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Abstract

We present a new way to represent and understand experience
managers – AI agents that tune the parameters of a running
game to pursue a designer’s goal. Existing representations of
AI managers are diverse, which complicates the task of draw-
ing useful comparisons between them. Contrary to previous
representations, ours uses a point of unity as its basis: that
every game/manager pair can be viewed as only a game with
the manager embedded inside. From this basis, we show that
several common, differently-represented concepts of experi-
ence management can be re-expressed in a unified way. We
demonstrate our new representation concretely by compar-
ing two different representations, Search-Based Drama Man-
agement and Generalized Experience Management, and we
present the insights that we have gained from this effort.

1 Introduction
Using an AI agent to tune parameters of a running game has
become a common practice. The specific goals of doing so
have varied widely, from balancing the competitiveness of
differently skilled players in Super Mario Kart (Ohyagi and
Satou 2005) to raising or lowering the tension that players
feel in Left 4 Dead and Rimworld (Valve Corporation 2008;
Booth 2009; Ludeon Studios 2013). In academia, this task
of influencing a game’s systems using AI has had many
names: dynamic difficulty adjustment (Hunicke and Chap-
man 2004), drama management (Mateas and Stern 2005),
adaptive game AI (Spronck et al. 2006), adaptive game me-
chanics (Lindley and Sennersten 2008), experience manage-
ment (Riedl et al. 2008), player-adaptive games (Ha et al.
2011), and procedural game adaptation (Thue and Bulitko
2012). Following Riedl et al. (2008), we use the term expe-
rience management throughout this text, as it is the most
general of the proposed descriptions; it is unbound from
any specific goal (e.g., balancing difficulty or producing dra-
matic situations) and it is not specific to games as its target
domain. We will refer to an AI agent that performs the task
of experience management as an AI manager.

To ensure that the design and application of AI managers
can benefit from prior work, it is necessary to support two
kinds of comparisons. For the designers of new AI man-
agers, it must be straightforward to compare alternative tech-
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nologies for AI managers (e.g., two different ways to build a
player model). Such comparisons can help determine which
technologies should be used when designing a new manager.
For practitioners wanting to apply an AI manager, it must be
straightforward to compare existing managers in a particu-
lar domain with a particular goal. This sort of comparison
could, for example, help decide which manager will best
balance competitiveness in Super Mario Kart. While mak-
ing both kinds of comparisons is important, little work has
supported doing so in practice, and there are few published
examples of such comparisons being made. With this work,
we aim to simplify the comparison of AI managers and their
related technologies by unifying their representations.

To compare different technologies for AI managers, one
must be able to represent managers in a common way. A
manager’s representation is a set of terms and concepts that
are used to explain its design (how it is intended to oper-
ate). This distinction between representation and design is
essential when comparing manager technologies, because
a manager’s representation is what an analyst uses to rea-
son about each technology’s suitability, given the design.
For example, if one represents an AI manager as an agent
that chooses between trees of potential non-player charac-
ter actions, one might view reactive planning as an attrac-
tive technology to use (Mateas and Stern 2005; Riedl et
al. 2008). Alternatively, if one represents an AI manager
as an agent that chooses between potential adjustments to
the player’s world state, one might prefer to use heuristic
search or reinforcement learning instead (Weyhrauch 1997;
Nelson et al. 2006b). Having a shared representation allows
an analyst to find similarities and differences between re-
lated technologies that are used by different managers (Nel-
son and Mateas 2008). Although several sets of managers
exist that share similar representations (Nelson et al. 2006a;
Roberts et al. 2006), (Young et al. 2004; Riedl and Stern
2006; Riedl 2009), (Thue et al. 2007; 2011; Ramirez and
Bulitko 2015), comparisons that use these representations as
their basis remain rare (Nelson and Mateas 2008). We sus-
pect that this rarity arises because the representations them-
selves often evolve in parallel with the design of each new
manager, and re-representing the old manager requires “ex-
tra”, time-consuming work (Thue 2015).

To compare different managers using a given domain and
goal, one must be able to make them share a common inter-

Proceedings of the Fourteenth Artificial Intelligence and  
Interactive Digital Entertainment Conference (AIIDE 2018)

130



face, which describes what information passes (and when)
between a game, a manager, and a player; it can be consid-
ered part of a manager’s representation. Having a shared in-
terface allows two managers to operate in (and thus be com-
pared in) the same domain. Examples of this sort of compari-
son are also rare (Ramirez and Bulitko 2015), since adapting
a manager to a new domain can be quite challenging.

