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Abstract

In social choice theory, preference aggregation refers to com-
puting an aggregate preference over a set of alternatives given
individual preferences of all the agents. In real-world scenar-
ios, it may not be feasible to gather preferences from all the
agents. Moreover, determining the aggregate preference is
computationally intensive. In this paper, we show that the ag-
gregate preference of the agents in a social network can be
computed efficiently and with sufficient accuracy using pref-
erences elicited from a small subset of critical nodes in the
network. Our methodology uses a model developed based
on real-world data obtained using a survey on human sub-
jects, and exploits network structure and homophily of re-
lationships. Our approach guarantees good performance for
aggregation rules that satisfy a property which we call ex-
pected weak insensitivity. We demonstrate empirically that
many practically relevant aggregation rules satisfy this prop-
erty. We also show that two natural objective functions in this
context satisfy certain properties, which makes our methodol-
ogy attractive for scalable preference aggregation over large
scale social networks. We conclude that our approach is supe-
rior to random polling while aggregating preferences related
to individualistic metrics, whereas random polling is accept-
able in the case of social metrics.

Introduction
Social networks have been harnessed for a variety of pur-
poses, ranging from viral marketing to controlling spreading
of virus, from determining the most powerful personalities
in a society to determining the behaviors of people. Social
networks explain several phenomena which cannot be ex-
plained otherwise, primarily because such phenomena are a
result of the social networks themselves. Many of these phe-
nomena can be explained with an important feature of social
networks - homophily (Easley and Kleinberg 2010). Ho-
mophily refers to a bias in friendships towards similar indi-
viduals - individuals with similar interests, behaviors, opin-
ions, etc. The tendency of individuals to form friendships
with others who are like them is termed selection. On the
other hand, similarities may also be a result of friendships;
people may change their behaviors to align themselves more
closely with the behaviors of their friends. This process is
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termed social influence. Hence selection and social influ-
ence can be viewed as complements of each other. It is evi-
dent that social networks and homophily are inseparable.

How individuals settle at some steady-state behaviors or
interests they hold is an interesting question. Due to lack
of empirical evidence, it may not be possible to claim that
individuals indeed aggregate the behaviors or preferences
of their neighbors in a social network based on some pri-
vate aggregation rule in order to occupy advantageous posi-
tions amongst their neighbors. It would be interesting to un-
derstand this inherent ability of individuals, which perhaps
works towards aggregating the preferences of their neigh-
bors. All these and more revolve around homophily of social
networks. We exploit this important feature of homophily in
addressing the problem of preference aggregation. In par-
ticular, we explain how human computation helps not only
in simplifying the task of aggregating preferences of a large
population, but also in deducing data that is not available.

In this paper, we use the terms voters, individuals, agents,
and nodes interchangeably, so also neighbors and friends.

Preliminaries
Given a set of alternatives, individuals have certain prefer-
ences over them. These alternatives can be any entity, rang-
ing from political candidates to food cuisines. We assume
that an individual’s preference can be represented as a com-
plete ranked list of alternatives. We refer to a ranked list of
alternatives as preference and the multiset consisting of the
preferences of the individuals as preference profile. For ex-
ample, if the set of alternatives is {X,Y, Z} and individual
i prefers Y the most and X the least, then i’s preference can
be written as (Y, Z,X)i. Suppose individual j’s preference
is (X,Y, Z)j , then the preference profile of the population
{i, j} is {(Y, Z,X), (X,Y, Z)}.

Preference aggregation is a well-studied topic in social
choice theory. An aggregation rule takes a preference pro-
file as input and outputs the aggregate preference(s), which
in some sense reflect(s) the collective opinion of all the in-
dividuals. A widely used measure of dissimilarity between
two preferences is Kendall-Tau distance. It counts the num-
ber of pairwise inversions with respect to the alternatives.
In this paper, given that the number of alternatives is r, we
normalize Kendall-Tau distance to be in [0, 1], by dividing
actual distance by

(r
2

)
, the maximum distance between any
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two preferences on r alternatives. For example, the Kendall-
Tau distance between preferences (X,Y, Z) and (Y,Z,X)
is 2, because two pairs {X,Y } and {X,Z} are inverted be-
tween them; the normalized Kendall-Tau distance is 2/

(3
2

)
.

We consider 10 voting rules for our study, namely, Buck-
lin, Smith set, Borda, Veto, Minmax (pairwise opposition),
Dictatorship, Schulze, Plurality, Kemeny, and Copeland. Of
these rules, only Kemeny outputs the entire aggregate pref-
erence; others either determine a winning alternative or give
each alternative a score. For consistency, for all rules except
Kemeny, we use a well accepted approach - rank a winning
alternative as first, then vote over the remaining alternatives
and rank a winning alternative therein as second, and so on
until all alternatives have been ranked (Brandt, Conitzer, and
Endriss 2013). As we are indifferent among alternatives, we
assume no tie-breaking rules while determining a winner. So
an aggregation rule may not output a unique preference.

