
A User Study on Learning from Human Demonstration

Brandon Packard, Santiago Ontañón
Drexel University

Philadelphia, PA, USA
{btp36,so367}@drexel.edu

Abstract

A significant amount of work has advocated that Learning
from Demonstration (LfD) is a promising approach to allow
end-users to create behaviors for in-game characters with-
out requiring programming. However, one major problem
with this approach is that many LfD algorithms require large
amounts of training data, and thus are not practical for learn-
ing from human demonstrators. In this paper, we focus on
LfD with limited training data, and specifically on the prob-
lem of active LfD where the demonstrators are human. We
present the results of a user study in comparing SALT , a
new active LfD approach, versus a previous state-of-the-art
Active LfD algorithm, showing that SALT significantly out-
performs it when learning from a limited amount of data in
the context of learning to play a puzzle video game.

1 Introduction
LfD has been proposed many times as a solution to the
problem of behavior authoring (and often within the con-
text of games, employing tactics such as Inverse Reinforce-
ment Learning (Tastan and Sukthankar 2011), Neural Net-
works (Stanley et al. 2005), or C4.5 decision trees (Young
and Hawes 2014), to name a few). However, most current
LfD approaches assume access to a large amount of train-
ing data, which is not always feasible. If LfD is to be used
to solve behavior authoring in games, this would imply the
human author would have to demonstrate the desired be-
havior an unreasonable number of times in order to gener-
ate enough training data. This paper extends previous work
on SALT (Packard and Ontañón 2017), a Learning from
Demonstration (LfD) approach designed to investigate how
to reduce the amount of training data required in LfD. The
long term goal of our work is to design LfD approaches that
can learn from human demonstrators, and thus require a lim-
ited amount of training data.

SALT has already been found to perform competitively
with other state-of-the-art algorithms in multiple domains
(Packard and Ontañón 2018) when using synthetic demon-
strators, but the focus of this paper is an analysis of SALT
with human demonstrators in learning how to play video
games.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Specifically, we report on the results of a user study where
different human subjects tried to teach a learning agent
how to play a puzzle game called Thermometers. We com-
pare SALT ’s performance to a state-of-the-art LfD algo-
rithm, DAgger (Ross, Gordon, and Bagnell 2010) on 6 fac-
tors: mental effort required during training, enjoyability of
training, perceived learning performance, reason for ending
training, length of training, and actual learning performance.

Like recent LfD approaches such as DAgger , the key idea
behind SALT is to use an active-learning (Krogh, Vedelsby,
and others 1995) approach to LfD, where the learning agent
initially learns from a small set of demonstrations, and then,
as it performs the target task, it might request additional data
from the demonstrator if the learning agent believes that the
situation at hand is significantly different from any situation
seen in the training data. The key problem to address is when
to request more training data from the demonstrator in order
to maximize learning performance while also minimizing
the mental effort imposed on the demonstrator for provid-
ing the requested additional data. Our experimental results
show that, at least in our target domain, in situations where
training data is limited because the learning agent is trying to
learn directly from a single human, SALT learns faster and
imposes a lower cognitive burden on the demonstrator than
DAgger . As not much work has been done in comparing ac-
tive LfD algorithms on human demonstrators, DAgger was
chosen for this study as it provides inspiration and building
blocks for many other state-of-the-art active LfD methods
(SALT (Packard and Ontañón 2017), SafeDAgger (Boular-
ias, Kober, and Peters 2011), RAIL (Judah et al. 2014), and
SHIV (Laskey et al. 2016)) and is therefore a good place to
start comparisons.

The rest of this paper is organized as follows. After de-
scribing some background in Section 2, our algorithm and
experimental setup are described in Sections 3 and 4, and
our experimental results in Section 5. The paper concludes
with discussion/conclusions and future work in Section 6.

