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Abstract

Computational approaches to health monitoring and epi-
demiology continue to evolve rapidly. We present an
end-to-end system, nEmesis, that automatically identi-
fies restaurants posing public health risks. Leveraging
a language model of Twitter users’ online communica-
tion, nEmesis finds individuals who are likely suffering
from a foodborne illness. People’s visits to restaurants
are modeled by matching GPS data embedded in the
messages with restaurant addresses. As a result, we can
assign each venue a “health score” based on the pro-
portion of customers that fell ill shortly after visiting
it. Statistical analysis reveals that our inferred health
score correlates (r = 0.30) with the official inspection
data from the Department of Health and Mental Hygiene
(DOHMH). We investigate the joint associations of mul-
tiple factors mined from online data with the DOHMH
violation scores and find that over 23% of variance can
be explained by our factors. We demonstrate that read-
ily accessible online data can be used to detect cases
of foodborne illness in a timely manner. This approach
offers an inexpensive way to enhance current methods
to monitor food safety (e.g., adaptive inspections) and
identify potentially problematic venues in near-real time.

Introduction
Every day, many people fall ill due to foodborne disease.
Annually, three thousand of these patients die from the infec-
tion in the United States alone (CDC 2013). We argue in this
paper that many of these occurrences are preventable. We
present and validate nEmesis—a scalable approach to data-
driven epidemiology that captures a large population with fine
granularity and in near-real time. We are able to do this by
leveraging vast sensor networks composed of users of online
social media, who report—explicitly as well as implicitly—
on their activities from their smart phones. We accept the
inherent noise and ambiguity in people’s online communica-
tion and develop statistical techniques that overcome some
of the challenges in this space. As a result, nEmesis extracts
important signals that enable individuals to make informed
decisions (e.g., “What is the probability that I will get sick
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Figure 1: nEmesis analyses people’s online messages and reveals
individuals who may be suffering from a foodborne disease. Pre-
cise geo coordinates embedded in the messages enable us to detect
specific restaurants a user had visited prior to falling ill. This fig-
ure shows a sample of users in New York City. Their most recent
location is shown on the map and their likelihood of suffering from
a foodborne illness is color-coded from low (green) to high (red).
nEmesis enables tracking of possible health risks in a timely and
scalable fashion.

if I eat lunch here?”) and opens new opportunities for public
health management (e.g., “Given a limited budget, which
restaurants should we inspect today?”).

Recent work in computational epidemiology and ma-
chine learning has demonstrated that online social me-
dia enable novel surveillance and modeling tools (Lam-
pos, De Bie, and Cristianini 2010; Paul and Dredze 2011a;
Sadilek and Kautz 2013). Most research to date has fo-
cused on estimating aggregate “flu trends” in a large geo-
graphical area, typically at the national level. Researchers
have shown that Internet data can be used to compute es-
timates of flu prevalence that correlate with the official
Centers for Disease Control (CDC) statistics, but can be
obtained in a more timely manner (Ginsberg et al. 2008;
Signorini, Segre, and Polgreen 2011; Achrekar et al. 2012;
Sadilek, Kautz, and Silenzio 2012b). Flu outbreaks can
in some cases be even predicted by modeling the flow of
infected airline passengers through their tweets (Brennan,
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Sadilek, and Kautz 2013). This paper extends prior work
beyond influenza-like disease, focusing on foodborne illness
that afflicts specific individuals at specific venues.

The field of human computation (also referred to as crowd-
sourcing) has made significant progress in recent years (Ka-
mar, Hacker, and Horvitz 2012). Along the way, it has been
shown in a number of domains that the crowd can often act
more effectively and accurately than even the best individual
(i.e., the “expert”). Successes with leveraging the crowd have
influenced thinking within a wide range of disciplines, from
psychology to machine learning, and include work on crowd-
sourcing diverse tasks such as text editing (Bernstein et al.
2010), image labeling (Von Ahn and Dabbish 2004), speech
transcription (Lasecki et al. 2012), language translation (Sha-
haf and Horvitz 2010), software development (Little and
Miller 2006), protein folding (Khatib et al. 2011), and pro-
viding new forms of accessibility for the disabled (Bigham et
al. 2010).

This paper explores the intersection of three fields: human
computation, machine learning, and computational epidemi-
ology. We focus on real-time modeling of foodborne illness—
a significant health challenge in the developing and devel-
oped world. Harnessing human and machine intelligence in
a unified way, we develop an automated language model
that detects individuals who likely suffer from a foodborne
disease, on the basis of their online Twitter communication.
By leveraging the global positioning system (GPS) data of
each Twitter user and known locations of every restaurant
in New York City (NYC), we detect users’ restaurant visits
preceding the onset of a foodborne illness. As a result, we
can assign each restaurant a “health score” based on the pro-
portion of Twitter customers that fell ill shortly after visiting
the restaurant.