Motivation
In real-world scenarios, it may not be feasible to gather the
preferences from all the voters owing to factors like time
and interest of the voters. One such scenario is preference
aggregation in a large online social network. We consider
the structure of the underlying social network, wherein ow-
ing to homophily, most (if not all) friendship relations imply
similar preferences. In order to estimate the aggregate pref-
erence of the entire population, an attractive approach would
be to select a subset of individuals based on the above phe-
nomenon and incentivize them to report their preferences.

Most aggregation rules are computationally intensive,
some of them being hard. Hence, it is important to have
efficient workarounds. In almost all aggregation rules (apart
from those similar to dictatorship), as the number of voters
decreases, computation of the aggregate preference becomes
faster. So the problem we consider is potentially one such
workaround where we use a subset of preferences to arrive
at an acceptable result. As we will see, the way we aggre-
gate the preferences does not reduce the number of voters,
but it certainly reduces the number of distinct preferences.
This approach works particularly well if this reduced num-
ber is significantly less than the number of voters as well
as r! (number of possible distinct preferences) because re-
peated calculations for duplicate preferences can be avoided.

Relevant Work
There have been studies in the literature that deal with the
influence of social networks on voting in elections. The pio-
neering Columbia and Michigan political voting research is
discussed in (Sheingold 1973) with an emphasis on impor-
tance of the underlying social network. It has been observed
that the social network has more impact on one’s political
party choice than background attributes like class or ethnic-
ity (Burstein 1976). On the other hand, it has been argued
via maximum likelihood approach to political voting that, it
is optimal to ignore the network structure (Conitzer 2012).

Results of certain behavioral experiments suggest that
agents compromise their individual preferences to achieve
unanimity in a situation where agents get some utility if

and only if the entire population reaches a unanimous de-
cision (Kearns et al. 2009). The scenario in a real group
is similar, where members, who do not comply with group
norms, either eventually compromise or leave the group to
evade the tension between the preferences.

There have been efforts to detect the most critical nodes
in social networks with respect to influence maximization,
virus inoculation, etc. (Jackson 2008; Easley and Kleinberg
2010). There is extant literature on modeling individual
preferences using general random utility models which con-
sider the attributes of alternatives and agents, the most rele-
vant being the problem of node selection by exploiting these
attributes (Soufiani, Parkes, and Xia 2013) wherein, the un-
derlying social network is not taken into consideration.

To the best of our knowledge, there do not exist any mod-
els that model preferences in social networks and further-
more, there do not exist any attempts to determine critical
nodes that represent the social network in terms of prefer-
ences. Also, our work focuses on not only the winning al-
ternative, but considers the entire aggregate preference.

Survey for Eliciting Preferences
A primary reason for conducting a survey was unavailabil-
ity of data containing preferences of nodes as well as the
underlying social network. The survey, seeking preferences
of nodes for a variety of questions, was hosted on the Inter-
net; it was triggered at the darkened seed nodes (Figure 1),
who were known to the authors, and diffused along the ac-
tual social network. As the survey involved personal prefer-
ences, privacy was clearly a concern for most nodes. The un-
derlying network was obtained from the reports of the seed
nodes and nodes without privacy concerns (shaded nodes in
Figure 1). A given node (say j) having privacy concerns
shared a common URL (for completing the survey) with
other nodes having privacy concerns and belonging to a clus-
ter of which j is a member. A unique URL was given to each
seed node and node having no privacy concerns. The survey
was completed by the nodes using the allotted URLs. Below
are the questions used in the survey (the first three relate to
personal issues while the rest relate to social issues):

1. Where will you prefer to spend time with your friends?
2. Which of the recent movies did you like the most?
3. What will you order when you go to an all-cuisine restau-

rant with your friends?

Figure 1: Survey Network with 26 nodes and 80 edges
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4. Whom will you pick for the only vacant position of a
cricket batsman in India’s upcoming overseas tours?

5. Who deserves to be the next Prime Minister of India?
6. Who will be the next Prime Minister of India?
7. Which crime deserves the most extreme of punishments?
8. Which among the crimes that do not attract much public

attention, deserves the most attention?
Each question had 5 alternatives to rank. Questions 5 and 6
had ‘other’ as one of their alternatives, the remaining four
alternatives being the most relevant and popular ones. The
participants were also asked to report the number of inter-
active friendships, apart from ones with the people taking
the survey, to the best of their knowledge (faint links in Fig-
ure 1). For an actual detailed survey, the reader is referred to
www.surveymonkey.com/s/F9Z8NZM .

