),
updates of the matrices W i can be computed by considering
W i ← A†Y iB

T† =
(
ATA

)−1
ATY i B

(
BTB

)−1
which,

in case of orthogonal A and B, simplifies to

W i ← ATY i B. (5)

To derive an update for A and B we consider the (lin-
earized (Sifa et al. 2016)) trace representation of (4)

ERTDD =
d∑

i=1

tr
[
Y T

i Y i

]
− 2 tr

[
Y T

i AW iB
T
]

+tr
[
BW T

i A
TAW iB

T
]

(6)

and note that the gram matrix
[
Y T

i Y i

]
neither depends on

A nor B. Additionally, the term tr
[
BW T

i A
TAW iB

T
]

can be simplified because of orthogonality which leads to
tr
[
BW T

i W iB
T
]
. Using the invariance of traces under

cyclic permutations leads to tr
[
BTBW T

i W i

]
, which re-

sults in tr
[
W T

i W i

]
and is also independent of A and B.

Therefore, minimizing our reconstruction error in (6) with re-
spect to A or B under orthogonality constraints is equivalent
to maximizing the trace function

ÊRTDD =
d∑

i=1

tr
[
Y T

i AW iB
T
]
. (7)

So as to derive an ALS update for A, we can isolate A for
(7) by using the cyclic permutation and linearity of the traces
as

ÊRTDD =
d∑

i=1

tr
[
AW iB

TY T
i

]
= tr

[
A

d∑
i=1

W iB
TY T

i

]
. (8)

Considering D =
∑

i WiB
TY T

i and the thin SVD of its
transpose (since p � m) DT = UΣV T , we can reformu-
late (8) as

ÊRTDD = tr
[
AV ΣUT

]
= tr

[
UTAV Σ

]
. (9)

We note the reformulation in (9) results in a special trace func-
tion of special type of multiplication of a semi-orthonormal
matrix UTAV and nonnegative diagonal matrix Σ, whose
upper bound is tr [Σ] (Ten Berge 1983). Given that the maxi-
mum of (7) is attained for UTAV = Ip allows us to define
an update for A minimizing (4) as

A← U V T . (10)

Finally, we can derive an ALS update for B to maximize
(7) following the same steps as above. That is, considering
the assignment J =

∑
i W

T
i ATY i and the SVD of its

transpose as JT = ÛΣ̂V̂
T

results in an ALS update

B ← Û V̂
T
. (11)

In summary our ALS algorithm to factorize a given tensor
Y containing collection of bipartite matrices as in (3) by
randomly initializing a tensor W and orthogonal matrices A
and B and respectively considering the updates we defined
in (5), (10), (11), which defines one ALS iteration, until
reaching a predefined number of iterations or a thresholded
value for (4) (Sifa et al. 2016).

Considering our quest data tensor X from the previous sec-
tion, once we have found proper RTDD factors {A,W ,B}
using our above algorithm to factorize X as in (3), we can
construct a player factor tensor P̂ = {P̂ 1, . . . , P̂ d}, where
we define each slice of P̂ as P̂ c = W cB

T . Similar to our
NO and MF approaches, our RTDD approach is based on
finding similar players by means of our composite similarity
measure from (1) using P̂ .
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Baseline CB NO MF RTDD

Day 1 8.21 8.64 7.79 8.92 8.93
Day 2 5.62 6.62 5.90 6.49 6.78
Day 3 3.96 4.64 4.40 4.55 4.74
Day 4 2.88 3.49 2.89 3.30 3.48
Day 5 2.02 2.44 1.82 1.94 2.30
Day 6 1.19 1.55 1.11 1.25 1.51
Day 7 0.25 0.54 0.61 0.47 0.72

Average 3.45 3.99 3.50 3.85 4.07

Table 1: Daily retention rates from our online bucket testing
analysis for the first week of game play. The recommenda-
tion algorithms we compared in this work include random
(Baseline), content-based (CB), neighborhood oriented (NO),
and, matrix and tensor factorization based recommendation
models (respectively MF and RTDD). Our results indicate
that our tensor factorization based quest recommender has
always resulted better than our baseline and had the best daily
average values for retaining players in the game.