We hypothesize that the observed lack of comparisons
among AI manager technologies and AI managers them-
selves is (at least partly) due to a pervasive, representational
gap; as long as the representation of each manager remains
coupled to that manager’s design (either by genesis or by
evolution), it will remain difficult to compare one manager
to another. In this paper, we propose and demonstrate a con-
crete step toward addressing this situation: a representation
for AI managers that unifies existing representations and
supports direct comparisons between them.

The remainder of this paper is organized as follows.
We begin by explaining some relevant concepts and ter-
minology, and follow with a review of related work. We
then present our approach, in which a game, an AI man-
ager, and a single player are represented in a Factored-
state Markov Decision Process (Boutilier, Dearden, and
Goldszmidt 1995). We demonstrate our approach by re-
expressing and comparing two different representations for
AI managers: Bates’, Weyhrauch’s, and later Nelson et
al.’s Search-Based Drama Management (1992; 1997; 2006b;
2008) and Thue et al.’s Procedural Game Adaptation / Gen-
eralized Experience Management (2012; 2015). We con-
clude by discussing the benefits and limitations of our ap-
proach and offering ideas for future work. We focus on sin-
gle player games throughout this paper, as an extension to
multiplayer games remains as future work.

2 Concepts and Terminology
We begin by making our notion of a manager’s representa-
tion more concrete. Formally, we view a manager represen-
tation (MR) as a set of definitions that explains how a game,
its AI manager, and a player interact with one another dur-
ing the course of any player experience in the given game.
Given a manager representation, we assert that it should be
possible to precisely determine: (i) how each element of the
game/manager/player system depends on any other element,
and (ii) both how and when each dependence is realized dur-
ing gameplay. Thus it should be possible to use a given MR
to precisely determine (i) how and when a manager or the
player exert their influence over the game, (ii) how and when
the manager or player learn about the current state of the
game, and so on. Deciding which elements should be repre-
sented in an MR is part of designing that MR.

To explain our contributions in Section 4, we will present
the game/manager/player system from two particular per-
spectives. The disjoint perspective views the game and the
manager as separate entities, where the latter modifies the
former as a player’s experience in the game proceeds. This
view of experience management is widely accepted, but
there is little agreement about which elements should be
used by each MR, nor how their dependencies should be de-
fined. We will support this point further in Section 3. The

joint perspective views the game and the manager as a sin-
gle entity, which the player interacts with as they would un-
der the disjoint perspective. Although this perspective is un-
common in the literature on experience management, it rep-
resents two realistic viewpoints: (i) that of a player who is
unaware of the manager, and (ii) that of the computing in-
frastructure on which the game and manager are executed.
It also represents a point of unity across all AI managers:
fundamentally, every such manager/game pair can be re-
represented as “just” a game (albeit a more complex game
than before). As we will show in Section 4, this unified, joint
perspective can be used as a starting point for bridging the
representational gap between existing AI managers.

To support our explanations in Section 4, we will repre-
sent an arbitrary computer game using a deterministic, sta-
tionary, Factored-state Markov Decision Process (FMDP)
similar to that used by Chakraborty and Stone (2011). Al-
though Markov Decision Processes (MDPs) are traditionally
used to represent the environment of an AI agent, we do not
seek to solve any MDP. Instead, we use the representational
capacity of MDPs in a more general way. Specifically, we
use an FMDP to represent the environment of an arbitrary
agent; the agent could be an AI system, a human player, or
any agent that can observe states and perform actions. When
we view a game as an FMDP, we reserve the right to consider
both the manager and the player as potential agents therein.

A (non-factored) deterministic MDP is given by a tuple
〈S,A,P〉, where S is a set of states, A is a set of actions that
an agent can perform, and P : S × A → S is a transition
function, where P(s, a) → s′ means that s′ is the state that
will deterministically occur when an agent performs action a
in state s. The current state of an MDP (at time step t ≥ 0) is
given by st. Using language more common to games, st is an
instantaneous snapshot of the game’s state, and the transition
function represents the game’s mechanics.

In an FMDP, the state representation is factored across n
factors v = 〈v1, . . . , vn〉, where each state factor v in v
is a variable that can hold a value in some domain D(v).
We use s(v) to denote the value of variable v in state s. For
example, Figure 1 shows some of the state factors for Super
Mario Kart, where each node represents a different variable
in the game state (e.g., racer 1’s position, R1.pos).