As we will see, our inferred health score correlates (r =
0.30, p-value of 6 × 10−4) with the official inspection
data from the Department of Health and Mental Hygiene
(DOHMH). Additionally, we investigate the joint effect of
multiple factors mined from online data on the DOHMH
violation scores and find that over 23% of variance in the
official statistics can be explained by factors inferred from
online social media.

Achieving these encouraging results would be difficult
without joint human and machine effort. Humans could not
keep up with the average rate of 9,100 tweets per second
that are produced globally,1 resulting in very sparsely labeled
data. Since foodborne illness is (fortunately) rare, even 99%
coverage would not be enough to get a reliable signal. At the
same time, the complexity of natural language would prevent
machines from making sense of the data. While machines can
easily provide full coverage, the signal to noise ratio would
be too low to maintain adequate sensitivity and specificity.
We show in this paper that including human workers and
machines in a common loop cancels each others’ weaknesses
and results in a reliable model of foodborne disease.

1http://www.statisticbrain.com/twitter-statistics/

Significance of Results
We harness human computation on two different levels. One
is the aforementioned explicit crowdsourcing of data labeling
by online workers. The second—more subtle—level lever-
ages the implicit human computation performed by hundreds
of millions of users of online social media every day. These
users make up an “organic” sensor network—a dynamic mesh
of sensors interconnected with people facilitated by Internet-
enabled phones. A single status update often contains not
only the text of the message itself, but also location, a photo
just taken, relationships to other people, and other informa-
tion. The text contains a nugget of human computation as
well—describing what the person thought or saw.

This paper concentrates on extracting useful and depend-
able signals from snippets of human computation that users
perform every time they post a message. We do this via am-
bient tracking and inference over online data. The inference
itself is in part enabled by explicit crowdsourcing.

It is essential to capture the organic sensor network com-
putationally. A single user complaining about acute food
poisoning has a small impact on the behavior of others. Even
messages from very popular individuals (barring celebrities)
reach relatively few followers. However, an automated sys-
tem like nEmesis that tracks a large online population can
find important patterns, even when they require stitching to-
gether subtle signals from low-profile users. By placing the
signal in context (e.g., by matching the message with a rel-
evant restaurant), a seemingly random collection of online
rants suddenly becomes an actionable alert.

We believe the pervasiveness of Internet-enabled mobile
devices has reached a critical point that enables novel ap-
plications that help people make more informed decisions.
nEmesis is one specific example of such an application.

In the remainder of the paper, we will discuss the broader
context of this research, describe in detail our methodology
and models, report key findings, and discuss the results.

Background and Related Work
Twitter is a widely used online social network and a particu-
larly popular source of data for its real-time nature and open
access (Smith 2011). Twitter users post message updates
(tweets) up to 140 characters long. Twitter launched in 2006
and has been experiencing an explosive growth since then.
As of April 2012, over 500 million accounts were registered
on Twitter.

Researchers have shown that Twitter data can be used not
only for flu tracking, but also for modeling mental health
(Golder and Macy 2011; De Choudhury et al. 2013), and
general public health (Paul and Dredze 2011b). Much work
has been done outside the medical domain as well. Twitter
data has been leveraged to predict movie box office revenues
(Asur and Huberman 2010), election outcomes (Tumasjan
et al. 2010), and other phenomena. Globally, the prevalence
of social media usage is significant, and is increasing: 13%
of online adults use Twitter, most of them daily and often
via a phone (Smith 2011). These mobile users often attach
their current GPS location to each tweet, thereby creating
rich datasets of human mobility and interactions.
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Foodborne illness, also known colloquially as food poi-
soning, is any illness resulting from the consumption of
pathogenic bacteria, viruses, or parasites that contaminate
food, as well as the consumption of chemical or natural tox-
ins, such as poisonous mushrooms. The most common symp-
toms include vomiting, diarrhea, abdominal pain, fever, and
chills. These symptoms can be mild to serious, and may
last from hours to several days. Typically, symptoms appear
within hours, but may also occur days or even weeks after
exposure to the pathogen (J Glenn Morris and Potter 2013).
Some pathogens can also cause symptoms of the nervous sys-
tem, including headache, numbness or tingling, blurry vision,
weakness, dizziness, and even paralysis. According to the
U.S. Food and Drug Administration (FDA), the vast majority
of these symptoms will occur within three days (FDA 2012).

