Proceedings of the First AAAI Conference on Human Computation and Crowdsourcing

On the Verification Complexity of Group Decision-Making Tasks

Ofra Amir
School of Engineering and Applied Sciences
Harvard University, USA
oamir@seas.harvard.edu

Abstract

A popular use of crowdsourcing is to collect and aggregate
individual worker responses to problems to reach a correct
answer. This paper studies the relationship between the com-
putation complexity class of problems, and the ability of a
group to agree on a correct solution. We hypothesized that
for NP-Complete (NPC) problems, groups would be able to
reach a majority-based correct solution once it was suggested
by a group member and presented to the other members,
due to the “easy to verify” (i.e., verification in polynomial
time) characteristic of this complexity class. In contrast, when
posed with PSPACE-Complete (PSC) “hard to verify” prob-
lems (i.e., verification in exponential time), groups will not
necessarily be able to choose a correct solution even if such
a solution has been presented. Consequently, increasing the
size of the group is expected to facilitate the ability of the
group to converge on a correct solution when solving NPC
problems, but not when solving PSC problems. To test this
hypothesis we conducted preliminary experiments in which
we evaluated people’s ability to solve an analytical problem
and their ability to recognize a correct solution. In our exper-
iments, participants were significantly more likely to recog-
nize correct and incorrect solutions for NPC problems than
for PSC problems, even for problems of similar difficulties
(as measured by the percentage of participants who solved
the problem). This is a first step towards formalizing a rela-
tionship between the computationally complexity of a prob-
lem and the crowd’s ability to converge to a correct solution
to the problem.

Introduction

One of the main applications of human computation is com-
bining individual worker solutions to tasks such as classifi-
cation, prediction and optimization problems (Lintott et al.
2008; Bernstein et al. 2010; Zhang et al. 2012). The focus of
this paper is a class of problems for which there is a ground
truth (which may or may not be known by the owner of the
task), and workers’ solutions to the problem can be imme-
diately verified for correctness. Examples of such analytical
tasks include protein folding, picture tagging, information
extraction and translation.!

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

"We distinguish analytical tasks from estimation or prediction
tasks (e.g., will a stock market crash occur in 2015) who have a
ground truth which cannot be immediately verified.

Yuval Shahar

Deptartment of Information Systems Engineering

Ya’akov Gal Litan Ilany
Ben-Gurion University of the Negev, Israel
{yshahar,kobig,litanil} @bgu.ac.il

On-line labor markets such as Amazon Mechanical Turk
(MTurk) are a chief source of workers to many analytical
tasks. However, the background and expertise of the partic-
ipants of such markets vary widely, and their reports are in-
herently noisy. Thus a focus of research in the human com-
putation literature is the aggregation of the solutions of in-
dividual participants into a collective choice (Little et al.
2009).

This paper provides preliminary support for the relation-
ship between the computational complexity of analytical
problems and the ability of the crowd to verify the correct-
ness of a solution presented to them. We study two types
of problems belonging to well known computational com-
plexity classes. We consider Nondeterministic-Polynomial-
Time-Complete (NPC) problems as “easy-to-verify”, since
they can be verified in linear or polynomial time. In contrast,
Polynomial-Space-Complete (PSC) problems are “hard-to-
verify”, since they require an exponential number of steps
and memory units to verify the correctness of a solution.

Our hypothesis was that for easy-to-verify problems,
workers would be able to recognize a correct solution even if
they were not able to solve the problem on their own. Thus,
it would be sufficient for a single individual to solve the
problem in order for the majority of the group to recognize
and adopt the correct solution. As the likelihood of the exis-
tence of such a “solver” will increase, so should the ability
of the group to converge to the correct solution, since group-
members would be easily convinced of the correct solution.
We contend such problems are suitable for crowdsourcing.
In contrast, for hard-to-verify problems, those who were not
able to solve the problem will not be easily convinced when
presented with a correct solution. Thus, we hypothesize that
the group would be far less likely to converge to the correct
solution, and increasing the size of the group might actually
be detrimental to the ability of the group to converge to the
correct solution of hard-to-verify problems.