R2.rank R8.rank

(. . .)

R1.pos R1.vel R2.pos R2.vel R8.pos R8.vel

R1.rank

Figure 1: A partial view of the state factors (circles) and tran-
sition factors (arrows) for three of the eight racers in a Super
Mario Kart race (R# means “racer #”).

Further following Chakraborty and Stone (2011), we ad-
ditionally factor the representation of our FMDP’s transi-
tion function across n factors P = 〈Pv1

, . . . ,Pvn
〉, where

each transition factor Pv in P is a function that computes
the value of variable v, given a state and an action: Pv :
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S × A → D(v). For example, Pv(st, at) would compute
st+1(v) (which is the value of v in st+1). Concretely, the two
arrows pointing to variable R1.pos in Figure 1 indicate (by
the source of each arrow) which values in any current state
st will be used by PR1.pos to compute st+1(R1.pos). These
values are st(R1.pos) and st(R1.vel). For each agent action
in the FMDP, we say that the next state is computed by exe-
cuting all of the transition factors in P . Finally, we refer to
the time during which P’s transition factors are executed as
the FMDP’s execution phase; this occurs once per time step
and immediately follows the player’s action for that step.

We view a game as Factored-state MDP (FMDP) with
state factors in v and transition factors in P . Under the
joint perspective, we can also view a game/manager pair in
the same way: everything about both a game and its man-
ager can be represented as a single FMDP. Note that the
player is the only agent in this FMDP – the manager is not
an agent, as its operations have been completely “built-in”
to the FMDP. By representing a game/manager pair as an
FMDP and distinguishing between different types of state
factors and transition factors, we will show how two distinct
(disjoint-perspective) representations can be unified under a
common framework.

2.1 Problem Formulation
We aim to develop and demonstrate a manager representa-
tion that will unify existing manager representations, toward
ultimately facilitating new comparisons: both between AI
managers and between their related technologies. We will
judge our attempt to be successful if the new representation
allows us to (i) re-express common concepts of experience
management that we find in any given manager represen-
tation, and (ii) compare given manager representations in a
way that yields new insights.

3 Related Work
The study of experience management dates back at least
to Bates (1992), with early contributions by Laurel (1986)
and Weyhrauch (1997), all of which focused on manag-
ing interactive narrative experiences. Nelson et al. (2006b)
and Thue and Bulitko (2012) used Markov Decision Pro-
cesses to represent different aspects of how AI managers
work. Thue and Bulitko (and later Thue (2015)) additionally
sought to generalize their work across two kinds of expe-
rience management: drama management and dynamic dif-
ficulty adjustment. Although they successfully represented
one of each kind of manager, they did not compare them, and
they did not compare the representations of the two man-
agers. Nelson and Mateas (2008) performed a direct com-
parison of two managers that used different representations:
Search-based Drama Management (Nelson et al. 2006b) ver-
sus Targeted-Trajectory Distribution MDPs (Roberts et al.
2006). However, their comparison was focused on the rela-
tive performance of different variants of the two managers;
they did not compare the (relatively similar) representa-
tions of those managers. Ramirez and Bulitko (2015) also
compared two managers that used different representations:
PaST (which they made) and the Automated Story Direc-
tor (Riedl and Stern 2006). Similarly to Roberts et al. (2006),

they compared the two managers in terms of their perfor-
mance, rather than their representations.

Magerko (2005) presented a set of five requirements for
interactive story representations. These included enabling
sufficient author expression, ensuring coherence between
story events, supporting varied sequences of events, en-
abling player action prediction, and allowing authors to dic-
tate when certain events will happen. We view the problem
of representing an interactive story as a subproblem of rep-
resenting an experience manager.

Roberts and Isbell (2008) presented a set of ten metrics for
assessing the behaviours and affordances of experience man-
agers, and used these metrics to categorize a wide range of
existing managers. While these metrics provide some basis
for comparing different managers, they treat each manager
as an abstract “black box”; the managers’ representations
cannot be compared. Roberts and Isbell (2008) also claimed
that all experience managers are based on four components:
a set of plot points, a set of manager actions, a model of
authorial intent, and a model of player responses to man-
ager actions. They did not provide precise representations
for these components, but we will discuss how they can be
represented precisely in Section 5. To the best of our knowl-
edge, no work has sought a way to directly compare any two
representations for experience management.