2 Background
LfD is very common in humans (Schaal 1997; Heyes and
Foster 2002), who often look to a teacher for information on
how to perform a task. The overall goal of LfD is, given
training data consisting of a set of traces gotten from a
demonstrator, derive a policy which allows the learner to

Proceedings of the Fourteenth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE 2018)

208

choose an action based on a current observed world state
(and which will match the demonstrator’s policy as closely
as possible). The reader is referred to Argall et al. (2009) for
an overview and formal definition of LfD.

Many LfD approaches in the literature are based on super-
vised learning, often achieving low performance since they
ignore the fact that LfD violates the i.i.d. assumption1 (Ross
and Bagnell 2010). Some existing algorithms attempt to ac-
count for this, such as DAgger (Ross, Gordon, and Bagnell
2010) and SMILe (Ross and Bagnell 2010). However, these
might require a large mental effort from the demonstrator,
limiting their applicability when the demonstrator is human.
DAgger , for example, is an active learning method which
trains an initial learner based on a demonstrator performing
the task, and then lets the learner collect additional training
data by allowing the learner and the demonstrator to take
turns in controlling the simulation. The demonstrator is later
requested to provide correct actions for the states where the
learner was in control (state re-labeling), and all the actions
generated by the demonstrator are added to the training set.
In the experiments reported by Ross, Gordon, and Bagnell
(Ross, Gordon, and Bagnell 2010), DAgger required data
from a demonstrator playing 660 Super Mario levels before
the learner’s task performance plateaued.

This illustrates that one of the current problems in LfD
is that existing algorithms often require too much train-
ing data to be practical for human demonstrators. Active-
learning LfD approaches tend to exacerbate the problem –
not only does the demonstrator need to provide demonstra-
tions, but they also need to be able to respond to queries that
the learner makes. While work on LfD can be traced back
several decades, not as much work has been done on try-
ing to reduce the amount of training data needed in the con-
text of LFD. Some exceptions include SafeDAgger (Zhang
and Cho 2016) or RAIL (Judah et al. 2014). SafeDAgger ,
for instance, attempts to reduce the mental effort placed on
the demonstrator by attempting to learn a reference policy
that states what actions the demonstrator would take with-
out having to consult the demonstrator, and querying the
demonstrator when the learner’s policy deviates too far from
this reference policy. This reduces the amount of required
training data but does not focus on being suitable for human
demonstrators. This is because the amount of training data
is not the only relevant factor when using a human demon-
strator. For example, requesting the demonstrator to provide
a large number of very short demonstrations can be more
difficult for a human demonstrator than providing a single
very long demonstration, since that would involve a large
number of context switches (As shown by Rogers and Mon-
sell (1995), introducing context switching increases reaction
time and error rate in humans).

Concerning minimizing demonstrator mental effort, in ad-
dition to the previously discussed SafeDAgger , Boularias,
Kober, and Peters (2011) tackle LfD with Inverse Rein-
forcement Learning (IRL). Specifically, they focus on when
demonstrations only cover a small portion of a large state

1That instances from the training and test set are independently
and identically distributed.

space. They propose a model-free algorithm based on Rela-
tive Entropy which is able to learn reward functions close
to those of the demonstrator using a relatively small set
of demonstrations. Another work with this focus is that of
Floyd and Esfandiari (2009). Their goal is to create se-
quences of problems to show to the demonstrator. By giv-
ing the demonstrator an entire sequence of actions, they at-
tempt to provide context to the demonstrator, allowing it to
more easily provide new data. In their application domain of
Robot Soccer, this also increases how accurately the learner
selects actions.

