
A Design Pattern Approach for Multi-Game Level Generation

Spencer Beaupre, Thomas Wiles, Sean Briggs, Gillian Smith
Worcester Polytechnic Institute

Worcester, MA, USA
{smbeaupre, tgwiles, srbriggs, gmsmith}@wpi.edu

Abstract
Existing approaches to multi-game level generation rely upon
level structure to emerge organically via level fitness. In this
paper, we present a method for generating levels for games
in the GVGAI framework using a design pattern-based ap-
proach, where design patterns are derived from an analysis of
the existing corpus of GVGAI game levels. We created two
new generators: one constructive, and one search-based, and
compared them to a prior existing search-based generator. Re-
sults show that our generator is comparable, even preferred,
over the prior generator, especially among players with ex-
isting game experience. Our search-based generator also out-
performs our constructive generator in terms of player pref-
erence.

Introduction
While scholars and practitioners have made great progress
in developing techniques and methods for procedural con-
tent generation in specific game design contexts, research
in how to approach the algorithmic creation of content for
multiple games is only in the preliminary stages. Human de-
signers are capable of creating levels for a wide variety of
games because of their ability to interpret new contexts from
written rules and to apply design processes and pre-existing
knowledge across contexts. In this paper, we present a de-
sign pattern-based approach to generating levels in multiple
game contexts. We work in the GVG-AI framework (Khalifa
et al. 2016), a testbed for multi-game analysis, though we are
hesitant to apply the term “general” to it (see Discussion).

Current approaches to multi-game level design typically
rely upon level structure emerging organically; levels of-
ten look disorganized, cluttered, and laid out without un-
derlying intent for specific experiences. Design patterns are
an approach for formalizing design knowledge (Alexander,
Ishikawa, and Silverstein 1977) and reasoning about game
and level structure. But it is unclear how to identify useful
design patterns that can span multiple games in a concrete-
enough way to support level generation.

We take the approach of identifying design patterns in a
bottom-up manner, through automated analysis of the exist-
ing corpus of human-designed levels in the GVG-AI frame-
work. These patterns are then used as building blocks for

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

newly generated levels. To use level information from dif-
ferent games, each human-made level was converted into a
set of abstracted design patterns, each of which are 3x3 tile
segments. Levels are generated by assembling combinations
of these patterns, selected based on their frequency in the
overall pattern corpus. A selection of these constructively-
generated levels form the initial population for a genetic al-
gorithm that optimizes the level based on simulated player
performance. We then evaluated our design pattern-based
generator with human players, and compared the two gen-
erators we created–one constructive, one search-based–with
a prior search-based generator built in the same framework.

Our contributions in this paper are a design pattern-based
analysis of an existing game corpus, an approach for multi-
game content generation that performs equally well, if not
better, than an existing search-based approach, and our de-
rived insight into the challenges and opportunities for using
design patterns in multi-game generation.

Related Work
The GVG-AI competition focuses on studying PCG and
game playing in a multi-game context (Khalifa et al. 2016).
In addition to the evolutionary approach followed by Khal-
ifa et al., there is also a GVG-AI generator that com-
bines answer set programming with evolutionary algorithms
(Neufeld, Mostaghim, and Perez-Liebana 2015).

The GVG-AI framework currently supports over 90 dif-
ferent ports or variations of classic two-dimensional arcade
games. Games are expressed in the VGDL language (Schaul
2013), which provides a consistent structure and language
for expressing both game rules and game levels. The frame-
work also comes with a set of sample, hand-authored levels
for use in the game-playing track, which we use as a corpus
for design pattern extraction.