4 Proposed Approach
At a high level, our approach begins by viewing a
game/manager pair as “just” a game (using the joint per-
spective); doing so ensures our ability to represent existing
AI managers, as we argued in Section 2. Then, using the lan-
guage of Factored-state MDPs, we propose a mapping from
the joint perspective to common concepts of the disjoint per-
spective (where the game and manager are viewed as sepa-
rate entities). From this mapping, we gain the ability to un-
derstand and re-express existing representations that use the
disjoint perspective, with the extra guarantee that any new
manager can also be represented using the joint perspective.
We demonstrate our approach in Section 5, where we re-
express and compare two different representations.

4.1 Common Concepts of the Disjoint Perspective
We begin with some high-level assumptions and concepts re-
garding an arbitrary AI manager, which are common across
many disjoint-perspective representations. (i) A manager
has a policy that uses some part of the game’s state and the
player’s actions to compute a manager action. (ii) A man-
ager action, when applied, changes one or more of a game’s
tuneable parameters. (iii) At least once during a player’s
experience in the game, the manager gets an opportunity
to act, during which its policy is used to compute a new
manager action, and after which the new action is applied.
(iv) The game might have mechanics that compute parts of
the game’s state independently from the manager.

For example, the manager in Super Mario Kart gets a
new opportunity to act whenever a player activates a ques-
tion block by driving their kart over it. It then uses its pol-
icy to consider the relative ranks of that player and the
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other players, and computes a manager action that will tune
the probability distribution over potential power-ups accord-
ingly. This manager action is then applied to the game, and
the tuned probability distribution is used to select a power-
up for the player who activated the block. This behaviour is
often referred to as “rubber-banding”, as it gives more pow-
erful power-ups to players who have worse ranks in the race.

4.2 Joint Perspective to Disjoint Perspective
When we make a manager part of an FMDP, it must be the
case that each of the common concepts of the disjoint per-
spective (a manager policy, the game’s state space, tuneable
parameters, game mechanics, manager actions, and the man-
ager’s opportunities to act) will somehow manifest within
the elements or operation of the FMDP. We identify each
such manifestation in this section.

(. . .)

(. . .)

Tuneable
Parameters

Manager
Policy

Game
Mechanics

Pr(Star) Pr(Banana)Pr(Lightning)

R1.pos R2.pos R8.pos R8.velR2.velR1.vel

R1.rank R2.rank R8.rank

R1.item

Figure 2: An expanded view of Figure 1 (under the joint
perspective), showing how Super Mario Kart’s tuneable pa-
rameters and manager policy manifest as part of the joint-
perspective FMDP. Pr(x) means “probability of getting
power-up x”. We omit many mechanic arrows for clarity.

Manager Policy. How does a manager’s policy manifest,
under the joint perspective? The policy performs computa-
tion, and the only elements that can perform computation in
a joint-perspective FMDP are the transition factors. There-
fore, the manager’s policy must manifest as some subset of
the FMDP’s transition factors, PM ⊆ P .1 As shown in Fig-
ure 2, this corresponds to viewing “rubber-banding” as part
of the mechanics of Super Mario Kart.

Game State Space and Tuneable Parameters. Each
transition factor depends on the FMDP’s state and a player
action (Pv : S × A → D(v)), and the manager’s policy de-
pends on the game’s state and a player action. From this we
conclude that part of the FMDP’s state space S (i.e., some
state factors in v) must represent the game’s state space, SG.
Furthermore, each transition factor computes the value of a
state factor (i.e., a value in D(v) for factor v), and the man-
ager’s policy computes the value of some tuneable parame-
ters. From this we conclude that some state factors in v (i.e.,
part of S) must also represent these tuneable parameters, ST.
Without loss of generality, we assume that S is the game’s
state space (S = SG, and ST ⊆ S).

1Although P is a vector, we abuse set notation to treat it as a set
that contains all of its transition factors. The same applies to PM.

As shown in Figure 2, ST in Super Mario Kart would con-
tain variables whose values determine the game’s probability
distribution over power-ups, while the other variables in SG

(i.e., in SG \ ST) represent the rest of the game (including,
e.g., a position, velocity, and rank for every racer’s kart).
In summary, the manager’s policy (PM) uses the game’s
state SG (and a player action) to compute new values for
the game’s tuneable parameters (state factors in ST).