Another active LfD algorithm which attempts to reduce
the amount of needed training data is RAIL (Judah et al.
2014). Like SALT , RAIL seeks to help account for the i.i.d.
violation via demonstrator queries after the initial learner
has been training. However, RAIL assumes that the learner
has access to a simulator of the domain, which SALT does
not require. A similar approach that also requires a simula-
tor is seen in SHIV (Laskey et al. 2016), only instead of
using novelty or uncertainty calculations, a risk calculation
is run on each state. If the state has too high of risk, then
the demonstrator is queried to determine what to do. More
general methods for reducing training data include novelty
reduction and uncertainty reduction (Silver, Bagnell, and
Stentz 2012), which seek to ask the demonstrator for more
demonstrations using sampled problems that are considered
to be too different from previously seen states or for which
the learner is too uncertain about what to do in them. For
their robot navigation domain, they find this requires less
demonstrator interaction while getting improved results.

3 Selective Active Learning from Traces
Let us illustrate the overall idea behind SALT . Initially,
the demonstrator provides a set of demonstrations that form
the initial training set. A demonstration is a sequence of
state/action pairs representing the state of the world at a
given time and the action the demonstrator performed. Let
Dl be the distribution of states in the initial set of demonstra-
tions provided by the demonstrator, and Dt be the distribu-
tion of states the agent would encounter when executing the
learned policy. Since the states that the agent will encounter
depend on the learned policy, LfD violates the i.i.d. prin-
ciple and Dt can potentially be very different from Dl. As
has been shown in the literature, this can cause the predic-
tion error in LfD to compound when using standard super-
vised learning methods (Ross and Bagnell 2010). SALT is
an iterative algorithm which attempts to make Dt and Dl as
similar as possible. Like in DAgger , the learning agent and
the demonstrator share control of the task. The main differ-
ence from DAgger is in how the learner and the demonstra-
tor share control. SALT monitors whether the current state
the learner is in is within Dl. If the state is not in Dl, the
demonstrator is given control until the state is brought back
to Dl. Training data is generated only when the demonstra-
tor is in control, so unlike DAgger , there is no stochastic
mixing or state re-labeling required – which helps reduce
human demonstrator mental effort. After each iteration, the
new training data is added to the training set, and the learn-
ing agent is retrained.

209

The key problem of SALT is therefore determining when
to give control to the demonstrator, and when to give it back
to the learner. Three strategies are used for this:

• ρs: Determines when the learner has moved out of Dl.
• ρb: When control is given to the demonstrator, it might be

interesting to back-up the world for a few time instants to
collect training data on the sequence of states that led to
the learner falling outside of Dl. This strategy determines
how far to back up the world state.

• ρd: Determines when to give control back to the learner.

Algorithm 1 shows a detailed description of SALT .
Specifically, the first of N iterations has the demonstrator
control, and those demonstrations become the initial train-
ing data. For the remaining N −1 iterations, the learner per-
forms the task C times (each of which is called a “trace”).
Algorithm 2 shows how the three strategies are used to alter-
nate control between the learning agent and the demonstra-
tor when executing each trace. Specifically, the learner per-
forms the task until strategy ρs determines that the learner
has moved out of Dl. When this happens, the state is backed
up a certain number of ticks, as determined by ρb, and then
the demonstrator is given control until the state goes back
into Dl, as determined by ρd. The states that the demonstra-
tor encounters and the actions it takes are added to the train-
ing data for the next iteration. For SALT , any supervised
learning method could be used as the underlying learning
method, but for our experiments we tested with J48, A mod-
ified version of C4.5 (Quinlan 1993) using WEKA (Witten
et al. 2016).

In our empirical evaluation, we tested a single variant of
each strategy (the SALT configuration shown to work the
best according to our previous work (Packard and Ontañón
2018)). These are described below.

