
Modular Architecture for StarCraft II
with Deep Reinforcement Learning

Dennis Lee,* Haoran Tang,* Jeffrey O Zhang,
Huazhe Xu, Trevor Darrell, Pieter Abbeel

University of California, Berkeley
{dennisl88, hrtang.alex, jozhang, huazhe xu}@berkeley.edu, {trevor, pabbeel}@eecs.berkeley.edu

(* Equal contributions)

Abstract

We present a novel modular architecture for StarCraft II
AI. The architecture splits responsibilities between multiple
modules that each control one aspect of the game, such as
build-order selection or tactics. A centralized scheduler re-
views macros suggested by all modules and decides their
order of execution. An updater keeps track of environment
changes and instantiates macros into series of executable ac-
tions. Modules in this framework can be optimized indepen-
dently or jointly via human design, planning, or reinforce-
ment learning. We present the first result of applying deep
reinforcement learning techniques to training two out of six
modules of a modular agent with self-play, achieving 92% or
86% win rates against the ”Harder” (level 5) built-in Blizzard
bot in Zerg vs. Zerg matches, with or without fog-of-war.

Introduction
Deep reinforcement learning (deep RL) has become a
promising tool for acquiring competitive game-playing
agents, achieving success on Atari (Mnih et al. 2015), Go
(Silver et al. 2016), Minecraft (Tessler et al. 2017), Dota 2
(OpenAI 2018), and many other games. It is capable of pro-
cessing complex sensory inputs, leveraging massive training
data, and bootstrapping performance without human knowl-
edge via self-play (Silver et al. 2017). However, StarCraft
II, a well recognized new milestone for AI research, con-
tinues to present a grand challenge to deep RL due to its
complex visual input, large action space, imperfect informa-
tion, and long horizon. In fact, the direct end-to-end learning
approach has not even won the easiest built-in AI (Vinyals
et al. 2017).

StarCraft II is a real-time strategy game that involves col-
lecting resources, building production facilities, researching
technologies, and managing armies to defeat the opponent.
Its predecessor StarCraft has attracted numerous research ef-
forts, including hierarchical planning (Weber, Mateas, and
Jhala 2010) and tree search (Uriarte and Ontañón 2016) (see
survey by Ontañón et al. (2013)). Most prior approaches fo-
cus on substantial manual designs, yet still unable to defeat
professional players, potentially due to their inability to uti-
lize game play experiences (Kim and Lee 2017).

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Scheduler

Worker
Management Build Order Tactics Scouting Micro-

management

suggested
macros

PySC2
Environment

selected macro

PySC2 action

Updater (repeat until
macro finished)

macro termination

state summary
observations

Figure 1: The proposed modular architecture for StarCraft II

We believe that deep RL with properly integrated human
knowledge can effectively reduce the complexity of rein-
forcement learning, without compromising policy expres-
siveness or performance. To achieve this goal, we propose
a flexible modular architecture that shares the decision re-
sponsibilities among multiple independent modules, includ-
ing worker management, build order, tactics, micromanage-
ment, and scouting (Figure 1). Each module can be manu-
ally scripted or handled by a neural network policy, depend-
ing on whether the task is routine and hence easy to hand-
craft, or highly complex and requires learning from data.
All modules suggest macros (predefined action sequences)
to the scheduler, which decides their order of execution. In
addition, an updater keeps track of environment information
and adaptively executes macros selected by the scheduler.

We further evaluate the modular architecture by reinforce-
ment learning with self-play, focusing on important aspects
of the game that can benefit more from massive training
experiences, including build order and tactics. The agent
is trained on the PySC2 environment (Vinyals et al. 2017)
that exposes a challenging human-like control interface. We
adopt an iterative training approach that first trains one mod-
ule while others follow very simple scripted behaviors, and
then replace the scripted component of another module with
a neural network policy, which continues to train while the
already trained modules remain fixed. We evaluate our agent
playing Zerg v.s. Zerg against built-in bots on ladder maps,
obtaining win rates 92% or 86% against the “Harder” bot,
with or without fog-of-war. Furthermore, our agent general-
izes well to held-out test maps and achieves similar perfor-
mance.