To test these hypotheses, we ran several experiments us-
ing the MTurk platform. We generated different instances of
an NPC problem (Vertex Cover) and a PSC problem (Gener-
alized Tic-Tac-Toe). Our empirical methodology simulated
a (non-interacting) group problem solving scenario in which
group members attempt to solve problems as individuals and
subsequently vote on a collective choice from the solutions
proposed by the group. Specifically, workers were assigned

to one of two NPC or PSC problem instances, asked to solve
the problem instance individually, and subsequently asked to
recognize correct and incorrect solutions to the same prob-
lem that were provided for them from a predefined set of
solutions.

Our results revealed that workers varied widely in their
ability to solve the different problem types as individuals.
Furthermore, in our experiments workers were significantly
more likely to recognize correct and incorrect solutions for
NPC problems than for PSC problems, supporting our hy-
pothesis. Specifically, workers that failed to solve problems
as individuals were more likely to recognize correct solu-
tions when they were presented to them in the NPC condi-
tion than in the PSC condition. The significance of this study
is in empirically showing the correlation between the ability
of workers to verify solutions to problems and their associ-
ated computational complexity class. The designers of ana-
lytical problems commonly outsource the tasks to the crowd
and aggregate the results. Our findings suggest that majority
voting provides a sound mechanism for reaching good so-
lutions to easy-to-verify problems, but this mechanism may
not suffice for hard-to-verify problems.

The remainder of this paper is organized as follows. First,
we formally define our hypotheses. Second, we provide a
more detailed explanation of the computational complexity
classes and of the problems chosen for our experiments. We
then describe the tasks that the subjects completed, the ex-
perimental procedures and the measures used to test our hy-
potheses. Next, we describe the results of our study. Finally,
we discuss of the implications of our work to human com-
putation and group decision-making research and directions
for future work.

Related Work

Our study relates to prior work in the human computation
and group decision-making literatures which we will re-
view in turn. A common approach to solve problems using
the crowd employs voting and other social choice mecha-
nisms to aggregate solutions to a collective choice, relying
on the assumption that this choice is better on average than
the solutions submitted by the individual group members.
Some of these approaches aggregate solutions automati-
cally without actively involving the crowd in the aggregation
process. For example, the Galaxy Zoo project chooses the
most common response to classifying Galaxies (Lintott et al.
2008), while other approaches used agreement mechanisms
in games (Law and Von Ahn 2009; Von Ahn and Dabbish
2008). Steyvers et al. (2012) proposed methods for aggre-
gating individual solutions of PSC problems, the Minimal
Spanning Tree and Traveling Salesman Problem by com-
bining the local solutions of participants using the major-
ity method. Recent studies have incorporated various Al ap-
proaches to increase the efficiency and quality of the aggre-
gation process. For example, Kamar et al. (2012) have used
an MDP formalism to decide whether it is beneficial to hire
additional workers for a consensus task and predict group
consensus using machine learning. Zho et al. (2012) use a
minimal entropy approach to estimate the probability distri-
bution over the ground truth in consensus tasks when each

worker solve multiple problem instances. Lin et al. (2012)
use a POMDP-based controller to decide what tasks to post
in order to achieve efficient aggregation of crowd responses.

An alternative to the automatic aggregation approach is to
harness the crowd itself to vote for the best solution. For ex-
ample, workers vote for their favorite biological structures in
EteRNA (Savage 2012), and on text edits suggested by other
workers (Bernstein et al. 2010). The Turkit mechanism (Lit-
tle et al. 2009) provides a framework for iterative construc-
tion of solutions and voting. Finally, Mao et al. (2013) com-
bined crowd voting with social choice methods and have
compared the performance of different voting mechanisms
for aggregating people’s ranking of solutions to optimiza-
tion problems. Our study suggests that using the crowd to
vote for a solution is a suitable approach for solving NPC
problems, but not for solving PSC problems.