The CDC estimates that 47.8 million Americans (roughly 1
in 6 people) are sickened by foodborne disease every year. Of
that total, nearly 128,000 people are hospitalized, while just
over 3,000 die of foodborne diseases (CDC 2013). The CDC
classifies cases of foodborne illness according to whether they
are caused by one of 31 known foodborne illness pathogens or
by unspecified agents. The known pathogens account for 9.4
million (20% of the total) cases of food poisoning each year,
while the remaining 38.4 million cases (80% of the total) are
caused by unspecified agents. Of the 31 known pathogens,
the top five (Norovirus, Salmonella, Clostridium perfringens,
Campylobacter species, and Staphylococcus aureus) account
for 91% of the cases (CDC 2013). The economic burden of
health losses resulting from foodborne illness are staggering—
$78 billion annually in the U.S. alone (Scharff 2012).

Public health authorities use an array of surveillance sys-
tems to monitor foodborne illness. The CDC relies heavily
on data from state and local health agencies, as well as more
recent systems such as sentinel surveillance systems and na-
tional laboratory networks, which help improve the quality
and timeliness of data (CDC 2013). The NYC Department of
Health carries out unannounced sanitary inspections. Each
restaurant in NYC is inspected at least once a year and re-
ceives a violation score (higher score means more problems
recorded by the inspector) (Farley 2011).

An example of the many systems in use by CDC would in-
clude the Foodborne Diseases Active Surveillance Network,
referred to as FoodNet. FoodNet is a sentinel surveillance
system using information provided from sites in 10 states,
covering about 15% of the US population, to monitor ill-
nesses caused by seven bacteria or two parasites commonly
transmitted through food. Other systems include the National
Antimicrobial Resistance Monitoring Systementeric bacte-
ria (NARMS), the National Electronic Norovirus Outbreak
Network (CaliciNet), and the National Molecular Subtyp-
ing Network for Foodborne Disease Surveillance (PulseNet),
among many others.

A major challenge in monitoring foodborne illness is in
capturing actionable data in real time. Like all disease surveil-
lance programs, each of the systems currently in use by CDC
to monitor foodborne illness entails significant costs and
time lags between when cases are identified and the data is
analyzed and reported.

Support vector machine (SVM) is an established model

of data in machine learning (Cortes and Vapnik 1995). We
learn an SVM for linear binary classification to accurately dis-
tinguish between tweets indicating the author is afflicted by
foodborne disease and all other tweets. Linear binary SVMs
are trained by finding a hyperplane defined by a normal vec-
tor with the maximal margin separating it from the positive
and negative datapoints.

Finding such a hyperplane is inherently a quadratic opti-
mization problem given by the following objective function
that can be solved efficiently and in a parallel fashion using
stochastic gradient descent methods (Shalev-Shwartz, Singer,
and Srebro 2007).

min
w

λ

2
||w||2 + L(w,D) (1)

where λ is a regularization parameter controlling model com-
plexity, and L(w,D) is the hinge-loss over all training data
D given by

L(w,D) =
∑
i

max
(
0, 1− yiwTxi

)
(2)

Class imbalance, where the number of examples in one class
is dramatically larger than in the other class, complicates
virtually all machine learning. For SVMs, prior work has
shown that transforming the optimization problem from the
space of individual datapoints 〈xi, yi〉 in matrix D to one
over pairs of examples

〈
x+i − x

−
j , 1

〉
yields significantly

more robust results (Joachims 2005).
Active learning is a machine learning approach, where

the training data is provided adaptively. The model we are
inducing typically ranks unlabeled data according to the ex-
pected information gain and requests labels for top-k exam-
ples, given budget constraints (Settles 2010). The labels are
typically provided by a single human expert. In a number
of domains, active learning has been repeatedly shown to
achieve the same level of model quality while requiring only
a fraction of (often exponentially less) labeled data, as com-
pared to nonadaptive (“label all”) learning approaches (Cohn,
Atlas, and Ladner 1994).

Methods
This section describes in detail our method of leveraging hu-
man and machine computation to learn an accurate language
model of foodborne disease, which is subsequently used to
detect restaurants that could pose health risks. We begin by
describing our data collection system, then turn to our active
data labeling framework that leverages human as well as ma-
chine intelligence, and finally concentrate on the induction
and application of the language model itself.

Data Collection
We have obtained a database of all restaurant inspections
conducted by the Department of Health and Mental Hygiene
in New York City. A total of 24,904 restaurants have been
recently inspected at least once and appear in the database.