Proceedings of the Fourteenth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE 2018)

187

Module Responsibility Current Design
Worker management Ensure that resources are gathered at maximum efficiency Scripted
Build order Choose what unit/building/upgrade to produce FC policy
Tactics Choose where to send the army (attack or retreat) FCN policy
Micromanagement Micro-manage units to destroy more opposing units Scripted
Scouting Send scouts and track opponent information Scripted + LSTM prediction

Table 1: The responsibility of each module and its design in our current version. FC = fully connected network. FCN = fully
convolutional network.

Our main contribution is to demonstrate that deep RL and
self-play combined with the modular architecture and proper
human knowledge can achieve competitive performance on
StarCraft II. Though this paper focuses on StarCraft II, it
is possible to generalize the presented techniques to other
complex problems that are beyond the reach of the current
end-to-end RL training paradigm.

Related Work
Classical approaches towards playing the full game of Star-
Craft are usually based on planning or search. Notable
examples include case-based reasoning (Aha, Molineaux,
and Ponsen 2005), goal-driven autonomy (Weber, Mateas,
and Jhala 2010), and Monte-Carlo tree search (Uriarte and
Ontañón 2016). Most other research efforts focus on a
specific aspect of the decision hierarchy, namely strategy
(macromanagement), tactics, and reactive control (micro-
managing). See the survey of Ontañón et al. (2013) and
Robertson and Watson (2014) for complete summaries. Our
modular architecture is inspired by hierarchical and mod-
ular designs that won past AIIDE competitions, especially
UAlbertaBot (Churchill 2017), but features the integration
of deep RL training and self-play instead of intense hard-
coding.

Reinforcement learning studies how to act optimally in a
Markov Decision Process to maximize the discounted sum
of rewardsR =

∑T
t=0 γ

trt (γ ∈ (0, 1]). The book by Sutton
and Barto (1998) gives a good overview. Deep reinforcement
learning uses neural networks to represent the policy and/or
the value function, which can approximate arbitrary func-
tions and process complex inputs (e.g. visual information).

Recently, Vinyals et al. (2017) have released PySC2, a
python interface for StarCraft II AI, and evaluated state-
of-the-art deep RL methods. Their end-to-end training ap-
proach, although shows potential for integrating deep RL
to RTS games, cannot beat the easiest built-in AI. Other
efforts of applying deep learning or deep RL to StarCraft
(I/II) include controlling multiple units in micromanage-
ment scenarios (Peng et al. 2017; Foerster et al. 2017;
Usunier et al. 2017; Shao, Zhu, and Zhao 2018) and learning
build orders from human replays (Justesen and Risi 2017).
To our knowledge, no published deep RL approach has suc-
ceeded in playing the full game yet.

Optimizing different modules can also be cast as a coop-
erative multi-agent learning problem. Apart from aforemen-
tioned multi-agent learning works on micromanagement,
other promising methods include optimistic and hysteretic
Q learning (Lauer and Riedmiller 2000; Matignon, Laurent,

and Le Fort-Piat 2007; Omidshafiei et al. 2017), and cen-
tralized critic with decentralized actors (Lowe et al. 2017).
Here we use a simple iterative training approach that alter-
nately optimizes a single module while keeping others fixed,
though incorporating multi-agent learning methods is possi-
ble and can be future work.

Self-play is a powerful technique to bootstrap from an ini-
tially random agent, without access to external data or exist-
ing agents. The combination of deep learning, planning, and
self-play led to the well-known Go-playing agents AlphaGo
(Silver et al. 2016) and AlphaZero (Silver et al. 2017). More
recently, Bansal et al. (2018) has extended self-play to asym-
metric environments and learns complex behavior of simu-
lated robots.

Modular Architecture
Table 1 summarizes the role and design of each module. In
the following sections, we will describe them in details for
our implemented agent playing the Zerg race . Note that the
design presented here is only an instance of all possible ways
to implement this modular architecture. One can incorporate
other methods, such as planning, into one of the modules as
long as it works coherently with other modules.

Updater
The updater serves as a memory unit, a communication hub
for modules, and a portal to the PySC2 environment.

To allow a fair comparison between AI and humans,
Vinyals et al. (2017) define observation inputs from PySC2
as similar to those exposed to human players, including im-
agery feature maps of the camera screen and the minimap
(e.g. unit type, player identity), and a list of non-spatial fea-
tures such as the total amount of minerals collected. Be-
cause past actions, past events, and out-of-camera informa-
tion are crucial for decision making but not directly accessi-
ble from current observations, the agent has to develop an ef-
ficient memory. Though it is possible to learn such a memory
from experiences, we think a properly hand-designed set of
memories can serve a similar purpose, while also reducing
the burden on reinforcement learning. Table 3 lists exam-
ple memories the updater maintains. Some memories (e.g.
build queue) can be inferred from previous actions taken.
Some (e.g. friendly units) can be inferred from inspecting
the list of all units. Others (e.g. enemy units) require further
processing PySC2 observations and collaborating with the
scouting module.