Our study also relates to the ongoing debate in the liter-
ature about the benefits and pitfalls of collective decision-
making. On the one hand, groups have been shown to out-
perform individuals in the canonical study by Yetton and
Bottger (1983) who found that interacting groups outper-
form nominal (non-interacting) groups when trying to solve
analytical problems such as ranking items to take on a moon
expedition task in order of importance. On the other hand,
some group dynamics may seriously inhibit its overall per-
formance, as shown in multiple studies documenting effects
such as polarization, procrastination and groupthink. Most
of these studies have investigated the effects of the com-
munication and information exchange protocols on group
behavior. A notable exception is the work by Laughlin et
al. (1986) who have shown that for the type of analytical
problems we use in this paper, the number of group mem-
bers that is necessary and sufficient to solve a problem is
inversely proportional to the extent to which solutions can
be recognized by group members (deemed the “problem
demonstrability”, i.e. the degree to which it is easy to ex-
plain the solution to a problem). According to Laughlin et
al. (1986), a necessary criterion for demonstrability is that
group members must be able to recognize a correct solution
when it is proposed by others. Our work formalizes the re-
lationship between the computational complexity class of a
problem, and this important condition of demonstrability.

Methodology

NPC and PSC problems (Garey and Johnson 1979) are both
computationally hard (all known algorithms for both compu-
tational classes have exponential time complexity), but they
differ in the complexity of solution verification. NPC prob-
lems can be verified in polynomial time, while PSC prob-
lems, for practical purposes, can only be verified in exponen-
tial time. This serves as the basis for our hypotheses, which
we state after defining the following: We refer to participants
who did not solve correctly an analytical problem as non-
solvers. We say a participant has recognized a solution if the
participant was able to correctly classify the solution as cor-
rect or incorrect. We say a group has converged to the correct
solution if the majority of participants in the group are able
to recognize a solution when it is presented to them.
Our hypotheses can be stated as follows:

e Non-solvers would be more likely to recognize solutions
for NPC problems than for PSC problems. Formally, we
assert that for non-solvers (/N .S), the probability of recog-
nizing the solution (V' C'S) in the NPC condition is higher
than in the PSC condition:

Pnpc(VCS | NS) > Ppsc(VCS | NS)

e For NPC problems, convergence to the correct solution
grows quickly with the size of the group because group
members would be able to recognize a solution that is
presented to them. Thus, the existence of a single solver
is sufficient for the group to converge to the correct solu-
tion. In contrast, increasing group size is not expected to
facilitate convergence in PSC problems, because the prob-
ability of recognizing a solution by non-solvers is small.

Problem Instances

We now turn to the question of which problem instances
to generate from these two broad computational complex-
ity classes. Examples of canonical NPC problem instances
include the knapsack problem, the graph clique problem,
graph coloring problems, the graph vertex-cover problem,
and Boolean satisfiability problems. Examples of canoni-
cal PSC problems include playing generalized chess, ver-
ifying quantified Boolean formulas (QBF), and trying to
form a row of k tokens in a two player, NxM board game
[generalized Tic-Tac-Toe]. We chose problems for our study
that meet the following conditions: (1) Do not require prior
knowledge from subjects; (2) Can be explained reasonably
within a few minutes; (3) Can be easily visualized.

For the NPC problem condition, we generated different
instances of the Vertex Cover (VC) problem, which required
participants to find a vertex cover of a given size for a given
graph.? To examine the performance on PSC problems, we
generated different instances of a Generalized Tic-Tac-Toe
(GTTT) game, which required finding a move for an “O”
player that will force a win within a given number of turns.?

We generated two instances of each problem type of vary-
ing difficulty levels, as determined by various parameters
of the problem. For VC problems, we generated two 20-
node graphs with a minimal vertex cover of size 12, as
shown in Figure 1. We expected the first vertex cover prob-
lem instance to be easier for people to solve than the sec-
ond instance, because its associated graph does not include
crossing edges. For GTTT problems, we generated boards
of varying sizes and configurations and required partici-
pants to choose the beginning move that would force a win
for a given player. The two boards are shown in Figure 2.
The first, harder, GTTT1 instance, which included a 10X 10
board, required the solver to force a win in 4 turns: a player
wins by occupying 5 squares in a row (vertically, horizon-
tally or diagonally). The second instance, which included a

’Note that finding a minimal vertex cover is not NPC, as verify-
ing as solution requires checking that there does not exist a smaller
vertex cover.