As each inspection record contains the name and address
of the restaurant, we used Google Maps2 to obtain exact GPS

2https://developers.google.com/maps/documentation/geocoding/
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coordinates for each venue. We then use the location to tie
together users and restaurants in order to estimate visits. We
say that a user visited a restaurant if he or she appeared within
25 meters of the venue at a time the restaurant was likely
open, considering typical operating hours for different types
of food establishments.

Since foodborne disease is not necessarily contracted at
a venue already recorded in the DOHMH database, future
work could explore the interesting problem of finding undoc-
umented venues that pose health hazards. This could be done
by analyzing visits that appear to be—at first sight—false
negatives. As the food industry is becoming increasingly
mobile (e.g., food trucks and hot dog stands), its health im-
plications are more difficult to capture. We believe online
systems based on methods presented in this paper will be an
important component of future public health management.

Using the Twitter Search API3, we collected a sample
of public tweets that originated from the New York City
metropolitan area. The collection period ran from December
26, 2012 to April 25, 2013. We periodically queried Twitter
for all recent tweets within 100 kilometers of the NYC city
center in a distributed fashion.

Twitter users may alternate between devices, not necessar-
ily publishing their location every time. Whenever nEmesis
detects a person visiting a restaurant it spawns a separate data
collection process that listens for new tweets from that person.
This captures scenarios where someone tweets from a restau-
rant using a mobile device, goes home, and several hours
later tweets from a desktop (without GPS) about feeling ill.

The GPS noise could lead to false positive as well as false
negative visits. We validate our visit detector by analyzing
data for restaurants that have been closed by DOHMH be-
cause of severe health violations. A significant drop in visits
occurs in each venue after its closure. Furthermore, some
users explicitly “check-in” to a restaurant using services such
as FourSquare that are often tied to a user’s Twitter account.
As each check-in tweet contains venue name and a GPS tag,
we use them to validate our visit detector. 97.2% of the ex-
plicit 4,108 restaurant check-ins are assigned to the correct
restaurant based on GPS alone.

Altogether, we have logged over 3.8 million tweets au-
thored by more than 94 thousand unique users who produced
at least one GPS-tagged message. Out of these users, over
23 thousand visited at least one restaurant during the data
collection period. We did not consider users who did not
share any location information as we cannot assign them to
restaurants. To put these statistics in context, the entire NYC
metropolitan area has an estimated population of 19 million
people.4 Table 1 summarizes our dataset.

Labeling Data at Scale
To scale the laborious process of labeling training data for
our language model, we turn to Amazon’s Mechanical Turk.5
Mechanical Turk allows requesters to harness the power of
the crowd in order to complete a set of human intelligence

3http://search.twitter.com/api/
4http://www.census.gov/popest/metro/
5https://www.mturk.com/

Restaurants in DOHMH inspection database 24,904
Restaurants with at least one Twitter visit 17,012
Restaurants with at least one sick Twitter visit 120
Number of tweets 3,843,486
Number of detected sick tweets 1,509
Sick tweets associated with a restaurant 479
Number of unique users 94,937
Users who visited at least one restaurant 23,459

Table 1: Summary statistics of the data collected from NYC. Note
that nearly a third of the messages indicating foodborne disease can
be traced to a restaurant.

tasks (HITs). These HITs are then completed online by hired
workers (Mason and Suri 2012).

We formulated the task as a series of short surveys, each
25 tweets in length. For each tweet, we ask “Do you think
the author of this tweet has an upset stomach today?”. There
are three possible responses (“Yes”, “No”, “Can’t tell”), out
of which a worker has to choose exactly one.

We paid the workers 1 cent for every tweet evaluated,
making each survey 25 cents in total. Each worker was al-
lowed to label a given tweet only once. The order of tweets
was randomized. Each survey was completed by exactly five
workers independently. This redundancy was added to reduce
the effect of workers who might give erroneous or outright
malicious responses. Inter-annotator agreement measured
by Cohen’s κ is 0.6, considered a moderate to substantial
agreement in the literature (Landis and Koch 1977).

For each tweet, we calculate the final label by adding up
the five constituent labels provided by the workers (Yes= 1,
No= −1, Can’t tell= 0). In the event of a tie (0 score), we
consider the tweet healthy in order to obtain a high-precision
dataset.

Human Guided Machine Learning. Given that tweets in-
dicating foodborne illness are relatively rare, learning a robust
language model poses considerable challenges (Japkowicz
and others 2000; Chawla, Japkowicz, and Kotcz 2004). This
problem is called class imbalance and complicates virtually
all machine learning. In the world of classification, models
induced in a skewed setting tend to simply label all data as
members of the majority class. The problem is compounded
by the fact that the minority class (sick tweets) are often of
greater interest than the majority class.