The “notifications” entry holds any information a module
wants to notify other modules, thus allowing them to com-

188

Module Macro name and inputs Executed sequence of macros or PySC2 actions
(All) jump to base (base) move camera (base.minimap location)

select all bases select control group (bases hotkey)
Worker rally workers (base) (1) jump to base (base), (2) select all bases,

(3) rally workers screen (base.minerals screen location)
inject larva (1) select control group (Queens hotkey), (2) for each base:

(2.1) jump to base (base),
(2.2) effect inject larva screen (base.screen location)

Build order hatch (unit type) (choose by unit type, e.g. Zergling→ train zergling quick)
hatch multiple units (unit type, n) (1) select all bases, (2) select larva, (3) hatch (unit type) n times
build new base (1) base = closest unoccupied base (informed by the updater)

(2) jump to base (base), (3) select any worker,
(4) build hatchery screen (base.screen location)

Tactics attack location (minimap location) (1) select army, (2) attack minimap (minimap location)
Micros burrow lurkers (1) select army, (2) select unit (lurker), (3) burrowdown lurker quick
Scouting send scout (minimap location) (1) select overlord, (2) move minimap (minimap location)

Table 2: Example macros available to each module. A macro (italic) consists of a sequence of macros or PySC2 actions (non-
italic). Information such as base.minimap location, base.screen location and bases hotkey is provided by the updater.

Name Description
Time Total time (seconds) passed
Friendly bases Minimap locations and worker counts
Enemy bases Minimap locations (scouted)
Neutral bases Minimap locations
Friendly units Friendly unit types and counts
Enemy units Enemy unit types and counts (scouted)
Buildings All constructed building types
Upgrades All researched upgrades
Build queue Units and buildings in production
Notifications Any message from or to modules

Table 3: Examples memories maintained by the updater

municate and cooperate. For example, when the build order
module decides to build a new base, it notifies the tactics
module, which may move armies to protect the new base.

Finally, the updater handles communication between the
agent and PySC2 by concretizing macros into sequences of
PySC2 actions and executing them in the environment.

Macros
When playing StarCraft II, humans usually choose their ac-
tions from a list of subroutines, rather than from raw envi-
ronment actions. For example, to build a new base, a player
identifies an unoccupied neutral base, selects a worker, and
then builds a base there. Here we name these subroutines
as macros (examples shown in Table 2). Learning a policy
to output macros directly can hide the trivial execution de-
tails of certain higher level commands, therefore allowing
the policy to explore different strategies more effectively.

Build Order
A StarCraft II agent must balance our consumption of re-
sources between many needs, including supply (population
capacity), economy, combat units, upgrades, etc. The build
order module plays the crucial role of choosing the correct
thing to build. For example, in the early game, the agent

hardcoded
build finished?

Neural Network
Policy

Hardcoded
build

next hardcoded macro

No

sampled macro

RL Training

rewards

update

 Feature extraction

Yes

state summary

required
buildings exist?

Yes
No

build n times build required
structures

build once

Figure 2: Details of our build order module.

needs to focus on building enough workers to gather re-
sources, and while in the mid game, it should choose the cor-
rect types of armies that can beat the opposing ones. Though
there exist numerous efficient build orders developed by pro-
fessional players, executing one naively without adaptation
can result in highly exploitable behavior. Instead of relying
on complex if-else logic or planning to handle various sce-
narios, the agent’s build order module can benefit effectively
from massive game-play experiences. Therefore we choose
to optimize this module by deep reinforcement learning.