3Note that although GTTT is likely to be more familiar to par-
ticipants than VC, this does not impede our study. Indeed, this fact
may lead participants to solve GTTT problems more easily, making
our hypothesis harder to support.

Figure 1: Two NPC vertex cover problems. Participants need
to choose a set of 12 nodes, such that all edges are cov-
ered. The top graph (VC2) shows a correct solution which
includes 12 nodes and covers all edges. The bottom graph
(VC1) shows an incorrect solution, as one of the edges is
not covered.

6X6 board, required the solver to force a win in 4 turns,
where winning requires occupying 4 squares in a row.

Experimental Design

The study followed a between-subject design, with the prob-
lem type (NPC or PSC) as the independent variable. We
measured the proportion of participants who voted correctly
for the proposed solution out of those participants who were
not able to solve the problem on their own (i.e. non-solvers),
in addition to the solution and verification time.

Tasks

Participants were presented with one of the problem in-
stances in their respective conditions. For VC problem in-
stances, the given instructions were: “Your task is to find a
vertex cover of size 12 in the graph shown below. Your so-
Iution will be the set of vertices you chose (the vertices col-
ored green when you click the continue button).” For GTTT
problem instances, the given instructions were: “In the given
configuration the O player can force a win in 4 turns even
when the X player responds optimally at each turn. Find O’s
winning move.” In all conditions, no time limit was imposed
for solving the problem.

We developed GUIs for visualizing both problem types
and for providing support for participants when reasoning
about the problem instances. When solving VC problems,

s O)([l
[o)[®)
s X[X|X|O|X s
: o[x[x :
o] X
3 [e][e] 3
2 o 2
1 | .)(1
a b c d e £
5 (©) X 5
5 X|0|0 :
+ [OIX | X[X0 5
» [x| Jolo|x| |-
. [o] [x|x :
1 1

Figure 2: Two PSC General-Tic-Tac-Toe problems. In
GTTT!1 (top), participants were required to force a win for
the O player in 4 turns, where winning requires occupying
5 squares. In GTTT2 (bottom), participants were required
to force a win for the O player in 4 turns, where winning
requires occupying 4 squares in a row.

participants could select vertices which would subsequently
change their color and outline their associated edges with a
thick outline. Selecting the vertex again would “reset” the
color and the edge display back to normal. For example, the
top (green) vertex in Figure 1 has been selected by the par-
ticipant. When solving GTTT problems, participants could
simulate moves by selecting a board position and adding
an appropriate “X” or “O” icon, as well as “undoing” their
moves to allow backtracking (using the “undo” and “reset”
buttons shown for the top board in Figure 2).

Upon submitting their answers, participants were asked to
explain why their solution was correct, using free language,
and describe their strategy for solving the problem. Finally,
participants were presented with three possible solutions to
the problem they solved: the participant’s own solution, and
pre-generated correct solution and a pre-generated incorrect
solution. These pre-generated solutions represented com-
mon wrong solutions that were submitted by participants (as
determined in a pilot study).

In the case of VC problems, proposed solutions were pre-
sented by visualizing the solution on the graph. The correct
solution showed a graph with exactly 12 green vertices that
covered all edges. Incorrect solutions either included one
more vertex than required, or a solution that had the cor-
rect number of vertices, but omitted an edge (the selection
of wrong solution was randomized). In the case of GTTT
problems, a solution was presented simply by showing the
position chosen for the “O” player next move, for example

“f3” for the correct solution in one of the conditions. Incor-
rect solutions either suggested a board location that is in-
cluded in the sequence of winning moves, but is not the first
move, or a move that was not on the winning path, but was
close to the winning move (again, the selection of wrong
solution was randomized). To assist with verification of the
problem, the GTTT interface was presented with each solu-
tion, and participants could use it again (i.e. simulate plays
on the board), similarly to its use in the individual problem
solving stage.

Participants were asked to specify whether each solution
was correct or incorrect. The ordering of the presented solu-
tion was counter-balanced in the experiments. The instruc-
tions were: “Next you will be shown three solutions - your
own solution, and two solutions proposed by other people.
Please examine all solutions (yours and the two proposed
solutions); for each solution, vote whether you think it is
correct or incorrect.”’, and then, for each presented solution,
the following instructions were given: “Please examine the
proposed solution below and vote whether you think it is
correct.”