Game Mechanics. To complete our definition of the
FMDP’s transition factors, P , we assume that every transi-
tion factor that is not part of the manager’s policy (PM) is in-
stead used to represent the mechanics of the game: PG ⊆ P .
This implies that the game’s mechanics are separate from
the manager’s policy (PG ∩PM = ∅). In Super Mario Kart,
PG would represent all of the game’s computations (includ-
ing computing new kart positions) except for the “rubber
banding” computations. As shown in Figure 2, withhold-
ing these computations from Super Mario Kart’s mechan-
ics (i.e., considering only the solid-line arrows) still leaves
the game fully playable: the (initial) values of the power-up
probability distribution can still be used to determine which
power-ups should appear as the value of R1.item.

Manager Actions. We now consider how a manager’s
actions and its opportunities to act manifest in the joint-
perspective FMDP. The actions of the FMDP are already de-
fined to be the actions that the player performs (e.g., steering
R1 in Super Mario Kart), and this is common across both
joint and disjoint perspectives (Section 2). What, then, does
it mean for a manager to act? Given our assumptions above,
a manager action is the result of computing its policy, and we
have equated this policy with PM, part of the FMDP’s tran-
sition factors. A manager acting thus manifests as a part of
PM executing while the FMDP operates. A manager action
manifests as an assignment of new values to the variables in
ST. The execution of PM also applies each manager action,
changing each variable in ST to its newly computed value.

Opportunities to Act. If a manager action occurs in the
FMDP when (i) PM is executed and (ii) the results are used
to update ST, then each of the manager’s opportunities to act
must occur during the execution phase of the FMDP. During
a player’s experience in the FMDP, one execution phase will
occur for each time step that occurs.

From the disjoint perspective, an important consideration
regarding the manager’s opportunities to act concerns when
they occur in relation to the execution of the game’s tran-
sition function. Since they are viewed as distinct processes
from that perspective, one is typically modelled as happen-
ing after the other. From the joint perspective, a manager’s
opportunities to act and the game’s mechanics both occur
during the execution phase of the FMDP. To avoid altering
the definition of an FMDP, we choose to represent the rel-
ative ordering of action opportunities and game mechanic
execution by considering two sequential time steps instead
of one. We will explain this representation in terms of one
ordering (manager action, then game mechanics), but both
orderings are supported. On the first time step, PM com-
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putes new values for the tuneable parameters (ST). On the
next time step, PG computes new values for the game’s state
factors, using the values in ST from the previous time step.

The choice of this order is important. To understand why,
consider each order in the context of when player actions
occur and when new game states are computed. Since each
game state is the immediate result of computing the game
mechanics, there are only two possible orders (where M =
manager, G = game mechanics, P = player, and S = state):
. . . M G S P M G S P . . . and . . . G S M P G S M P . . . .

With the first order, whenever the player acts, the manager
has an opportunity to intervene before the next state is com-
puted. This capacity is essential for implementing the most
powerful form of narrative mediation (intervention) (Riedl,
Saretto, and Young 2003), which prevents an undesirable
game state from ever occurring. With the second order, this
capability is lost; the manager must choose an action before
the player chooses their action, and both of these steps hap-
pen before the next state is computed. This leaves no oppor-
tunity for the manager to prevent undesirable game states.

Summary. We have shown that our joint perspective
FMDP can be used to re-express six common concepts of
disjoint-perspective representations. The game’s state space
manifests as SG, the state space of the FMDP (S = SG).
The tuneable parameters of the game manifest as ST, state
factors in the FMDP’s state space (ST ⊆ S). A manager
policy manifests as PM – the part of the FMDP’s transition
function (P) that computes new values for the state factors
in ST. The game’s mechanics manifest as PG – the part of
the FMDP’s transition function that computes new values
for the state factors outside of ST (i.e., in SG \ ST). A man-
ager action manifests as an assignment of values to the state
factors in ST. Finally, a manager’s opportunities to act man-
ifest in each execution of PM, which occurs once per time
step during the execution phase of the FMDP.

5 Demonstration
We now demonstrate our approach by using it to re-express
two manager representations: Search-Based Drama Man-
agement (SBDM) (Weyhrauch 1997; Nelson et al. 2006b;
Nelson and Mateas 2008) and Generalized Experience Man-
agement (GEM) (Thue and Bulitko 2012; Thue 2015). We
have chosen these representations because they both use the
language of MDPs to offer precise definitions of at least
some of their concepts. The structure of this section follows
the six common concepts of the disjoint perspective. For
each concept, we will explain how it arises in both SBDM
and GEM, using our joint-perspective approach from Sec-
tion 4 to establish a common view of both.