Here we start with a classic hardcoded build order 1, as the
builds are often the same towards the beginning of the game,
and the optimal trajectory is simple but requires precisely
timed commands. Once the hard-coded build is exhausted,
a neural network policy takes control (See Figure 2). This
policy operates once every 5 seconds. Its input consists of
the agent’s resources (minerals, gas, larva, and supply), its

1Exactly the first 2 minutes taken from
https://lotv.spawningtool.com/build/56414/

189

building counts, its unit counts, and enemy unit counts (as-
suming no fog-of-war). We choose to exclude spatial inputs
like screen and minimap features, because choosing what
to build is a high-level strategic choice that depends more
on the global information. The output is the type of unit or
structure to produce. For units (Drones, Overlords, and com-
bat units), it also chooses an amount n ∈ {1, 2, 4, 8, 16} to
build. For structures (Hatchery, Extractor) or Queen, it only
produces one at a time. The policy uses a fully connected
(FC) network with four hidden layers and 512 hidden units
for each layer.

We also mask out invalid actions, such as producing more
units than the current resources can afford, to enable efficient
exploration. If a unit type requires a certain tech structure
(e.g. Roaches need a Roach Warren) but it doesn’t exist and
is not under construction, then the policy will build the tech
structure instead.

Tactics
Once our agent possesses an army provided by the build or-
der module, it must learn to use it effectively. The tactics
module handles map-level army commands, such as attack-
ing or retreating to a specific location with a group of units.
Though it is possible to hardcode certain tactics, we will
show in the Evaluation section that a learned tactics can per-
form better.

In the current version, our tactics simply decides where
on the minimap to move all of its armies towards. The input
consists of 64 × 64 bitmaps of friendly units, enemy units
(assuming no fog-of-war), and all selected friendly units on
the minimap. The output is a probability distribution over
minimap locations. The policy uses a three-layer Fully Con-
volutional Network (FCN) with 16, 32 and 1 filters, 5, 3 and
1 kernel sizes, and 2, 1 and 1 strides respectively. A softmax
operation over the FCN output gives the probability over the
minimap. The advantage of FCN is that its output is invari-
ant to translations in the input, allowing the agent to gener-
alize better to new scenarios or even new maps. The learned
tactics policy operates every 10 seconds.

Scouting
Because the fog-of-war hides certain areas, enemy-
dependent decisions can be very difficult to make, such as
building the correct army types to counter the opponent’s.

Our current agent assumes no fog-of-war during self-play
training, but can be evaluated under fog-of-war at test time,
with a scouting module that supplies missing information.
In particular, the scouting module sends Overlords to sev-
eral predefined locations on the map, regularly moves the
camera to those places and updates enemy information. It
maintains an exponential moving average estimate of enemy
unit counts for the build order module, and uses a neural net-
work to predict enemy unit locations on the minimap for the
tactics module. The prediction neural network applies two
convolutions with 16, 32 filters and 5, 3 kernel sizes to the
current minimap, followed by an LSTM of 512 hidden units,
whose output is reshaped to the same size of the minimap,
followed by pixel-wise sigmoid to predict the probabilities

of enemy units. Future work will involve adding further pre-
dictions beyond enemy locations and using RL to manage
scouts.

Micromanagement
Micromanagement requires issuing precise commands to in-
dividual units, such as attacking specific opposing units, in
order to maximize combat outcomes. Here we use simple
scripted micros in our current version, leaving the learn-
ing of more complex behavior to future work, for example,
by leveraging existing techniques presented in the Related
Work. Our current micromanagement module operates when
the updater detects that friendly units are close to enemies.
It moves the camera to the combat location, groups up the
army, attacks the location with most enemies nearby, and
uses a few special abilities (e.g. burrowing lurkers, spawn-
ing infested terrans).

Worker Management
Worker management has been extensively studied for Star-
Craft: Brood War (Christensen et al. 2010). StarCraft II sim-
plifies the process, so the suggested worker assignment (2
per mineral patch, 3 per vespene geyser) is often sufficient
for professional players. We script this module by letting
it constantly review worker counts of all bases and trans-
ferring excess workers to under-saturated mining locations,
prioritizing gas over minerals. It also periodically commands
Queens to inject larva at all bases, which is crucial for boost-
ing the population.

Scheduler
The PySC2 environment places a restriction on the number
of actions per minute (APM) to ensure a fair comparison
between AI and human. Therefore when multiple modules
propose too many macros at the same time, not all macros
can be executed and a scheduler is required to order them by
priority. Our current version uses little APM, so the sched-
uler simply cycles through all modules and executes the old-
est macro proposals. When APM increases in the future, for
example when complex micromanagement comes into play,
a cleverer or even learned scheduler is required.