Algorithm 1 SALT (ρs, ρb, ρd, C,N)

1: Sample C-step trajectories using π∗ (the demonstrator’s
policy)

2: Initialize D ← {(s, π∗(s))} - all states visited by the
demonstrator and the actions it took

3: Train classifier π1 on D
4: for i = 1 to N do
5: Initialize Di ← ∅
6: for j = 1 to C do
7: Di = Di ∪ runOneTrace(πi, ρs, ρb, ρd)
8: end for
9: Aggregate datasets: D ← D ∪Di

10: Train classifier πi+1 on D
11: end for
12: return best πi on validation data (based on task reward)

3.1 SALT Strategies
We examined one possible variant of ρs, which determines
when the learner has moved out of Dl:
• ρQBC−m

s (Query By Committee): Train m classifiers,
each on 20% of the training data selected at random. Have

Figure 1: A screenshot of the Thermometers puzzle game.

each smaller learner predict an action; if those actions are
not all the same, signal that the learner has exited Dl. For
this work, we set m = 5.
We also examined one possible variant of ρd, which de-

termines for how long to give control to the demonstrator:

• ρQBC−m
d (Query By Committee): Train m classifiers,

each on 20% of the training data, selected at random (just
as in ρQBC

s). Have each smaller learner predict an action,
and signal to give control back to the learner if they all
agree on a move. For this work, we set m = 5.
Finally, one variant of ρb was used:

• ρ0b (Back-0) – Does not back up the world state.

Algorithm 2 runOneTrace(π, ρs, ρb, ρd)

if not outside of Dl according to ρs then
sample using π

else
back up world according to ρb
sample using π∗ according to ρd

end if
return {(s, π∗(s))|s ∈ S∗}, where S∗ is the set of all
states where π∗ was used.

4 Experimental Setup
In order to evaluate the performance of the algorithms in
terms of human demonstrators, we used a puzzle-game do-
main known as Thermometers (Figure 1), where the player
sees a board with a collection of thermometers of different
lengths and orientations, and needs to figure out how full
each of the thermometers is based on a collection of row and
column constraints. In Figure 1, the board has been filled in.
Note how every tile has been marked as either full (red) or
empty (bluish-white), and none of them are still marked as
blank (black). Additionally, the number of filled pieces in
every row or column matches the number above/beside that
row or column, and every thermometer that is partially filled
is filled starting from the circular bulb and working up to-
wards the cap. Because all of the tiles are marked as filled or

210

[0,0,0,0,0,NO,NO,NO,CR,BL,2,0,0,5,Move()]

Figure 2: An example learning instance provided by the
demonstrator. The first 5 values indicate the fill of each tile
and the next 5 indicate whether where the Thermometers are
in that row/column, if any. The next four values encode how
many tiles should be filled, how many tiles are filled, how
many tiles are empty, and how many tiles are blank, respec-
tively. The final value represents the move the demonstrator
made for that world state.

empty and all of the thermometers are filled from the bulb
up, this is a valid solution to the board. For the Thermome-
ters domain, we tested with boards of size 5x5.

Specifically, we use a simplified version of this domain
known as Simple Thermometers, where only one row or col-
umn of the board can be seen at any given time. States in this
domain are represented as a vector of 14 features represent-
ing a single row or column of the board, and the actions are
also only related to the current row or column. There are 12
actions in total for a 5x5 board:

• fillTile(Tile): Fill a tile in the current row/column, where
Tile can be any value 0-4 for 5x5 boards

• emptyTile(Tile): Empty a tile in the current row/column,
where Tile can be any value 0-4 for 5x5 boards

• moveToNext: Move to the next row or column on the
board.

• clear: Set all tiles in a row/column to undetermined and
move to the first column (if previously looking at a row)
or row (otherwise).

Therefore, the task of the underlying learner is to predict
which of the 12 actions to perform given the values of the
14 features. Figure 2 shows and explains an example of a
state/action pair that is recorded during training. Each itera-
tion is a single board, and has a maximum move limit of 100
moves before the iteration forcibly ends. The reward func-
tion (used for validation of learning the task) for the Simple
Thermometers domain is simply the overall percentage of
constraints satisfied for the current board, where there are
two kinds of constraints: The number of filled pieces in a
row or column matches the number for that row or column,
and that each thermometer has a legal configuration (mean-
ing that it is filled starting from the circularly shaped bulb,
and all filled pieces are adjacent).