We overcome class imbalance faced by nEmesis through a
combination of two techniques: human guided active learn-
ing, and learning a language model that is robust under class
imbalance. We cover the first technique in this section and
discuss the language model induction in the following sec-
tion.

Previous research has shown that under extreme class im-
balance, simply finding examples of the minority class and
providing them to the model at learning time significantly
improves the resulting model quality and reduces human
labeling cost (Attenberg and Provost 2010). In this work,
we present a novel, scalable, and fully automated learning
method—called human guided machine learning—that con-
siderably reduces the amount of human effort required to
reach any given level of model quality, even when the num-
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ber of negatives is many orders of magnitude larger than
the number of positives. In our domain, the ratio of sick to
healthy tweets is roughly 1:2,500.

In each human guided learning iteration, nEmesis samples
representative and informative examples to be sent for human
review. As the focus is on the minority class examples, we
sample 90% of tweets for a given labeling batch from the
top 10% of the most likely sick tweets (as predicted by our
language model). The remaining 10% is sampled uniformly
at random to increase diversity. We use the HITs described
above to obtain the labeled data.

In parallel with this automated process, we hire workers to
actively find examples of tweets in which the author indicates
he or she has an upset stomach. We asked them to paste a
direct link to each tweet they find into a text box. Workers re-
ceived a base pay of 10 cents for accepting the task, and were
motivated by a bonus of 10 cents for each unique relevant
tweet they provided. Each wrong tweet resulted in a 10 cent
deduction from the current bonus balance of a worker. Tweets
judged to be too ambiguous were neither penalized nor re-
warded. Overall, we have posted 50 HITs that resulted in
1,971 submitted tweets (mean of 39.4 per worker). Removing
duplicates yielded 1,176 unique tweets.

As a result, we employ human workers that “guide” the
classifier induction by correcting the system when it makes
erroneous predictions, and proactively seeking and labeling
examples of the minority classes. Thus, people and machines
work together to create better models faster.

In the following section, we will see how a combination of
human guided learning and active learning in a loop with a
machine model leads to significantly improved model quality.

Learning Language Model of Foodborne Illness
As a first step in modeling potentially risky restaurants, we
need to identify Twitter messages that indicate the author
is afflicted with a foodborne disease at the time of posting
the message. Recall that these messages are rare within the
massive stream of tweets.

We formulate a semi-supervised cascade-based approach
to learning a robust support vector machine (SVM) classifier
with a large area under the ROC curve (i.e., consistently
high precision and high recall). We learn an SVM for linear
binary classification to accurately distinguish between tweets
indicating the author is afflicted by foodborne illness (we call
such tweets “sick”), and all other tweets (called “other” or
“normal”).

In order to learn such a classifier, we ultimately need to
effortlessly obtain a high-quality set of labeled training data.
We achieve this via the following “bootstrapping” process,
shown in Fig. 2.

We begin by creating a simple keyword-matching model
in order to obtain a large corpus of tweets that are potentially
relevant to foodborne illness. The motivation is to produce
an initial dataset with relatively high recall, but low precision
that can be subsequently refined by a combination of hu-
man and machine computation. The keyword model contains
27 regular expressions matching patterns such as “stomach
ache”, “throw up”, “Mylanta”, or “Pepto Bismol”. Each reg-
ular expression matches many variations on a given phrase,

accounting for typos and common misspellings, capitaliza-
tion, punctuation, and word boundaries. We created the list
of patterns in consultation with a medical expert, and refer-
ring to online medical ontologies, such as WebMD.com, that
curate information on diagnosis, symptoms, treatments, and
other aspects of foodborne illness.

Each tweet in our corpus C containing 3.8 million collected
tweets is ranked based on how many regular expressions
match it (step 1 in Fig. 2). We then take the top 5,800 tweets
along with a uniform sample of 200 tweets and submit a
HIT to label them, as described in the previous section. This
yields a high-quality corpus of 6,000 labeled tweets (step 2).

We proceed by training two different binary SVM classi-
fiers, Ms and Mo, using the SVMlight package (step 3).6 Ms

is highly penalized for inducing false positives (mistakenly
labeling a normal tweet as one about sickness), whereas Mo

is heavily penalized for creating false negatives (labeling
symptomatic tweets as normal). We train Ms and Mo using
the dataset of 6,000 tweets, each labeled as either “sick” or
“other”. We then select the bottom 10% of the scores predicted
by Mo (i.e., tweets that are normal with high probability),
and the top 10% of scores predicted by Ms (i.e., likely “sick”
tweets).