Prior work in using design patterns for GVG-AI level gen-
eration is limited. Sharif et al. (Sharif, Zafar, and Muham-
mad 2017) have done preliminary work in manually identi-
fying design patterns in the GVG-AI level corpus following
an analysis of player movement through the space. Though
their goal is to use these patterns in a generative context,
their work is still ongoing. The 23 patterns they identify are
largely based on how different sprites move and are grouped
in level space. Our analysis is automated and results in the
detection of more patterns and their frequency in the levels,

Proceedings of the Fourteenth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE 2018)

145

Figure 1: Left: the original hand-authored level for Aliens.
Right: the same level, converted to an abstracted type sys-
tem.

but does not consider how sprites move across space.
There is a rich literature on design patterns, which orig-

inated in architecture (Alexander, Ishikawa, and Silverstein
1977), as a tool for game analysis and production (Bjork and
Holopainen 2004; Nystrom 2014), and especially for PCG
for platformers (Dahlskog and Togelius 2012). Typically de-
sign patterns are identified by human authors and include
contextual information for when and why they should be
used. Our design patterns are identified automatically, and
context is inferred from frequently. There has been work
from the machine learning game AI community on produc-
ing generators based on learned patterns from datasets (e.g.
(Snodgrass and Ontañón 2014; Summerville and Mateas
2016)), and though our approach does not currently incor-
porate a learned relationship between patterns in generation,
this is an area of future work.

Design Patterns
All our design patterns in this paper are 3x3 “micro”-
patterns of different types of sprites that are frequently
grouped together in levels across games. This section de-
scribes our approach for deriving these patterns and an anal-
ysis of the patterns themselves.

Abstracting Levels
In the VGDL language, levels are comprised of game-
specific information that cannot be directly translated to an-
other game expressed in the same language. To use all levels
in the GVG-AI framework as a corpus, we must first convert
the levels to a common format. Game-specific information
is reclassified into a abstract type system that can be used to
translate sprite combinations from one game into the most
similar sprite combinations for any other game.

VGDL has five sprite classifications. Avatars are any
sprites directly controlled by the player. Solids are sprites
that cannot be moved through and have no other interac-
tions. Collectables are non-harmful and are destroyed
by the player upon interaction. Harmfuls either destroy
the player or spawn other sprites that do. Others are any
sprite that does not meet all qualifications for another cat-
egory. We lean on this representation in building abstract

Table 1: Our abstract format for levels includes both single
sprite and combination sprite types.

Token Type Token Types
A Avatar 1 (Other, Other)
C Collectable 2 (Other, Avatar)
H Harmful 3 (Other, Harmful)
O Other 4 (Other, Collectable)
S Solid 5 (Other, Solid)

6 (Other, Avatar, Harmful)
7 (Other, Harmful, Harmful)

patterns (using the first letter of each classification as a sym-
bol in the pattern), since the classifications provide a rough
sense of the role that their specific game sprites play in de-
sign.

VGDL game levels are stored as matrices of mappings,
meaning each tile can contain one or more sprites. Since we
want our design patterns to include such combinations of
sprites, our abstract format includes symbols for combina-
tions of sprites, denoted by numbers.

There are 12 tokens in the abstract level description lan-
guage: 5 single sprites and 7 sprite combinations, as de-
scribed in Table 1. An example of a specific level (for Alien)
converted to an abstract level is shown in Figure 1.

Pattern Extraction
97 games are represented in the pattern library, out of a
total of 103 games in the GVG-AI corpus. Six games in
the corpus were removed (eggomania, eightpassenger, jaws,
painter, realsokoban, and thecitadel because of errors read-
ing the game description file and/or levels. Every game in
the framework has 5 hand-authored levels, resulting in 485
levels in total from which we could draw patterns.

A 3x3 sliding window was passed over each abstracted
level, and every 3x3 token matrix in the level was then stored
as a potential pattern. This resulted in 12,941 unique pat-
terns. The patterns, along with the frequency of their occur-
rence in the corpus, are stored in a pattern library for use in
the generation process.

The pattern library also holds apart certain types of pat-
terns for use in specific parts of the generation process. All
patterns containing an avatar are tagged, since each level can
only contain one avatar. Additionally, all patterns that are all
Solid on one or more sides are classified as “border” pat-
terns that are candidates for edge or corner pieces in a level.