We controlled for (the self-reported) gender, age and ed-
ucation; However, we did not find any significant effects for
either of these, and therefore do not include them in our anal-
ysis. Participants recruited using MTurk were paid a base
rate of 70 cents, and were further incentivized with bonuses
for solving the problem correctly (by an additional 35 cents),
and for voting correctly on the presented solutions (an addi-
tional 35 cents for those who voted correctly on all presented
solutions).

Participants

Participants were recruited using MTurk and randomly as-
signed to one of NPC or PSC problem conditions. We re-
stricted participation to participants from the US. In addi-
tion, for two of the instances (one VC and one GTTT), we re-
cruited an additional group of undergraduate students. Since
the performance of the student population was similar to that
of participants recruited from MTurk, we aggregate their re-
sults and report them together. After answering a short de-
mographic questionnaire, participants were presented with
a tutorial detailing their respective problem and the appro-
priate use of the GUI. To verify that participants understood
the problem and the use of the GUI, participation was con-
tingent on successfully passing a quiz, which included ques-
tions regarding a simple instance of the problem.

A total of 200 participants completed the study. Gen-
der distribution was close to uniform (99 female partici-
pants and 101 male participants). The mean age of partic-
ipants was 30.4 (median 26). One participant completed less
than high-school education, 67 participants completed high-
school, 116 participants had college education and 16 had a
graduate degree. We did not find significant effects for any
of the different demographic variables.

Results

We define P(Solve) as the probability that an individual
participant solves the problem, computed as the propor-
tion of participants who solved the problem out of the total

& P(Solve)
& P(VCS)

= *P(VCS)
random

GTTT1 GTTT2 VC1 vC2

Figure 3: Probability of solving the problem correctly in-
dividually (P(Solve)), and the probability of recognizing
solutions (P(V C\S)), by problem instance. The dashed line
shows the probability for a random verifier to correctly rec-
ognize all solutions (0.125).

number of participants. Figure 3 shows P(Solve) (in blue
stripped bars) as well as P(VCS) (the probability of rec-
ognizing the solution, in red dotted bars) for each problem
instance. We also include a baseline P(V C'S) = (5)* which
is the expected probability for a random verifier to recognize
all solutions.

As shown by the figure, GTTT1 was the hardest problem
for participants to solve (it exhibited the lowest P(Solve)
measure), while GTTT2, VC1 and VC2 were more similar
(P(Solve) measured 0.46, 0.56 and 0.64, respectively). A
positive difference between P(Solve) and P(VCS) indi-
cates that some non-solvers were able to recognize solutions.
We observed such positive difference for NPC problems. In-
terestingly, for the GTTT?2 problem, this difference was ac-
tually negative, meaning that some solvers were not able to
recognize solutions. For the GTTT1 problem, this difference
was positive. However, P(Solve) was extremely low for this
problem, such that the improvement could also be achieved
by random guessing.

Table 1 summarizes the results of the study for non-
solvers. The results support the first hypothesis, in that the
probability that non-solvers recognized solutions (P(V C'S' |
NS)) was significantly higher for VC1 and VC2 than for
GTTT1 and GTTT2. This difference was statistically signif-
icant for each problem pair of different complexity classes
(p < 0.05 using x2 proportion test).

Contrary to our expectation, P(VCS | NS) was rel-
atively low for both NPC problems (0.46 and 0.54 for
VCI1 and VC2, respectively) *. That is, they were more
likely to mis-classify their own incorrect solution as cor-
rect than to mis-classify other solutions. This can be seen
in the table, in that P(VCS | OWN,NS) < P(VCS |
OTHRS,NS) for both VC1 and VC2 problems. For ex-
ample, for VC1, P(VCS | OWN,NS) = 0.57 while
P(VCS | OTHRS,NS) = 0.76. We did not observe this
effect for PSC problem instances.