The intuition behind this cascading process is to extract
tweets that are with high confidence about sickness with
Ms, and tweets that are almost certainly about other topics
with Mo from the corpus C. We further supplement the final
corpus with messages from a sample of 200 million tweets
(disjoint from C) that Mo classified as “other” with high
probability. We apply thresholding on the classification scores
to reduce the noise in the cascade.

At this point, we begin to iterate the human guided active
learning loop shown in the gray box in Fig. 2. The cycle
consists of learning an updated model M from available
training data (step 4), labeling new examples, and finally
using our active learning strategy described above to obtain
labeled tweets from human workers (steps 5 and 6). This
process is repeated until sufficient model quality is obtained,
as measured on an independent evaluation set.

As features, the SVM models use all uni-gram, bi-gram,
and tri-gram word tokens that appear in the training data. For
example, a tweet “My tummy hurts.” is represented by the
following feature vector:(

my, tummy, hurts,my tummy, tummy hurts,my tummy hurts

)
.

Prior to tokenization, we convert all text to lower case and
strip punctuation. Additionally, we replace mentions of user
names (the “@” tag) with a special @MENTION token, and all
web links with a @LINK token. We do keep hashtags (such
as #upsetstomach), as those are often relevant to the author’s
health state, and are particularly useful for disambiguation of
short or ill-formed messages. When learning the final SVM
M , we only consider tokens that appear at least three times
in the training set. Table 2 lists the most significant positive
and negative features M found.

While our feature space has a very high dimensionality (M
operates in more than one million dimensions), with many

6http://svmlight.joachims.org/
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Figure 2: A diagram of our cascade learning of SVMs. Human computation components are highlighted with crowds of people. All other
steps involve machine computation exclusively. The dataset C contains our 3.8 million tweets from NYC that are relevant to restaurants.

Positive Features Negative Features
Feature Weight Feature Weight

stomach 1.7633 think i’m sick −0.8411

stomachache 1.2447 i feel soooo −0.7156

nausea 1.0935 fuck i’m −0.6393

tummy 1.0718 @MENTION sick to −0.6212

#upsetstomach 0.9423 sick of being −0.6022

nauseated 0.8702 ughhh cramps −0.5909

upset 0.8213 cramp −0.5867

nautious 0.7024 so sick omg −0.5749

ache 0.7006 tired of −0.5410

being sick man 0.6859 cold −0.5122

diarrhea 0.6789 burn sucks −0.5085

vomit 0.6719 course i’m sick −0.5014

@MENTION i’m getting 0.6424 if i’m −0.4988

#tummyache 0.6422 is sick −0.4934

#stomachache 0.6408 so sick and −0.4904

i’ve never been 0.6353 omg i am −0.4862

threw up 0.6291 @LINK −0.4744

i’m sick great 0.6204 @MENTION sick −0.4704

poisoning 0.5879 if −0.4695

feel better tomorrow 0.5643 i feel better −0.4670

Table 2: Top twenty most significant negatively and positively
weighted features of our SVM model M .

possibly irrelevant features, support vector machines with a
linear kernel have been shown to perform very well under
such circumstances (Joachims 2006; Sculley et al. 2011; Paul
and Dredze 2011a).

In the following section, we discuss how we apply the
language model M to independently score restaurants in
terms of the health risks they pose, and compare our results
to the official DOHMH inspection records.

Results
We begin by annotating all tweets relevant to restaurant visits
with an estimated likelihood of foodborne illness, using the
language model M learned in the previous section. Fig. 3
shows the precision and recall of the model as we iterate
through the pipeline in Fig. 2. The model is always evaluated
on a static independent held-out set of 1,000 tweets. The
model M achieves 63% precision and 93% recall after the
final learning iteration. Only 9,743 tweets were adaptively
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Figure 3: Precision and recall curves as we increase the number of
iterations of the SVM pipeline shown in Fig. 2. Iteration 0 shows the
performance of M trained with only the initial set of 6,000 tweets.
In iteration 1, M is additionally trained with a sample of “other”
tweets. We see that recall improves dramatically as the model expe-
rienced a wide variety of examples, but precision drops. Subsequent
iterations (2-4) of the human guided machine learning loop yield
significant improvement in both recall and precision, as workers
search for novel examples and validate tweets suggested by the
machine model.

labeled by human workers to achieve this performance: 6,000
for the initial model, 1,176 found independently by human
computation, and 2,567 labeled by workers as per M ’s re-
quest. The total labeling cost was below $1,500. The speed
with which workers completed the tasks suggests that we
have been overpaying them, but our goal was not to minimize
human work costs. We see in Fig. 3 that the return of invest-
ment on even small amounts of adaptively labeled examples
is large in later iterations of the nEmesis pipeline.