Training Procedure
Our agent is trained to play Zerg v.s. Zerg on the ladder map
Abyssal Reef on the 4.0 version of StarCraft II. For most
games, Fog-of-war is disabled. Note that built-in bots can
also utilize full observations, so the comparison is fair. Each
game lasts 60 minutes, after which a tie is declared.

Self-Play
We follow the self-play procedure suggested by Bansal et
al. (2018) to save snapshots of the current agent into a train-
ing pool periodically (every 3 × 106 policy steps). Each
game the agent plays against a random opponent sampled
uniformly from the training pool. To increase the diversity
of opponents, we initialize the training pool with a ran-
dom agent and other scripted modular agents that use fixed
build orders and simple scripted tactics. The fixed build

190

orders are optimized2 to prioritize specific unique types
and include zerglings, banelings, roaches and ravagers,
hydralisks, mutalisks, roaches and infestors, and corrup-
tors and broodlords. Zerglings are available to every build
order. The scripted tactics attacks the enemy bases with all
armies whenever its army supply is above 50 or its total sup-
ply is above 100. The agent never faces the built-in bots until
test time.

Reinforcement Learning
If winning games is the only concern, in principle the agent
should only receive a binary win-loss reward. However, we
have found that the win-loss provides too sparse training sig-
nals and thus slows down training. Instead we use the sup-
ply difference (dt) between the agent and the enemy as a
reward function. A positive supply difference is often cor-
related with an advantageous status. Specifically, to ensure
that the game is always zero-sum, the reward is the change
in supply difference rt = dt−dt−1 for each time step. Sum-
ming up all rewards yields a total reward equal to the end-
game supply difference.

We use Asynchronous Advantage Actor-Critic (Mnih et
al. 2016) to optimize the policies with 18 parallel CPU work-
ers. The learning rate is 10−4 and the entropy bonus coeffi-
cient is 10−1 for build order, 10−4 for tactics (smaller due
to a larger action space). Each worker commits a gradient
update to the central parameter server every 40 policy steps
(roughly 3 minutes in the game for build order and 6 minutes
for tactics).

Iterative Training
One major benefit of the modular architecture is that mod-
ules act relatively independently and can therefore be opti-
mized separately. We illustrate this by comparing iterative
training, namely optimizing one module while keeping oth-
ers fixed, against joint training, namely optimizing all mod-
ules together. We hypothesize that iterative training can be
more effective because it stabilizes the experiences gathered
by the training module and avoids the complex module-wise
coordination during joint training.

In particular, we pretrain a build order module with a
scripted tactics described in the Self Play section, and mean-
while pretrain a tactics module with a scripted build order
(all Roaches). Once both pretrained modules stabilize, we
combine them, freeze the tactics, and only train the build or-
der. After build order stabilizes, we freeze its parameters and
train tactics instead. The procedure is abbreviated “iterative,
pretrained build order and tactics”.

Evaluation
Videos our agent playing against itself and qualita-
tive analysis of the tactics module are available on
https://sites.google.com/view/modular-sc2-deeprl. In this
section, we would like to analyze the quantitative and quali-
tative performance of our agent by answering the following
questions.

2Most builds taken from https://lotv.spawningtool.com/build/zvz/

Figure 3: Win rates of our agent against opponents of dif-
ferent strengths. Asterisks indicate built-in bots that are not
seen during training. 1 epoch = 3× 105 policy steps.

Figure 4: Learned army compositions. Showing ratios of to-
tal productions of each unit type to the total number of pro-
duced combat units.

1. Does our agent trained with self-play outperform scripted
modular agents and built-in bots?

2. Does iterative training outperform joint training?

3. How does the learned build order behave qualitatively?
E.g. does it choose army types that beat the opponent’s?

4. Can our agent generalize to other maps after being trained
on only one map?

Quantitative Performance
Figure 3 shows the win rates of our agent throughout train-
ing, under the “iterative, pretrained build order and tactics”
procedure. Pretrained build order and tactics can already
achieve 67% and 41% win rates against the Harder bot.
The win rate of combined modules increase to 86% after
iterative training. Moreover, it outperforms simple scripted
agents (also see Table 5), indicating the effectiveness of re-
inforcement learning.

Table 4 shows that iterative training outperforms joint
training by a large margin. Even when joint training also
starts with a pretrained bulid order, its stability quickly drops
and results in 50% less win rate than iterative against the
Harder bot. Pretraining both build order and tactics lead to
better overall performance.