Recommendation Settings and Results
We first conducted a pilot study with a small number of play-
ers to test our platform during which, we fixed bugs and
as mentioned, updated the failure rate heuristic of the CB.
Following that, we evaluated our learning methods with a
total of 243,279 players out of which 129,983 players were
of interest since they played beyond the tutorial. Out of these
players, we selected a cohort of randomly chosen 25,686 play-
ers for our bucket testing to benchmark our recommender
algorithms. We have chosen the settings of our models using
the offline data from the 104,297 players. The game was
played on 12 different operating systems and three types of
platforms that include phones, tablets and desktop computers.
We have evaluated nine different groups (containing 2,854
players for each setting): considering our baseline recom-
mender, that randomly assigns quests to players, as well as
our content-based (CB), neighborhood oriented (NO), matrix
and tensor factorization (respectively MF and RTDD) based
recommendation algorithms. Each new user was assigned to
a group via a round-robin approach and once assigned the
players are never rotated to other groups.

Note that, since not every game aspect has the same signif-
icance, we considered individual weights when calculating
the similarity in (1). For all of our data driven methods, we
rate the user skill build highly so level, strength, agility and
damage have a weightage of 25%, 10%, 10% and 10% re-
spectively. While accuracy, health lost and completion time is
25%, 15% and 5% respectively. As the number of basis vec-
tors for factor based models has a crucial impact on the rec-
ommendation quality (Cremonesi, Koren, and Turrin 2010;
Sifa, Bauckhage, and Drachen 2014; Ryan et al. 2015a), we
considered three different settings for both for MF and RTDD
in our online evaluation. Note that, unlike our CB and NO
methods our MF and RTDD models required us to compute
and maintain the factorized matrices to support the filtering
process. We found a factorization cycle of three hours to be
a reasonable trade-off between capturing the different tem-

poral behavior and handling the factorization process for an
increasing number of players.

As for our evaluation metrics, we note that although being
game dependent, success of free-to-play game titles usu-
ally depends on two different yet interlinked rates: reten-
tion and monetization (Runge et al. 2014; Sifa et al. 2015;
Viljanen et al. 2018). Additionally, free-to-play games ben-
efit from high retention rates to increase the likelihood of
purchasing and clicking on in game ads and for that reason
we will consider retention as our main evaluation metric of
our recommendation algorithms. Given that, considering the
daily average retention for the first week of gameplay, we
note that in general our methods yielded better retention rates
than our baseline, which was 3.45%. The retention rates for
our CB and NO approaches were 3.99% and 3.50% respec-
tively. For our MF recommender we have chosen the number
of basis vectors k ∈ {100, 500, 2000}, which yielded the av-
erage retention rates of 3.58%, 3.85% and 3.38% respectively.
Whereas, for RTDD we considered the numbers of basis vec-
tors (p, q) ∈ {(700, 500), (1000, 2000), (2000, 4000)} and
obtained the retention rates of respectively 4.07%, 3.79%,
3.58%. We summarize our daily retention results of our best
models in Tbl. 1. Another retention indicator in free-to-play
games is related to the time between two consecutive ses-
sions (Hadiji et al. 2014; Sifa et al. 2015) that developers aim
to minimize. Analyzing the average intersession time values
from our recommendation methods (see Fig. 3a), we note
that only RTDD has yielded better results than our baseline
method. Following that, recalling our goal of having an opti-
mal difficulty level, we evaluated our methods considering
the failure rate (the ratio of failed quests versus attempted
quests) of the recommended quests, which we again aim to
ideally minimize to reduce the likelihood of player frustra-
tion. Comparing the results from Fig. 3b, we observe that
the recommendations of MF nearly halve the failure rates
while the recommendations of RTDD reduce the failure rate
by 28.43%. Together with our earlier results, this indicates
that unlike the MF method, our RTDD based recommender
system has recommended quests that are challenging enough
to fail (more than the ones recommended from MF) yet more
engaging due to better retention values. Similarly, our RTDD
method reduced the abandonment rate (see Fig. 3c) of quests
by 46% which implies that the recommended quests to the
players fit their profile and are preferable for them.

Conclusion and Future Work
In this paper, we introduced a game content recommender sys-
tem based on a tensor factorization approach. We compared
our method to several baseline techniques using an online
bucket testing evaluation based on extensive real world data
to recommend in-game quests. Our results showed that tensor
factorization based recommender systems overall performed
better than complex, manually designed rule based systems,
In contrast to the latter, our approach does not require experts
to become involved but works in a purely data driven manner.
Our future work will use these characteristics of our recom-
mender system to adapt it to different forms of game content
as well as to a wider variety of games.
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Figure 3: Summarizing our evaluation metrics of active users to evaluate the performance of the learning methods. (a) shows the
average time in hours between user’s play sessions, (b) compares the ratio of failed quests versus attempted quests and (c) shows
the ratios of abandoned quests. For all the metrics the lower is better.
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