Game State Space. SBDM defines a state as a temporally-
ordered record of which sequence of plot points (important
game events that the manager should reason about) have oc-
curred and which manager actions have been performed in
any current player experience. Using the joint perspective,
we can re-express this record as a set of state factors (S+

SB).
The literature on SBDM does not give a precise represen-
tation for a plot point, but their examples from the interac-

tive fiction Anchorhead (Gentry 1998) suggest that each plot
point is a set of possible sequences of game states and player
actions in the managed game. Using the joint perspective, we
can re-express the possible states of SBDM’s target game as
another set of state factors (SG

SB), where SSB = SG
SB ∪ S+

SB.
GEM uses an MDP to represent the game that is to be

managed, where the player is an agent that performs actions
inside that MDP. Similarly to SBDM, GEM also represents
some information in addition to the game’s state (e.g., a vec-
tor of features of the game’s state and the player’s actions,
such as a player model). Using the joint perspective, we can
express GEM’s state space directly as one set of state factors
(SG

GEM), and its additional information as an additional set of
state factors (S+

GEM), such that SGEM = SG
GEM ∪ S+

GEM.

Game Mechanics. SBDM does not directly represent the
mechanics of the game (e.g., in Anchorhead), but it does
allow gameplay to proceed even when the manager per-
forms a null action (doing nothing). This implies that the
game must have mechanics that operate independently from
the manager’s policy. We can re-express these mechanics as
PG

SB : SG
SB × ASB → SG

SB, where ASB is the set of actions
that the player can perform in the game.

GEM represents the mechanics of the game as the transi-
tion function of its MDP. We can re-express this transition
function as PG

GEM : SG
GEM×AGEM → SG

GEM. AGEM is the set
of actions that the player can perform in the game.

Manager Actions and Tuneable Parameters. SBDM de-
fines a manager action as a tuple containing a command
(cause, deny, temporarily deny, re-enable, or hint) and a
plot point. Each tuple describes a variety of changes to the
game’s state (e.g., moving non-player characters or initiating
dialogue) that collectively affect the given plot point as the
given command describes. The parts of the game’s state that
are changed by manager actions represent the game’s tune-
able parameters (ST

SB), meaning that we can re-express them
as state factors in an FMDP: ST

SB ⊆ SSB. Consequently, any
SBDM manager action can be re-expressed as an assignment
of new values to these state factors.

GEM defines a manager action as an assignment of a new
transition function to the MDP that it uses to represent the
game (i.e., a GEM manager changes the game’s mechanics).
To re-express this kind of manager action using the joint per-
spective, we need to express [changing mechanics] as [as-
signing new values to some state factors]. This challenge
can be approached most directly from the observation that
game mechanics can be adapted by changing their param-
eters. For example, the difficulty of Super Mario Kart can
be adapted by choosing between three different race modes
(50cc, 100cc, and 150cc). This one parameter (cc) affects
many of the game’s transition factors, including computa-
tions that govern the speeds of the karts and how the non-
player racers steer. Based on this observation, a GEM man-
ager action can be re-expressed as an assignment of new val-
ues to particular state factors in the game – those that are
used as parameters by the game’s mechanics. These are the
tuneable parameters of our GEM FMDP: ST

GEM ⊆ SGEM.
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SBDM GEM
Game State Space SG

SB ⊆ SSB SG
GEM ⊆ SGEM

Game Mechanics PG
SB : SG

SB ×ASB → SG
SB PG

GEM : SG
GEM ×AGEM → SG

GEM

Tuneable Parameters ST
SB ⊆ SSB ST

GEM ⊆ SGEM

Manager Policy PM
SB : S+

SB ×ASB → ST
SB PM

GEM : (SG
GEM ∪ S+

GEM)×AGEM → ST
GEM

Opportunities to Act . . . G S M P G S M P . . . . . . M G S P M G S P . . .

Table 1: Summary of comparing SBDM and GEM. The last row shows execution orders from Section 4.2.