Resulting Patterns
Though all 12,941 patterns are used in the final generative
process (randomly selected, weighted by their frequency),
in this section we report upon the six most common patterns
found in the GVG-AI corpus. Table 2 reports the pattern and
its percentage frequency in the corpus, as well as the games
that are most and least influential on that pattern’s appear-
ance in the corpus. In parentheses after each game name
is the percentage by which the pattern is over- or under-
represented in the game compared to its representation in
the overall pattern library. For example, the pattern that con-

146

Figure 2: Left: rendering of a hand-authored Pacman level.
Right: the same level, reconstructed from its abstract de-
scription. Notice greater variety in collectible items, due to
loss of specifics about which collectible item appears at that
point in the level.

sists of all O sprite types appears 66.38% more often in the
game x-racer than in the overall pattern library, indicating
that this game greatly contributes to its presence in the pat-
tern library.

It is notable from this table that one pattern dominates the
library: the empty space pattern accounts for almost a quar-
ter of all game levels. This pattern is also the most polariz-
ing, with the pattern either vastly over- or under-represented
in many games (including those in the table). There are also
two patterns that appear with greater frequency due to only
a single game: the all solids pattern is overrepresented in
the game modality and the all enemies pattern is overrepre-
sented in the game defem. How influential a game is over the
pattern’s representation is not taken into currently taken into
account during pattern selection in generation, though could
be in future work.

Generative Approach
We use an evolutionary approach for level generation, build-
ing from an initial population of levels created using the con-
structive generator. The constructive generator selects and
instantiates abstract patterns in the context of the game de-
scription provided to the generator.

Instantiating Abstract Patterns
The abstraction of levels into a common format results in
information loss. For example, if a game has two sprites that
are classified as the same type (such as the pellets and fruit
in pacman), then the encoded level will lose the distinction
between the two when recording them both as the same type
(see Figure 2, depicting a hand-authored level that has been
converted to an abstract representation and then back again).

When instantiating abstract patterns for a specific game,
the generator selects sprite combinations that match each
type from the list of level elements in the VGDL description
for that game. In the case of multiple specified sprite combi-
nations matching a single type, a sprite is chosen at random.
In the case of no match to the type, the closest match in terms
of number of matching elements is selected. For example,

Figure 3: Top left: Khalifa et al. constructive generator, Top
right: our constructive generator, Bottom left: Khalifa et al.’s
search-based generator, Bottom right: our search-based gen-
erator.

Type 7 - Other, Harmful, Harmful does not have a match
in pacman, where harmful sprites cannot occupy the same
space. In its place, an (Other, Harmful) mapping is made,
such as placing a Floor tile and a Red Ghost.

Constructive Generator
The constructive generator combines patterns from the pat-
tern library to create the layout of a level, and then con-
verts the abstract types from the patterns into game-specific
level mappings. Due to the 3x3 shape of the patterns, lev-
els must have lengths and widths divisible by 3. When
building a level, patterns are randomly chosen from the li-
brary, weighted by the frequency of that pattern’s appear-
ance across all games.

If the game includes a Solid sprite, then a border is cre-
ated around the edges of the level by randomly selecting
edge and corner patterns. Otherwise, random patterns are se-
lected for the entire level.

There are also two greedy pattern selection heuristics: 1)
Every time a pattern is selected as a candidate, the system
checks to see if it contains an avatar: if it does and if no
avatar has been placed in the level yet, then the avatar pat-
tern will be included, otherwise it is ignored and a new pat-
tern is chosen. This is because there can be only one avatar
in currently-expressed GVG-AI games. 2) When a pattern
is placed into the level, we check to see that all non-solid
spaces in the pattern are reachable. If they are not, then the
pattern is discarded and another one included.