The study itself has two phases (with a researcher over-
seeing both): In the first phase, the human demonstrator
practices the puzzles without training a learner, to get used to
the game and interface. Once both the demonstrator and the
overseer feel confident in the demonstrator’s puzzle solving
ability (in the case of the overseer, this means the demon-
strator was able to solve 3 puzzles in a row during train-
ing without making any incorrect moves), they move onto
phase two. In phase two, the human demonstrator trains a
learner using SALT and a learner using DAgger , one af-
ter the other. The algorithms are anonymized, so they are
not aware of which algorithm is which. A total of 21 par-
ticipants were gathered: 10 trained SALT then DAgger , 10

trained DAgger then SALT , and one trained SALT then
DAgger then SALT again (this user felt that they had made
many more errors when training SALT than when training
DAgger , and wished to train it again making less errors).
Since this user was an outlier, being the only one to train a
method twice, their results were removed from the final re-
sults. Therefore, the results shown are for 20 users (10 for
each order of training). Of these 20 participants, 17 were
Computer Science students in various levels of study, and 3
were people with basic knowledge of computers but no pro-
gramming experience. This was done to make sure a wide
range of programming experience levels were represented
in the study. The minimum age was 18, and the maximum
age was 62, with the median age being 20. 75% of the 20
included users identified as male, and 25% identified as fe-
male. Training for each algorithm continued until the user
decided they were done - no minimum number of boards
was enforced, but there was a maximum of 25 boards per
algorithm. After training the first algorithm, the participant
is asked to fill out a survey which asks for the following in-
formation:

• Programming Experience: The amount of programming
experience they have, where 0 is none at all and 5 means
they consider themselves an expert.

• Mental Effort: Participants were asked to rate the mental
effort required to train each learner. Ratings were gathered
on a scale of 1 to 5, where 1 was very little mental effort
required and 5 was a lot of mental effort required.

• Perceived Learning: Participants were asked to rate how
well they believed each algorithm learned from the train-
ing process and the final task reward on validation boards.
Ratings were gathered on a scale of 1 to 5, where 1 means
the algorithm learned to perform the task very poorly and
5 means the algorithm learned to perform the task very
well.

• The Reason They Ended Training: Three default values
were provided (“I got bored”, “I felt like it had learned
the task”, and “I felt like it wasn’t learning”), but users
could also enter their own response.

• Enjoyability: Participants were asked to rate how enjoy-
able the algorithm was to train comparing if they had to
program their own puzzle solver by hand (since different
levels of programming experience might favor one or the
other, we attempted to sample users with a variety of lev-
els of programming experience). Ratings were gathered
on a scale of 1 to 5, where 1 was far less enjoyable and 5
was far more enjoyable.

• Any other comments they may have.

After training the second algorithm, the participant is
asked to fill out a survey which contains the same informa-
tion for the second algorithm, and also re-evaluate the first
algorithm now that they have experienced both. The results
reported use their final scores for each algorithm (the ones
taken from the second survey).

In addition to this, we also captured two pieces of data
from the training process:

211

0%

10%

20%

30%

0 200 400 600 800 1000

Task Reward

SALT

DAgger

Figure 3: Task reward gained in the Simple Thermometers
domain (vertical axis) as a function of the amount of train-
ing data (horizontal axis) for SALT and DAgger . As differ-
ent demonstrators played for different numbers of iterations,
a 2-value simple moving average was taken to smooth the
curves.

• Number of Boards: Participants were able to train for as
many (up to 25) or as few boards as they wanted, with
each board being one iteration of the algorithm. We record
the quantity of boards on which they trained each algo-
rithm, to see which algorithm they were willing to train
longer.