Using Twitter data annotated by our language model and
matched with restaurants, we calculate a number of features
for each restaurant. The key metric for a restaurant x is the
fraction of Twitter visitors that indicate foodborne illness
within 100 hours after appearing at x. This threshold is se-
lected in order to encompass the mean onset of the majority
of foodborne illness symptoms (roughly 72 hours after in-
gestion) (FDA 2012). We denote this quantity by f(x) or, in
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Figure 4: We obtain increasingly stronger signal as we concentrate
on restaurants with larger amounts of associated Twitter data. Pear-
son correlation coefficient increases linearly as we consider venues
with at least n visits recorded in the data (horizontal axis). At the
same time, the correlation is increasingly significant in terms of
p-value as we observe more data. Note that even sparsely repre-
sented restaurants (e.g., with one recorded visit) exhibit weak, but
significant correlation.

general, as function f when we do not refer to any specific
restaurant.

As a first validation of f , we correlate it with the official
inspection score s extracted from the DOHMH database. A
restaurant may have been inspected multiple times during our
study time period. To create a single score s(x), we calculate
the arithmetic mean of x’s violation scores between Decem-
ber 2012 to April 2013. Fig. 4 shows Pearson correlation
between f and s as a function of the density of available
Twitter data. The horizontal axis shows the smallest num-
ber of Twitter visits a restaurant has to have in order to be
included in the correlation analysis.

We see that the correlation coefficient increases from r =
0.02 (p-value of 5.6×10−3) to r = 0.30 (p-value of 6×10−4)
when we look at restaurants with a sufficient number of visits.
The signal is weak, but significant, for restaurants where we
observe only a few visits. Moreover, the p-value becomes
increasingly significant as we get more data.

Focusing on restaurants with more than 100 visits (there
are 248 such restaurants in our dataset), we explore associ-
ations between s and additional signals mined from Twitter
data (beyond f ). Namely, we observe that the number of visits
to a restaurant declines as s increases (i.e., more violations):
r = −0.27 (p-value of 3.1× 10−4). Similarly, the number of
distinct visitors decreases as s increases: r = −0.17 (p-value
of 3.0 × 10−2). This may be a result of would-be patrons
noticing a low health score that restaurants are required to
post at their entrance.

We consider alternative measures to f as well. The abso-
lute number of sick visitors is also strongly associated with s:
r = 0.19 (p-value of 9.5× 10−3). Note that this association
is not as strong as for f . Finally, we can count the number of

consecutive sick days declared by Twitter users after visiting
a restaurant. A sick day of a user is defined as one in which
the user posted at least one sick tweet. We find similarly
strong association with s here as well: r = 0.29 (p-value of
10−4).

We do not adjust f by the number of restaurants the users
visited, as most ill individuals do not appear in multiple
restaurants in the same time frame. In general, however, ad-
justing up as well as down could be appropriate. In one
interpretation, a sick patron himself contributes to the germs
in the restaurants he visits (or happens to have preferences
that consistently lead him to bad restaurants). Thus, his con-
tribution should be adjusted up. In a more common scenario,
there is a health hazard within the restaurant itself (such
as insufficient refrigeration) that increases the likelihood of
foodborne illness. If a person had visited multiple venues be-
fore falling ill, the probability mass should be spread among
them, since we do not know a priori what subset of the vis-
its caused the illness. A unified graphical model, such as a
dynamic Bayesian network, over users and restaurants could
capture these interactions in a principled way. The network
could model uncertainty over user location as well. This is
an intriguing direction for future research.

Our final validation involves comparison of two distribu-
tions of s: one for restaurants with f > 0 (i.e., we have
observed at least one user who visited the establishment and
indicated sickness afterwards) and one for restaurants with
f = 0 (no Twitter evidence of foodborne disease). We call the
first multi-set of restaurant scores Se=1 = {s(x) : f(x) > 0}
and the second Se=0 = {s(x) : f(x) = 0}.

Fig. 5 shows that restaurants in set Se=1 (where we detect
sick users) have significantly worse distribution of health
violation scores than places where we do not observe anybody
sick (Se=0). Nonparametric Kolmogorov-Smirnov test shows
that the two distributions are significantly different (p-value
of 1.5 × 10−11). Maximum-likelihood estimate shows that
both distributions are best approximated with the log-normal
distribution family.