Evolutionary Approach
We adapted the existing search-based generator included in
the GVG-AI framework to use our constructive generator
to create an initial population. We also modified the mu-
tation function to operate on patterns instead of individual
sprites. There are two different mutation operators. In the

147

Table 2: Table showing the six most frequent patterns in the pattern library, how frequently they appear across all levels, and
the games that most and least contribute to their presence in the library.

Pattern Frequency Most Influence Least Influence
OOO
OOO
OOO

24.05% x-racer (+66.38%) pacman (-24.05%)

OOO
OOO
SSS

2.56% pokemon (+13.91%) lemmings (-2.16%)

SSS
OOO
OOO

2.16% pokemon (+14.51%) lemmings (-2.16%)

SSS
SSS
SSS

1.95% modality (+59.59%) bomberman (-1.95%)

OOO
SSS
OOO

1.27% donkeykong (+1.60%) whackamole (-1.27%)

111
111
111

1.21% defem (+68.74%) boulderdash (-1.21%)

first, when levels are mutated, one pattern is randomly se-
lected and swapped with another pattern; if the selected pat-
tern is on the border, then it is replaced with another border
pattern. In the second, two patterns are selected at random
and swapped with each other.

Our evolutionary generator used the same parameters as
Khalifa et al.’s search-based generator: an initial population
of 50, with a crossover probability of 70% and a mutation
probability of 10%. Our generator uses the same simulated
player fitness function as the original Khalifa generator as
well.

Evaluation
In this section, we present example levels generated using
our design pattern-based generator, and a comparative evalu-
ation between our generator and Khalifa et al.’s search-based
generator (Khalifa et al. 2016).

Sample Levels
Figure 3 shows a side-by-side comparison of typical levels
for the game Bomberman against prior state of the art gen-
erated levels.

In contrast to the minimal aesthetic in existing GVG-AI
levels, for which the generator added just enough sprites
to make the level playable, our generated levels have more
structure and include more game objects.

Player Evaluation
We conducted a study comparing player preferences be-
tween our search-based and constructive generators, and
Khalifa et al.’s search-based generator. We compared only
against their search-based generator because they reported
that as the best of their generators. We did not compare to a
random baseline.

We selected three games on which to conduct this test:
Frogs, Bomberman, and Zelda. Of these, Frogs and Zelda
were also used in Khalifa’s evaluation. The third game they
used, Pacman, was replaced with Bomberman, as the frame-
work does not support more than one ghost of each color
in generated levels, and our generator is somewhat likely to
create these as there is no resriction on the number of sprites
in any level. Brief game descriptions follow:
• Bomberman - Port of original Bomberman. Move around

the level and place bombs that explode in a cross shaped
pattern (+) to either destroy dark blocks or kill enemies.
The goal is to find all doors which are hidden beneath
destroyable blocks.

• Frogs - Port of Frogger. The objective is to reach the end
goal(s) while avoiding vehicles and water which will kill
you on contact. The character can only move across water
if they are on a log, otherwise they will fall in the water
and drown.

• Zelda - Port of the original Legend of Zelda game. The
player must first collect a key to then be able to unlock the
exit door. The character can attack in the direction they are
facing to kill an enemy.
Five levels were generated per game, per generator, and

new levels were generated using the Khalifa et al.’s search-
based generator. A total of 45 levels (15 per generator) were
created and stored for this survey. There was no manual cu-
ration of which levels would be used for testing.

Our survey had participants play two levels of the same
game but from different generators, and repeated this test for
each game to account for all generator comparisons, result-
ing in each person playing a total of six levels. Each person
played three comparisons:
• Our search-based vs. Khalifa search-based

148

Table 3: Results from the user study comparing our con-
structive (NC) and search-based (NS) generators with each
other and against Khalifa et al.’s search-based generator
(KS)

.
A B Success P-Value

NC (A) vs. KS (B) 16 14 53.33% 0.4278
NS (A) vs KS (B) 17 13 56.67% 0.2923
NS (A) vs NC (B) 20 10 66.67% 0.0494

Table 4: Participant preferences separated by prior experi-
ence with video games.