The difference in verification difficulty between NPC and
PSC problems is also evident when comparing solution and

*Yet it was still significantly higher than random guessing.

verification times for GTTT and VC instances. Attempting
to solve GTTT2 took less time on average (Mean = 498 sec-
onds, STD =403) compared to VC1 (Mean = 1205 seconds,
STD = 4249) and VC2 (Mean = 585 seconds, STD = 426).
Verification time, however, was higher for GTTT2 (Mean =
59.8 seconds, STD = 58.3) than for VC1 (Mean = 47.5 sec-
onds, STD = 24.6) VC2 (Mean = 41.2, STD = 19.1). Note
that the variance in verification time was significantly lower
for the VC problem instances. Both individual solution times
(Mean = 2365 seconds, STD = 11350) and verification times
(Mean = 77.7 seconds, STD = 155.7) were longest for par-
ticipants solving GTTT]I.

We now turn to a qualitative analysis of the responses we
collected. In addition to submitting their own solution and
voting on the correctness of presented solutions, participants
were asked to provide free text explanations justifying their
solution and voting decisions. More specifically, after solv-
ing the problem, participants were instructed to provide an
explanation as follows: “Please explain your solution, be as
detailed as possible such that other people will be convinced
that your solution is correct.” In accordance with our hypoth-
esis, we expected explanations of solutions to PSC problems
to be more complex than those provided for NPC problems.

As expected, explanations for the vertex cover problem
tended to be short and provided a “visually justifiable” argu-
ment. A typical response explaining a solution of NPC prob-
lems (taken from VC2) was: “The solution has exactly 12
vertices and all the edges are covered. ”. Others explicitly
noted the direct visual verifiability of the problem. For ex-
ample, for the VCI problem one participant explained: “/2
vertices are colored green and all of the lines have turned
dark.” Finally, some of the participants chose to include their
solution strategy in their explanation: “After several unsuc-
cessful tries, I decided to alternate, working from outside
to inside, choosing to highlight corners, then highlight non-
corner nodes in the next layer toward the inside, etc. At this
point, I got close. However, I ended up with 13 highlighted
nodes. By trial and error, 1 simple selected/deselected in-
terior nodes, until I found one that could be unhighlighted
without deselecting a vertex.”

For the GTTT problems, explanations varied in their level
of detail. Some explanations were short and did not provide
much evidence as to the correctness of the solution: for ex-
ample, for the GTTT2 problem, one explanation was: “In-
stead of being on the defense and first blocking player x’s
chances player o traps player x into blocking their moves
allowing them to secure places f3, f4 and f5”, or “Obtain
5 diagonally up to b6, create alternate pattern along col-
umn d for a win.” However, others provided elaborate ex-
planations which could help verify the correctness of their
solution, such as “ In order for O player to win in 4 moves,
they must be willing to lose two options to X Player. First,
they will place an O at f3. This will force X player to play
c6. Then, O player HAS to play f5. This forces X player to
once again concede a turn blocking a potential win at e5.
This leaves O player with an open spot at f4, which is then
played; leaving an open vertical line. Now; no matter what
X player’s next move is, be it 2 or f6, O player just has to
finish the line with the unfilled option and win the game.”

| [GTTTI | GTTT2 | VC1 | VC2 |

P(VCS | NS) 0.08 0.17 | 046 | 0.54
P(VCS[OTHRS, NS) | 022 038 | 0.76 | 0.77
P(VCS[OWN, NS) 022 038 | 057 | 054
#(NS) 36 24 37 | 13

Table 1: Performance results of “non-solvers”, showing the
probability of correctly verifying all solutions presented
(P(VCS | NS)), the probability of correctly verifying
other solutions (i.e. the two solutions not provided by the
participant, P(VCS | OTHRS,NS)), and the proba-
bility of correctly verifying the participant’s own solution
(P(VCS | OWN,NS)).