When we use a language model for tweets about influenza-
like disease (i.e., instead of a model specific to foodborne
disease) developed in Sadilek, Kautz, and Silenzio (2012a),
the signal nearly vanishes. Namely, we define a new quantity,
f I , as an analog to f . f I(x) denotes the fraction of Twit-
ter visitors that indicate an influenza-like illness within 100
hours after appearing at a given restaurant x. Pearson cor-
relation coefficient between f I and s is r = 0.002 (p-value
of 1.9× 10−4). This demonstrates the importance of using
a language model specific to foodborne illness rather than
general sickness reports.

Finally, we perform multiple linear regression analysis to
model the joint effects of the features we infer from Twitter
data. Specifically, we learn a model of the DOHMH violation
score s(x) for restaurant x as a weighted sum of our features
ai with additional constant term c and an error term ε: s(x) =
c+

∑
i wiai(x) + ε.

Table 3 lists all features and their regression coefficient.
As we would expect from our analysis of correlation coeffi-
cients above, the proportion of sick visitors (f ) is the most
dominant feature that contributes to an increased violation
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Figure 5: Probability distributions over violation scores (higher
is worse) for restaurants, where we have not observed evidence of
illness (Pr(s | e = 0); blue), and restaurants in which we observed
at least one individual who subsequently became ill (Pr(s | e = 1);
orange). Nonparametric Kolmogorov-Smirnov test shows that the
two distributions are significantly different (p-value of 1.5×10−11).

Feature Regression Coefficient
Constant term c +16.1585 ***
Number of visits −0.0015 ***
Number of distinct visitors −0.0014 ***
Number of sick visitors (fT ) +3.1591 ***
Proportion of sick visitors (f ) +19.3370 ***
Number of sick days of visitors 0 ***

Table 3: Regression coefficients for predicting s, the DOHMH vio-
lation score, from Twitter data. *** denotes statistical significance
with p-value less than 0.001.

score, followed by the absolute number of sick visitors (fT ).
Interestingly, the number of sick days explains no additional
variance in s. This may reflect the fact that typical episodes
of foodborne illness commonly resolve within a single day
(e.g., the proverbial “24-hour bug”).

The effect of the observed number of visits and the number
of distinct visitors is significantly weaker in the regression
model than in correlation analysis—suggesting that the health
states of the visitors indeed do explain most of the signal.
Overall, we find that 23.36% of variance in s is explained by
our factors mined from Twitter data (shown in Table 3).

Conclusions and Future Work
We present nEmesis, an end-to-end system that “listens” for
relevant public tweets, detects restaurant visits from geo-
tagged Twitter messages, tracks user activity following a
restaurant visit, infers the likelihood of the onset of foodborne
illness from the text of user communication, and finally ranks
restaurants via statistical analysis of the processed data.

To identify relevant posts, we learn an automated language
model through a combination of machine learning and hu-
man computation. We view Twitter users as noisy sensors

and leverage their implicit human computation via ambient
tracking and inference, as well as their explicit computation
for data exploration and labeling. Humans “guide” the learn-
ing process by correcting nEmesis when it makes erroneous
predictions, and proactively seek and label examples of sick
tweets. Thus, people and machines work together to create
better models faster.

While nEmesis’ predictions correlate well with official
statistics, we believe the most promising direction for fu-
ture work is to address the discrepancy between these two
fundamentally different methodologies of public health man-
agement: analysis of noisy real-time data, and centralized
inspection activity. Our hope is that the unification of tradi-
tional techniques and scalable data mining approaches will
lead to better models and tools by mitigating each others’
weaknesses.

As we have discussed throughout this paper, the most
daunting challenge of online methods is data incompleteness
and noise. We have presented machine learning techniques
that at least partially overcome this challenge. At the same
time, one of the strong aspects of systems like nEmesis is
their ability to measure the signal of interest more directly and
at scale. While DOHMH inspections capture a wide variety
of data that is largely impossible to obtain from online social
media or other sources (such as the presence of rodents in
a restaurant’s storage room), our Twitter signal measures a
perhaps more actionable quantity: a probability estimate of
you becoming ill if you visit a particular restaurant.

DOHMH inspections are thorough, but largely sporadic.
A cook who occasionally comes to work sick and infects
customers for several days at a time is unlikely to be detected
by current methods. Some individuals may even be unaware
they are causing harm (e.g., “Typhoid Mary”). Similarly, a
batch of potentially dangerous beef delivered by a truck with
faulty refrigeration system could be an outlier, but nonethe-
less cause loss of life.

nEmesis has the potential to complement traditional meth-
ods and produce a more comprehensive model of public
health. For instance, adaptive inspections guided, in part, by
real-time systems like nEmesis now become possible.
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