Experience Conf. Cont. Success P-Value
None 2 1 66.67% 0.5
Limited 6 12 33.33% 0.9519
Moderate 24 12 66.67% 0.0326
Substantial 21 12 63.64% 0.08138

• Our constructive vs. Khalifa search-based
• Our constructive vs. Our search-based
The order of conditions and games was randomized.

Players were consented to the study, and had the rules for
each game explained to them. The player was asked only to
identify which level they preferred, and following playing
the games was also administered a demographic survey for
gender, age, and experience with video games. A total of 30
players were recruited (20 identify as men, 10 as women),
who had varying experience playing video games. Table 3
shows the results of our study, including that our search-
based generator was preferred over our constructive gener-
ator (significant results, p < 0.05), and both of our genera-
tors were marginally preferred over the Khalifa search-based
generator (not statistically significant).

As in Khalifa’s study, the search-based generator signif-
icantly outperforms the constructive generator in terms of
player preference. This is likely because the simulation-
based fitness function is more effective for producing
playable levels. However, both our search-based and con-
structive generator performed similarly when compared
against Khalifa’s search-based generator. This could indi-
cate that when levels of Khalifa’s generator were compared
against ours, players would evaluate them with slightly dif-
ferent criteria than when comparing the levels of the two
pattern-based generators. Table 4 shows how often partic-
ipants confirmed or contradicted our hypotheses regarding
generator preferences for all three generators, separated by
prior game experience.

Players with moderate or substantial experience tended to
align with our hypotheses about two thirds of the time, while
players with low experience did so just one third of the time.
This indicates that prior game-playing experience influenced
how the players compared levels.

Table 5 displays the results of our study for just players
with moderate or substantial experience with video games.
These results are similar, but with higher confidence values,

Table 5: Results for comparing our generators and Khalifa’s
search-based generator, with players who have low or no
experience removed.

A B Success P-Value
NC (A) vs. KS (B) 13 10 56.52% 0.3382
NS (A) vs KS (B) 15 8 65.22% 0.1050
NS (A) vs NC (B) 17 6 73.91% 0.0173

for the comparison between our constructive generator and
the Khalifa’s search (small preference for our constructive
but not statistically significant), as well between our two
generators (statistically significant preference for our search
generator over the constructive). Our search-based genera-
tor is preferred over Khalifa’s among this population, with a
confidence of approximately 90%.

Though we did not ask participants for why they preferred
one generator over another, several participants volunteered
this information. Reasons for selecting one level over an-
other varied widely. Some preferred Khalifa’s generator be-
cause levels were more open and had less total sprites on
the screen, and the level thus seemed more approachable.
One participant said they preferred a level simply because
it was larger, and that the contents did not influence their
choice. Though none of these comments can be considered
conclusive evidence, the varied comments we received do
point to the need for rigorous qualitative research into why
people state design preferences in the context of the multi-
game level generation.

Level Metrics and Expressive Range
For the constructive generator, 4.5 ∗ 1098 combinations of
patterns are possible for non-bordered games like Space In-
vaders, for bordered games like Zelda, 9 ∗ 1076 combina-
tions are possible. It is clear from the reactions of our par-
ticipants that the range of content our generator can produce
includes extremely high and low difficulty levels, and levels
with both too many and too few objects. It is hard from this
to judge what kind of variety there is among levels and what
biases are present in the generator. Expressive range analy-
sis has thus been suggested as an evaluation method (Smith
and Whitehead 2010).

While a full expressive range analysis of the generator us-
ing game-independent metrics is beyond the scope of this
paper, we do think it important to comment on the range
of levels the generator is capable of producing and to what
extent the levels played in our playtest are representative of
the generator. A simpler method for assessing the expressive
range of the generator is to count how many of each type
of sprite gets placed in levels on average. The proportion
of objects used in a level influences the experience playing
it. Harmful and collectable objects introduce goals and ad-
versaries; solid objects introduce obstacles and reflect how
much open space there is for the player to traverse.