• Actual Learning: The amount of training data and the av-
erage task reward gained on 10 validation levels with the
training data that was provided by each participant for
each learner.
It is important to note that there are theoretically two

ways of implementing DAgger for human demonstrators.
The first is to have the demonstrator provide actions for
when it is in control, and then have them relabel any states
for which they were not in control after the iteration is over.
The second is to have the demonstrator provide a move for
every board state as it happens, but not always make the
move the demonstrator is providing. The former, however,
would require the demonstrator going back and relabeling
potentially many states after they decide that they are done
training the algorithm (which is not realistic to expect from
human demonstrators). Because of this, combined with the
intuition that it is easier on humans to see the entire solving
of the board in context (based on the work of (Rogers and
Monsell 1995), who show that introducing context switch-
ing increases reaction time and error rate), the second im-
plementation was deemed a more fair comparison, and is
the one used in this study.

5 Experimental Results
This section details the results of the study, examining
the six pieces of data that help capture feasibility for hu-
man demonstrators: Mental Effort, Enjoyability, Perceived
Learning, The Reason for Ending Training, Number of
Boards Trained, and Actual Learning.

SALT DAgger Statistical Significance
Mental Effort 2.75 4.65 p = 8.53E-06
Enjoyability 3.75 1.75 p = 1.42E-06

Perceived Learning 3.55 1.40 p = 5.81E-07
Number of Boards 12.70 7.65 p = 2.85E-04

Table 1: Aggregate results from the post-study question-
naire. This table shows the average user rating for each algo-
rithm for each category, along with the results of a 2-tailed
paired t-test statistical significance test.

SALT DAgger
Felt the algorithm had learned the task 3 0
Felt the algorithm wasn’t learning 3 14
Got bored training the algorithm 7 0
Got frustrated training the algorithm 0 4
Ran out of time for the study 3 1
Hit the 25 board cap while training the algorithm 2 1
Other reasons 2 0

Table 2: Aggregate results from the post-study question-
naire. This table shows how many people stopped train-
ing each algorithm, categorized by the general reason they
stopped.

5.1 Mental Effort
First, let us examine the metric of Mental Effort. As can
be seen from Table 1, users rated SALT a 2.75 on the 1
to 5 scale and DAgger a 4.65. This means that users placed
SALT almost directly in the middle for this metric, but rated
DAgger as requiring a very high amount of mental effort,
providing strong evidence that SALT imposes less men-
tal burden on human demonstrators than DAgger . From the
comments made during the study, our hypothesis for this is
that users found it jarring to make a move and then be in
a different state than the one that they expected (this hap-
pens with DAgger since the user is not always in control,
but never with SALT).

5.2 Enjoyability
Next, let us examine the second metric recorded directly
from the survey: how enjoyable the algorithm was to train
compared to if they had to program a puzzle solver by hand.
As can be seen from Table 1, users rated SALT much higher
in this metric than DAgger (a 3.75 compared to a 1.75 out
of 5). This means that they rated SALT as somewhat enjoy-
able and DAgger as very unenjoyable, providing further ev-
idence of SALT ’s feasibility for human demonstrators. We
believe this is also due to the users ending up in a state dif-
ferent than they expected. Because of this, many of them
commented that they felt like DAgger wasn’t listening, even
though they knew it was.

5.3 Perceived Learning
The third metric recorded directly from the survey was that
of perceived learning. Table 1 shows us that users rated
SALT as a 3.55 and DAgger as a 1.40. Therefore, although
users didn’t find SALT to learn extremely well, they per-
ceived DAgger to learn very poorly. We hypothesize that

212

this is because while sharing control with the learner during
training, DAgger made more moves that seemed “odd” or
“illogical” to the user than SALT . Since it doesn’t matter
how effortless or enjoyable the users find an algorithm un-
less it can also learn to perform the necessary task, SALT
being perceived to perform better provides evidence for its
feasibility for learning from human demonstrators. Further-
more, given the very small amount of training data in this
domain, SALT is not just perceived to learn better, but ac-
tually does learn better (this is discussed in detail in Section
5.6).