Qualitative Evaluation of the Learned Build Order
Figure 4 shows how our learned build order module reacts
to different scripted opponents that it sees during training.

191

Training procedure Hard Harder Very Hard Elite
Iterative, no pretrain 79% 66% 13% 12%
Iterative, pretrained tactics 84% 73% 17% 8%
Iterative, pretrained build order 86% 81% 38% 24%
Iterative, pretrained build order and tactics 84% 86% 58% 29%
Joint, no pretrain 52% 25% 7% 7%
Joint, pretrained build order 60% 31% 9% 7%

Table 4: Comparison of final win rates (out of 100 matches) against built-in bots between different training procedures

Average Roach Mutalisk V. Easy Easy Medium Hard Harder V. Hard Elite
Modular (None) 68% 69% 44% 100% 92% 72% 79% 66% 13% 12%
Modular (Tactics) 62% 75% 31% 100% 100% 90% 84% 73% 17% 8%
Modular (Build) 77% 81% 42% 100% 96% 92% 86% 81% 38% 24%
Modular (Both) 83% 80% 67% 100% 100% 99% 84% 86% 58% 29%
Scripted Roaches 61% – 18% 100% 100% 90% 71% 35% 5% 5%
Scripted Mutalisks 72% 82% – 100% 98% 86% 76% 64% 15% 2%

Table 5: Comparison of win rates (out of 100 matches) against various opponents. Pretrained component in parenthesis. “V.”
means “Very”.

Though our agent prefers the Zergling-Roach-Ravager com-
position in general, it can correctly react to the Zerglings
with more Banelings, to Banelings with fewer Zerglings and
more Roaches, and to Mutalisks with more hydralisks. Cur-
rently, the reactions are not perfectly tailored to the spe-
cific opponents, likely because the Zergling-Roach-Ravager
composition is strong enough to defeat the opponents before
they can produce enough units.

Generalization to Different Maps

Many parts of the agent, including the modular architecture,
macros, choice of policy inputs, and neural network archi-
tectures (specifically FCN), are designed with certain prior
knowledge that can help with generalization to different sce-
narios. We test the effect of prior knowledge by evaluating
our agent against different opponents on maps not seen dur-
ing training. These test maps have various sizes, terrains,
and mining locations. The 4-player map Darkness Sanctuary
even randomly spawns players at 2 out or 4 locations. Ta-
ble 6 summarizes the results. Though our agent’s win rates
drop by 6% on average against Harder, it is still very com-
petitive.

Opponent AR DS AP
Scripted Roaches 81% 83% 78%
Hard 84% 85% 78%
Harder 86% 79% 81%
Very Hard 58% 43% 55%
Elite 29% 22% 30%

Table 6: Win rates (out of 100 matches) of our agent against
different opponents on various maps. Our agent is only
trained on AR. AR = Abyssal Reef. DS = Darkness Sanc-
tuary. AP = Acid Plant.

Opponent Hard Harder V. Hard Elite
Win Rate 94% 92% 49% 60%

Table 7: Win rates (out of 100 matches) of our agent on
Abyssal Reef with fog-of-war enabled

Testing under Fog-of-War
Though the agent was trained without fog-of-war, we can
test its performance by filling missing information with
estimates from the scouting module. Table 7 shows that
the agent actually performs much better under fog-of-war,
achieving 9.5% higher win rates on average, potentially be-
cause the learned build orders and tactics generalize better
to noisy/imperfect information.

Conclusions and Future Work
In this paper, we give the first demonstration that proper
combination of human knowledge and deep reinforcement
learning can result in competitive StarCraft II agents. Cer-
tain techniques like modular architecture, macros, and itera-
tive training can provide insights to dealing with other chal-
lenging problems at the scale of StarCraft II.

However, our current version is still far from beating the
hardest built-in bots, let alone skilled humans. Many im-
provements are under research, including deeper neural net-
works, multi-army-group tactics, researching upgrades, and
learned micromanagement policies. We believe that such
improvements can eventually close the gap between our
modular agent and professional human players.

Acknowledgements
This work was supported in part by the DARPA XAI pro-
gram and Berkeley DeepDrive.