Table 6 shows the average, max, and min number of
different object types in 1000 generated levels of the
frogs game, generated using the constructive generator. The

149

Table 6: Object count metrics for 1000 levels of frogs made
by our constructive generator.

Solids Collectables Harmfuls Other
Mean 98.876 5.793 7.037 194.797
STD 13.585 3.992 5.726 31.828
Max 135 28 33 266
Min 64 2 0 144

Table 7: Object count metrics for the 5 frogs levels made by
the constructive generator and used in our study.

Solids Collectables Harmfuls Other
Mean 94.8 5 9 187.2
STD 3.493 3.742 5.244 4.324
Max 98 11 16 192
Min 91 2 4 182

amount of harmful and collectable objects has quite a large
range that could be a cause for the inconsistency in level
difficulty. Of the 1000 levels generated, they ranged from
having no harmful sprites to as much as 33. This range of
variation makes it important to assess just how representa-
tive the levels used in our playtesting study are of the typical
levels produced by our generator.

Table 7 shows the same metrics, this time only for the
5 constructive generator levels used in the study. The aver-
age amounts of each object type are very close to the aver-
ages for the overall generator, except for harmful types being
slightly more frequent in the survey levels. The standard de-
viations of the solid and other types are much lower in the
survey levels, indicating that they cover only a small por-
tion of the generator’s expressive range. The standard de-
viations for the collectables and harmfuls are closer, how-
ever. As these have a more direct impact on the player, and
the mean for all four types are relatively consistent with the
expected values, we determined that the constructive levels
used for Frogs in our survey are fair representations of our
generators expressive range. Similar conclusions were found
for the constructive levels for Bomberman and Zelda, but are
not included in this paper for space reasons.

Discussion
In our work, we sought to explore the potential of procedu-
rally generating levels that felt more human-made than ones
from more basic generators. Overall, we have shown that a
pattern-based approach is a viable and promising method of
level generation for 2D arcade-style games of the type ex-
pressed in the GVG-AI framework. Qualitatively, the levels
produced by our generators had a more organic and flowing
structure that created a positive gameplay experience.

The major weakness of our generators was the inconsis-
tency of level difficulty. Some levels would place the player
directly next to an enemy at the start or would require the
player to path through a region filled with a massive number
of enemies. Meanwhile, other levels could have no enemies

or place them in such a way the player was unlikely to need
to interact with any. A further challenge is in assessing the
impact of specific enemy types on game experience: for ex-
ample, a water tile in Frogs is not nearly so dangerous as
the alien spawner in Space Invaders, yet these are treated as
equivalent due to the representation in VGDL and the ab-
straction enforced by our design patterns.

Future Work
Our design pattern-based approach to multi-game level gen-
eration is still in-progress, and we are exploring two specific
avenues of future research. The first is in modifications to
the constructive generator, to take into account frequency
of neighboring patterns to the selected pattern. This also
involves a deeper analysis of the patterns found in games
to determine correlations: are there some patterns that are
typically co-located in a level, and can we create hierarchi-
cal design patterns that embed this design knowledge? The
second avenue is in gaining greater insight into why cer-
tain patterns are over or under-represented in certain games.
For example, space invaders over-influences the presence of
the open space pattern in the overall pattern library, which
makes sense when considering patterns of play - the game
requires an open play field. In future work, we aim to in-
fer such relationships from rules or simulated play, and use
them to guide the inclusion or exclusion of particular pat-
terns in the generator.

On “Generality”
Finally, we find it important to note the problematic nature
of the term “general” when it comes to the GVG-AI compe-
tition specifically, and “general” artificial intelligence more
broadly. Generality is always interpreted with respect to the
context it can be used in: we arguably produce “general”
design patterns, but these design patterns can only apply to
games that even have the notion of collectables or harmful
entities (and thus that are inherently based on conflict). As
Smith has argued previously, the games that this community
chooses to use for research reflect and reinforce the values
that the community holds (Smith 2017).