Discussion

The results presented in the previous section support our
hypothesis that non-solvers were significantly more likely
to recognize solutions in the NPC condition than in the
PSC condition. This result was consistent across problem
instances of similar difficulties as measured by P(solve).
Specifically, the problems GTTT2, VCI and VC2 had sim-
ilar difficulty measures, but P(VCS | N.S) was higher for
VCI1 and VC2 than for GTTT2. We conjecture that it is the
“verifiability” of a problem (P(V C'S)), rather than the diffi-
culty for individual solver (P(Solve)), that affects the abil-
ity of the group to converge to the correct solutions: When
P(VCS) >> 0.5 (as was the case for the NPC problem
instances), the likelihood that the group will converge (ac-
cording to the majority vote) reduces to the probability that
at least one of the participants solves the problem, given by
(1 = (1 — P(solve))™), where n is the size of the group.
This probability grows quickly with the group size, meaning
that such problems are especially suitable for crowdsourc-
ing. For the PSC problems we studied, group members had
much more difficulty to recognize a correct solution, even
when one was provided for them. We thus contend that for
PSC problems, increasing the group size may not increase
the likelihood of convergence to the correct solution.

We note that our study on the effect of verification com-
plexity on group performance is preliminary, and further
studies are required to validate our hypothesis and gener-
alize our results. One limitation of the study is that it exam-
ined only one problem type of each computational complex-
ity class, namely VC and GTTT, and only two instances of
each. These problems differ not just in their computational
complexity class, but also in other dimensions that may af-
fect group performance and participants’ ability to recog-
nize correct solutions, such as the interface used and type of
human reasoning required to solve and verify the problem.
With regards to interface and visualization, in order to gen-
eralize our results and verify that the differences in perfor-
mance were not due to the interface used, we are currently
developing experiments with problems of different compu-
tational complexity classes that share the same graph visu-
alization. With regards to the reasoning needed to solve and
verify the problem, While we believe the type of reasoning
is inherently related to the computational complexity classes
— for example, to verify VC a person needs to look at all of

the edges and nodes, which is linear, while to verify GTTT
one needs to reason about the next possible moves of both
players, which is exponential — further experiments with ad-
ditional problem types are required to confirm that the dif-
ference in group performance is due to the computational
complexity class, and in particular, due to verification com-
plexity. Finally, more experiments with additional problem
instances of each problems type (varying in their size and
complexity) are needed in order to quantify the relationship
between the computational complexity class and group per-
formance.

We now turn to discuss another phenomenon revealed by
our study. As described in the results section, non-solvers of
NPC problems were biased to mis-classify their own solu-
tion as correct, when in fact it was wrong. A possible ex-
planation for this finding is that participants did not exert
sufficient cognitive effort when validating the solution they
themselves submitted. To evaluate this possible explanation,
we measured the average time for verifying participants own
solutions and others’ solutions in the NPC problem condi-
tions. We found that the verification time for participants
own solution was slightly shorter (between 5-10 seconds)
than for others’ solutions. However, this difference is rea-
sonable given that they were already familiar with their own
solution and does not seem to suggest that participants did
not make the effort to validate their own solution, as they
still spent significant time verifying it (over 35 seconds on
average). Interestingly, this phenomenon did not occur for
PSC problem instances. The apparent lack of this bias in the
PSC problem may be attributed to the verification difficulty
of these problems, making it much harder for participants to
recognize solutions, regardless of whether the solution was
their own.

We conclude with noting that the variance of participants
verification time was significantly higher for PSC than for
NPC problems. This suggests that people’s verification be-
havior is more uniform for NPC problems than for PSC
problems and shows another aspect of the easy-to-verify na-
ture of NPC problems.

Conclusions and Future Work

This paper provides preliminary evidence that the computa-
tion complexity class of a problem, and in particular its ver-
ification complexity, affects the ability of a crowd to reach a
correct solution to that problem.

We conducted a series of experiments testing the problem
solving capabilities of individuals and their ability to recog-
nize correct and incorrect solutions, when posed with prob-
lems belonging to NP-Complete and PSPACE-Complete
problems. The results showed that participants that failed to
solve problems as individuals were more likely to recognize
correct solutions when they were presented to them in the
NPC condition than in the PSC condition. Based on these
results, we conjecture that the likelihood that the group con-
verges to the correct solution grows quickly with the group
size for NP-Complete problems but not for PS-Complete
problem. We thus contend that NP-Complete problems are
especially suitable for crowdsourcing.