192

References
Aha, D. W.; Molineaux, M.; and Ponsen, M. 2005. Learn-
ing to win: Case-based plan selection in a real-time strategy
game. In International Conference on Case-Based Reason-
ing, 5–20. Springer.
Bansal, T.; Pachocki, J.; Sidor, S.; Sutskever, I.; and Mor-
datch, I. 2018. Emergent complexity via multi-agent com-
petition. International Conference on Learning Representa-
tions.
Christensen, D. B.; Hansen, H. O.; Juul-Jensen, L.; and Kas-
taniegaard, K. 2010. Efficient resource management in
starcraft: Brood war. https://projekter.aau.dk/projekter/files/
42685711/report.pdf.
Churchill, D. 2017. Ualbertabot. https://github.com/
davechurchill/ualbertabot.
Foerster, J.; Farquhar, G.; Afouras, T.; Nardelli, N.; and
Whiteson, S. 2017. Counterfactual multi-agent policy gra-
dients. arXiv preprint arXiv:1705.08926.
Justesen, N., and Risi, S. 2017. Learning macromanagement
in starcraft from replays using deep learning. In Computa-
tional Intelligence and Games (CIG), 2017 IEEE Confer-
ence on, 162–169. IEEE.
Kim, Y., and Lee, M. 2017. Intelligent machines humans
are still better than ai at starcraft—for now. MIT Technology
Review.
Lauer, M., and Riedmiller, M. 2000. An algorithm for dis-
tributed reinforcement learning in cooperative multi-agent
systems. In In Proceedings of the Seventeenth International
Conference on Machine Learning. Citeseer.
Lowe, R.; Wu, Y.; Tamar, A.; Harb, J.; Abbeel, O. P.; and
Mordatch, I. 2017. Multi-agent actor-critic for mixed
cooperative-competitive environments. In Advances in Neu-
ral Information Processing Systems, 6382–6393.
Matignon, L.; Laurent, G. J.; and Le Fort-Piat, N. 2007.
Hysteretic q-learning: An algorithm for decentralized rein-
forcement learning in cooperative multi-agent teams. In In-
telligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ
International Conference on, 64–69. IEEE.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. In In-
ternational Conference on Machine Learning, 1928–1937.
Omidshafiei, S.; Pazis, J.; Amato, C.; How, J. P.; and Vian, J.
2017. Deep decentralized multi-task multi-agent reinforce-
ment learning under partial observability. In International
Conference on Machine Learning, 2681–2690.
Ontañón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A survey of real-
time strategy game ai research and competition in starcraft.
IEEE Transactions on Computational Intelligence and AI in
games 5(4):293–311.

OpenAI. 2018. Openai five, 2018. https://blog.openai.com/
openai-five/. Accessed: 2018-08-19.
Peng, P.; Yuan, Q.; Wen, Y.; Yang, Y.; Tang, Z.; Long, H.;
and Wang, J. 2017. Multiagent bidirectionally-coordinated
nets for learning to play starcraft combat games. arXiv
preprint arXiv:1703.10069.
Robertson, G., and Watson, I. 2014. A review of real-time
strategy game ai. AI Magazine 35(4):75–104.
Shao, K.; Zhu, Y.; and Zhao, D. 2018. Starcraft microman-
agement with reinforcement learning and curriculum trans-
fer learning. IEEE Transactions on Emerging Topics in
Computational Intelligence.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of go with deep neural networks and tree search.
Nature 529(7587):484–489.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676):354.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction, volume 1. MIT press Cambridge.
Tessler, C.; Givony, S.; Zahavy, T.; Mankowitz, D. J.; and
Mannor, S. 2017. A deep hierarchical approach to lifelong
learning in minecraft. In AAAI, volume 3, 6.
Uriarte, A., and Ontañón, S. 2016. Improving monte
carlo tree search policies in starcraft via probabilistic models
learned from replay data. In AIIDE.
Usunier, N.; Synnaeve, G.; Lin, Z.; and Chintala, S. 2017.
Episodic exploration for deep deterministic policies: An ap-
plication to starcraft micromanagement tasks. International
Conference on Learning Representations.
Vinyals, O.; Ewalds, T.; Bartunov, S.; Georgiev, P.; Vezh-
nevets, A. S.; Yeo, M.; Makhzani, A.; Küttler, H.; Aga-
piou, J.; Schrittwieser, J.; et al. 2017. Starcraft ii: A
new challenge for reinforcement learning. arXiv preprint
arXiv:1708.04782.
Weber, B. G.; Mateas, M.; and Jhala, A. 2010. Applying
goal-driven autonomy to starcraft. In AIIDE.

193