The operational logics (Osborn, Wardrip-Fruin, and
Mateas 2017) expressed by games in the GVG-AI frame-
work are quite limited, and use of the term “general” to de-
scribe it risks contributing to hegemonic thinking in games
research (Fron et al. 2007). The other major multi-game
level design corpus, VGLC (Summerville et al. 2016), is
also quite limited in its scope, including mostly games that
appeal to 80s and early 90s nostalgia. One can envision an
alternate history of games research in which it is not pop-
ular arcade or Nintendo console games that are celebrated
and formalized for research purposes, but instead visual
novels or adventure games or playground activities. To call
the GVG-AI framework and competition an exploration of
“general” video games is to implicitly declare that the kinds
of games modeled in the framework are reasonable and rep-
resentative of the space of games itself, which they clearly
are not. We strongly urge the research community reconsider
and reflect upon the ways in which declarations of “gener-

150

ality” embed implicit assumptions of what is considered a
“normal” game, and why.

References
Alexander, C.; Ishikawa, S.; and Silverstein, M. 1977. A Pattern
Language: Towns, Buildings, Construction. Oxford University
Press.
Bjork, S., and Holopainen, J. 2004. Patterns in Game Design
(Game Development Series). Charles River Media, 1 edition.
Dahlskog, S., and Togelius, J. 2012. Patterns and Procedural
Content Generation. In Proceedings of the Workshop on Design
Patterns in Games (DPG 2012), co-located with the Founda-
tions of Digital Games 2012 conference.
Fron, J.; Fullerton, T.; Morie, J. F.; and Pearce, C. 2007. The
hegemony of play. In Situated Play: Proceedings of Digital
Games Research Association 2007 Conference. Tokyo, Japan,
1–10.
Khalifa, A.; Perez-Liebana, D.; Lucas, S. M.; and Togelius, J.
2016. General video game level generation. In Proceedings of
the Genetic and Evolutionary Computation Conference 2016,
GECCO ’16, 253–259. New York, NY, USA: ACM.
Neufeld, X.; Mostaghim, S.; and Perez-Liebana, D. 2015. Pro-
cedural level generation with answer set programming for gen-
eral video game playing. In 2015 7th Computer Science and
Electronic Engineering Conference (CEEC), 207–212.
Nystrom, R. 2014. Game Programming Patterns. Genever
Benning.
Osborn, J. C.; Wardrip-Fruin, N.; and Mateas, M. 2017. Re-
fining operational logics. In Proceedings of the 12th Interna-
tional Conference on the Foundations of Digital Games, FDG
’17, 27:1–27:10. New York, NY, USA: ACM.
Schaul, T. 2013. A video game description language for model-
based or interactive learning. In 2013 IEEE Conference on
Computational Inteligence in Games (CIG), 1–8.
Sharif, M.; Zafar, A.; and Muhammad, U. 2017. Design pat-
terns and general video game level generation. International
Journal of Advanced Computer Science and Applications 8(9).
Smith, G., and Whitehead, J. 2010. Analyzing the Expressive
Range of a Level Generator. In Proceedings of the Workshop
on Procedural Content Generation in Games, co-located with
FDG 2010.
Smith, G. 2017. What do we value in procedural content gener-
ation? In Proceedings of the 12th International Conference on
the Foundations of Digital Games, FDG ’17, 69:1–69:2. New
York, NY, USA: ACM.
Snodgrass, S., and Ontañón, S. 2014. Experiments in map
generation using markov chains. In Proceedings of the 2014
Foundations of Digital Games Conference.
Summerville, A., and Mateas, M. 2016. Super mario as a string:
Platformer level generation via lstms. CoRR abs/1603.00930.
Summerville, A. J.; Snodgrass, S.; Mateas, M.; and n’on Villar,
S. O. 2016. The vglc: The video game level corpus. Proceed-
ings of the 7th Workshop on Procedural Content Generation.

151