5.4 Reason for Ending Training
The fourth and final metric recorded directly from the sur-
vey was the reason the user stopped training each algorithm.
Table 2 shows the aggregated results for this question. As
can be readily seen, users stopped training SALT for a vari-
ety of reasons. Three people stopped because they believed
the algorithm had learned the task and 3 people stopped be-
cause they felt that it wasn’t learning. The biggest reason
users stopped training SALT was because they got bored,
and 5 people only stopped training SALT because they ei-
ther hit the cap of 25 training boards or ran out of time and
had to leave. For DAgger , however, almost 75% of users
stopped training because they believed that the algorithm
wasn’t learning the task, and 0 stopped because they be-
lieved the algorithm successfully performed the task. It is
also interesting to note that 4 users explicitly stated they
stopped training DAgger because they got too frustrated
with it, where none did so for SALT . This reasoning pro-
vides more evidence that users experienced less mental bur-
den for and perceived better learning with SALT than with
DAgger .

5.5 Boards Trained
This metric was not directly placed on the survey, but rather
gathered from the users’ training data. Table 1 also shows us
that users trained SALT for around 5 boards longer on aver-
age than DAgger (12.70 boards compared to 7.65 boards).
This provides implicit evidence that SALT was more fea-
sible for the users, as they were willing to train it for much
longer than they were with DAgger .

5.6 Actual Learning
Finally, let us examine how well each algorithm actually
learned from the users. Figure 3 shows the average task re-
ward (with a 2-value simple moving average) for SALT and
DAgger when learning off of the human demonstrators. It
can readily be seen that SALT initially trains much faster
than DAgger , and then continues to (slowly) grow overall.
DAgger , however, stays pretty flat overall and even seems
to lose performance as training progresses. In our previous
work (Packard and Ontañón 2018) we have also found this
to be the case with synthetic demonstrators, where SALT
outperforms DAgger in this domain for significantly larger
amounts of training data, and DAgger seems to lose per-
formance. We believe this is because the current world state
representation of the domain makes this a very hard problem

for LfD to solve, which makes DAgger struggle. We also
verified that in a simpler setting of the domain (using 3x3
boards instead of 5x5 boards) that DAgger ’s performance
eventually starts increasing after collecting enough training
data from synthetic demonstrators (Packard and Ontañón
2017).

6 Conclusions
This paper presented SALT , an active LfD algorithm de-
signed specifically to study active learning policies that can
reduce the amount of training data required to learn as well
as demonstrator burden. Specifically, we examined its per-
formance versus DAgger when training an AI in a puz-
zle game with human demonstrators via a user study. The
major result is that SALT performs more desirably than
DAgger in six metrics, including amount of mental effort
required to train and learning performance, providing strong
evidence that it is more feasible for human demonstrators
than DAgger . The insights uncovered through this study on
why SALT appears to impose less mental effort on human
demonstrators than DAgger can help improve SALT and
other human-centric algorithms in the future (for example,
ensuring that when a demonstrator provides an action, they
do not end up in a state other than what they expect due to
the learning algorithm). We also found that human demon-
strators are not perfect (as is to be expected). Not only do
human demonstrators make mistakes, but they also makes
moves that are logical but inconsistent (for example, filling
an entire row from left to right one time, and then right to
left another time). Therefore, learners on human demonstra-
tors could be improved not only by reducing noise caused
by errors, but also being able to take these inconsistencies
and use them to learn a more general or higher level action
(such as filling an entire row regardless of order).

In the future, we would like to continue exploring addi-
tional SALT strategies, focusing on variants which can ac-
count for these inconsistencies while learning and are able
to boost learning while not imposing more mental effort
on human demonstrators. We would also like to run more
user studies to compare SALT against other state-of-the-art
baselines or in other domains, to further explore its effec-
tiveness for human demonstrators and gain further insights
about the difference in SALT ’s performance versus other
state-of-the-art algorithms.