Manager Policy. SBDM defines a manager policy as
function which, given a game modelled by states and a tran-
sition function, specifies an action to perform in each state.
We have already re-expressed SBDM states using state fac-
tors in an FMDP (S+

SB) and SBDM manager actions as as-
signments of new values to state factors in the game (i.e., to
ST

SB). We can therefore re-express an SBDM manager pol-
icy as part of an FMDP’s transition function (PM

SB ⊆ PSB)
that computes new values for ST

SB based on S+
SB. Formally,

PM
SB : S+

SB × ASB → ST
SB. For example, based on the

sequence of plot points that have occurred (s+
SB) and the

player’s last action (aSB), an SBDM manager could decide
to lock a door to a nearby room (by modifying sT

SB).
GEM defines a manager policy as a function which, given

(i) a game with states, actions, and a transition function,
and (ii) a history of the game up to the current time step,
specifies a transition function to use in each state. A his-
tory consists of a temporally-ordered record of which states
have occurred, which actions the player has performed, and
which transition functions the manager has previously se-
lected. Similarly to SBDM’s state representation, GEM’s
history can be re-expressed as a set of state factors in S+

GEM.
We have already re-expressed GEM’s states as states in an
FMDP (SG

GEM), and we have explained how changing a tran-
sition function can be re-expressed as assigning new val-
ues to particular, tuneable parameters in an FMDP (i.e., to
ST

GEM). We can thus re-express a GEM manager policy as
part of an FMDP’s transition function: PM

GEM ⊆ PGEM. For-
mally, PM

GEM : (SG
GEM ∪ S+

GEM) × AGEM → ST
GEM. For ex-

ample, based on the game’s current state sG
GEM, its current

model of the player (in s+
GEM), and the player’s most recent

action (aGEM), a GEM manager could decide to increase the
probability of the player finding something valuable in the
next container they search (by modifying sT

GEM).

Opportunities to Act. SBDM allows a manager to act
after each SBDM state that occurs, where the full execu-
tion order is stated is follows. Following a manager action,
the player acts, and then both actions are used to transition
SBDM MDP from its current SBDM state (S+

SB) to a sub-
sequent one. The manager then receives a new opportunity
to act. Since S+

SB varies with the game state, we assume that
SG

SB is computed at the same time as S+
SB. This sequence of

events (manager action, player action, game mechanics, new
game state) corresponds to the second of the two execution
orders that we discussed in Section 4.2.

GEM allows a manager to act immediately following each

player action, but before the game’s transition function exe-
cutes to compute the game’s state. This sequence of events
(player action, manager action, game mechanics, new game
state) is the first execution order we discussed in Section 4.2.

6 Discussion and Future Work
The contributions of this work are threefold. First, we for-
mally specified the joint perspective of experience manage-
ment, in which a game/manager pair is viewed as a Factored-
state Markov Decision Process. We argued how every man-
ager can be viewed from this perspective, and that it thus
presents a unified basis for developing a way to understand
different manager representations. Second, we described a
way to re-express the common, disjoint perspective of expe-
rience management (where a game and manager are viewed
as separate entities) using only our specification of the joint
perspective FMDP. This provides a language into which any
manager’s representation can be translated, opening the po-
tential to directly compare different representations. Third,
we demonstrated this potential concretely by comparing two
different manager representations: SBDM and GEM.

From our comparison of SBDM and GEM (Table 1), we
have gained the following insights: (i) Both representations
required extra state factors beyond what were needed solely
for the game (S+

SB and S+
GEM). Although these factors can

be represented as part of the game itself, the fact that con-
sidering them separately helped our discussion suggests that
“manager-internal state” might be added as a seventh con-
cept of the disjoint perspective. (ii) Some manager policies
depend on the entire game state (like GEM’s), while others
depend on only features of the game state (like SBDM’s);
this may seem obvious in retrospect, but the difference only
became apparent after translating SBDM’s plot points into
our precise language. (iii) The order in which the manager’s
policy and the game’s mechanics execute is important. With
one order (as in GEM), narrative mediation by intervention
is possible, but with the other order (as in SBDM), it is not.

Our approach relies on the common assumptions and con-
cepts that we stated in Section 4.1. While we expect that
they will be easy to accept for most researchers in the field,
we cannot guarantee that we have not missed one or more
concepts that should be included; searching for such miss-
ing concepts is one avenue for future work, and pursuing
this avenue might be simplified by applying our approach.
It would also be interesting to compare more manager rep-
resentations using our approach, and to explore whether our
findings about SBDM and GEM hold across their variants.
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