This work is a first step towards exploring group problem
solving in a formal way, relating group performance with
computational complexity problem classes. Future research
directions include extending these initial experiments to in-
clude more problem instances and additional NPC and PSC
problems of different types, exploring the effect of adding
explanations to proposed solutions, and evaluating perfor-
mance in interacting group scenarios. Investigating these di-
rections further could have implications for designing better
mechanisms to support group problem solving, as well as
for improving the design of crowdsourcing applications that
require complex problem solving.

Acknowledgements

Yuval Shahar was partially supported by EU award FP7-
ICT-2011-7, #287811 “MobiGuide”). Ya’akov Gal was sup-
ported in part by grants FP7-ICT-2011-9 #600854 and Marie
Curie #268362. We thank Uri Gur-Arie and Lizet Pinya for
developing the visualization tool for VC and Steven Ko-
marov for developing the visualization tool for GTTT. We
thank Krzysztof Gajos and Steven Komarov for helpful dis-
cussions.

References

Bernstein, M. S.; Little, G.; Miller, R. C.; Hartmann, B.;
Ackerman, M. S.; Karger, D. R.; Crowell, D.; and Panovich,
K. 2010. Soylent: a word processor with a crowd inside. In
Proceedings of the 23nd annual ACM symposium on User
interface software and technology, 313-322. ACM.

Garey, M. R., and Johnson, D. S. 1979. Computers and
intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman.

Kamar, E.; Hacker, S.; and Horvitz, E. 2012. Combining hu-
man and machine intelligence in large-scale crowdsourcing.
In Proc. of International Conference on Autonomous Agents
and Multiagent Systems.

Laughlin, P., and Ellis, A. 1986. Demonstrability and social
combination processes on mathematical intellective tasks.
Journal of Experimental Social Psychology 22(3):177-189.

Law, E., and Von Ahn, L. 2009. Input-agreement: a new
mechanism for collecting data using human computation
games. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, 1197-1206. ACM.

Lin, C. H.; Weld, D. S.; et al. 2012. Dynamically switch-
ing between synergistic workflows for crowdsourcing. In
Workshops at the Twenty-Sixth AAAI Conference on Artifi-
cial Intelligence.

Lintott, C. J.; Schawinski, K.; Slosar, A.; Land, K.; Bam-
ford, S.; Thomas, D.; Raddick, M. J.; Nichol, R. C.; Szalay,
A.; Andreescu, D.; et al. 2008. Galaxy zoo: morphologies
derived from visual inspection of galaxies from the sloan
digital sky survey. Monthly Notices of the Royal Astronomi-
cal Society 389(3):1179-1189.

Little, G.; Chilton, L. B.; Goldman, M.; and Miller, R. C.
2009. Turkit: tools for iterative tasks on mechanical turk.
In Proceedings of the ACM SIGKDD workshop on human
computation, 29-30.

Mao, A.; Procaccia, A. D.; and Chen, Y. 2013. Better human
computation through principled voting.

Savage, N. 2012. Gaining wisdom from crowds. Communi-
cations of the ACM 55(3):13-15.

Von Ahn, L., and Dabbish, L. 2008. Designing games with
a purpose. Communications of the ACM 51(8):58-67.

Wasson, T. 2009. Evaluation of the effects of solution
demonstrability on group performance outcomes. Hofstra
University.

Yetton, P., and Bottger, P. 1983. The relationships among
group size, member ability, social decision schemes, and

performance. Organizational Behavior and Human Perfor-
mance 32(2):145-159.

Yi, S.; Steyvers, M.; Lee, M.; and Dry, M. 2012. The wis-
dom of the crowd in combinatorial problems. Cognitive sci-
ence.

Zhang, H.; Law, E.; Miller, R.; Gajos, K.; Parkes, D.; and
Horvitz, E. 2012. Human computation tasks with global
constraints. In Proceedings of the 2012 ACM annual con-
ference on Human Factors in Computing Systems, 217-226.

ACM.
Zhou, D.; Platt, J.; Basu, S.; and Mao, Y. 2012. Learning

from the wisdom of crowds by minimax entropy. In Ad-
vances in Neural Information Processing Systems 25, 2204—

2212.