References
Argall, B.; Chernova, S.; Veloso, M.; and Browning, B.
2009. A survey of robot learning from demonstration.
Robotics and Autonomous Systems 57(5):469–483.
Boularias, A.; Kober, J.; and Peters, J. 2011. Relative en-
tropy inverse reinforcement learning. In International Con-
ference on Artificial Intelligence and Statistics (AISTATS),
182–189.
Floyd, M. W., and Esfandiari, B. 2009. An active approach
to automatic case generation. In International Conference
on Case-Based Reasoning, 150–164. Springer.
Heyes, C., and Foster, C. 2002. Motor learning by ob-
servation: Evidence from a serial reaction time task. The

213

Quarterly Journal of Experimental Psychology: Section A
55(2):593–607.
Judah, K.; Fern, A. P.; Dietterich, T. G.; et al. 2014. Ac-
tive lmitation learning: formal and practical reductions to
iid learning. The Journal of Machine Learning Research
15(1):3925–3963.
Krogh, A.; Vedelsby, J.; et al. 1995. Neural network en-
sembles, cross validation, and active learning. Advances in
neural information processing systems 7:231–238.
Laskey, M.; Staszak, S.; Hsieh, W. Y.-S.; Mahler, J.; Poko-
rny, F. T.; Dragan, A. D.; and Goldberg, K. 2016. Shiv:
Reducing supervisor burden in dagger using support vectors
for efficient learning from demonstrations in high dimen-
sional state spaces. In Robotics and Automation (ICRA),
2016 IEEE International Conference on, 462–469. IEEE.
Packard, B., and Ontañón, S. 2017. Policies for active
learning from demonstration. In Proceedings of AAAI 2017
Spring Symposium on Learning from Observation of Hu-
mans, 513–519.
Packard, B., and Ontañón, S. 2018. Learning behavior from
limited demonstrations in the context of games. In Proceed-
ings of FLAIRS 2018.
Quinlan, R. 1993. C4.5: Programs for Machine Learning.
San Mateo, CA: Morgan Kaufmann Publishers.
Rogers, R. D., and Monsell, S. 1995. Costs of a predictible
switch between simple cognitive tasks. Journal of experi-
mental psychology: General 124(2):207.
Ross, S., and Bagnell, D. 2010. Efficient reductions for
imitation learning. In International Conference on Artificial
Intelligence and Statistics (AISTATS 2010), 661–668.
Ross, S.; Gordon, G. J.; and Bagnell, J. A. 2010. A reduction
of imitation learning and structured prediction to no-regret
online learning. arXiv:1011.0686.
Schaal, S. 1997. Learning from demonstration. Advances in
Neural Information Processing Systems (NIPS 1997) 1040–
1046.
Silver, D.; Bagnell, J. A.; and Stentz, A. 2012. Active learn-
ing from demonstration for robust autonomous navigation.
In Robotics and Automation (ICRA), 2012 IEEE Interna-
tional Conference on, 200–207. IEEE.
Stanley, K. O.; Cornelius, R.; Miikkulainen, R.; D’Silva, T.;
and Gold, A. 2005. Real-time learning in the nero video
game. In AIIDE, 159–160.
Tastan, B., and Sukthankar, G. R. 2011. Learning policies
for first person shooter games using inverse reinforcement
learning. In Artificial Intelligence and Interactive Digital
Entertainment (AIIDE 2011).
Witten, I.; Frank, E.; Hall, M.; and Pal, C. 2016. Data Min-
ing: Practical Machine Learning Tools and Techniques. The
Morgan Kaufmann Series in Data Management Systems. El-
sevier Science.
Young, J., and Hawes, N. 2014. Learning micro-
management skills in RTS games by imitating experts. In
AIIDE.

Zhang, J., and Cho, K. 2016. Query-efficient imitation learn-
ing for end-to-end autonomous driving. arXiv:1605.06450.

214