The scale of our survey was modest with 26 nodes.
Though the survey network is small, it is suitable for our
study since homophily is present in any social network ir-
respective of its size. Furthermore, in the literature, ex-
periments have been conducted with small scale participa-
tion (Golder and Yardi 2010).

The highlighted observations of the survey are as follows:
• Consistent with the theory of homophily, participants con-

nected to each other displayed similar rankings. The rank-
ings were significantly similar if these participants had
several common friends who were interconnected.

• In the rankings of connected participants related to both
social and personal issues, the first and last alternatives
were observed to be exactly the same throughout most of
the survey, with slightly jumbled ordering of intermedi-
ate alternatives. This can be explained from the fact that
people generally praise or criticize an alternative, leaving
alternatives that hold middle ground out of the discussion.

• Interestingly, a high level of similarity with respect to so-
cial issues was observed even for most unconnected par-
ticipants, perhaps because of the impact of news and other
channels. It may also be justified by a theory of political
communication (Huckfeldt et al. 1995) which stresses the
importance of citizen discussion beyond the boundaries of
cohesive groups for the dissemination of public opinion.

• With regard to personal issues, preferences across differ-
ent groups were widely different. The cluster size and
network structure had a much greater influence on rank-
ings related to personal issues than that to social ones.

Dataset Demographics and a Model
Certain demographics were obtained based on the informa-
tion provided by the seed nodes and nodes without privacy
concerns. A link between two nodes in the survey network
implies that they are primarily either past/present college
friends, labmates, or roommates. The relationships, in gen-
eral, are more of an informal nature. 12 of the surveyed
nodes belong to the age group 22-25 while the rest to 26-32,
with 24 males and 2 females. The nodes have similar edu-
cational qualification with them holding either Bachelors or
Masters degree in Engineering or Management. Of the 26

Type Min. Max. Mean Std. Dev.
Overall 0.16 0.55 0.34 0.073
Personal 0.07 0.77 0.40 0.130
Social 0.12 0.54 0.30 0.073

Table 1: Statistics about the expected normalized Kendall-
Tau distances between all pairs of nodes in the survey dataset

nodes, 7 work in industry, while 19 are a part of educational
institutions out of which 13 have prior industrial experience.
All the nodes hold the nationality of India, belong to the
same economic class, and have similar exposure to and in-
terest in political news. They have varying backgrounds,
cultures, regions, and mother-tongues; however, these at-
tributes are similar within either of the two large clusters
- the leftmost and the rightmost in Figure 1. It will be use-
ful to study a larger population which is more diverse with
respect to various attributes so as to understand the effect of
similarity in key attributes versus that of network structure.

Given a pair of nodes and a question asking for a ranked
list of alternatives, the normalized Kendall-Tau distance be-
tween the pair can be obtained with respect to that ques-
tion. As the questions are naturally grouped into either per-
sonal or social type, we obtain the distribution of distance
and hence the expected distance between any pair, given the
type of issue. Certain statistics about the expected normal-
ized Kendall-Tau distances between all pairs of nodes in the
data are given in Table 1. A completely unbiased sample is
expected to have a mean of 0.5. But in real-world scenarios,
the preferences on social issues are seldom unbiased. These
preferences of the majority of the population are simulta-
neously affected by past events, news reports, and informa-
tion spreading within the network itself. So it is expected to
have a mean considerably less than 0.5. However, the mean
should ideally be 0.5 in preferences related to personal is-
sues. Our data has a mean of 0.40 in this regard which
indicates some bias; this light bias can be attributed to the
presence of a giant cluster (constituting the right half of Fig-
ure 1) and absence of any other cluster of equivalent size to
counterbalance the group preference of the former. Another
concern is the low standard deviations of preferences, par-
ticularly for personal issues, which again implies some bias.
But as we will see, our formulation of the problem and the
proposed solution are agnostic to these standard deviations.

The data consisting of distance between preferences of
any pair of nodes in the network for personal or social
type of issues was observed to follow a discrete distribu-
tion which was fit by a truncated Gaussian distribution with
range [0, 1] (though truncated Gaussian is a continuous dis-
tribution, it provided a best fit to the histogram). In the case
of drawing data from such a distribution, we round off the
drawn value to the nearest valid value of data. We call this
discrete version of truncated Gaussian distribution as D.

So for any pair {i, j}, the distance between their prefer-
ences for a type of issue was observed to follow distribu-
tion D with mean, say d(i, j), and some standard deviation
(our approach is agnostic to standard deviation). Note that
the value of d(i, j) is different for personal and social types
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of issues. As our treatment for both types of issues is the
same, we refer to the expected distance simply as d(i, j);
the actual value depends on the type of issue under consid-
eration. Let distance matrix be a matrix whose cell (i, j)
is d(i, j) and similarity matrix be a matrix whose cell (i, j)
is c(i, j) = 1 − d(i, j). Henceforth, we will assume that
the similarity matrix is known to us. We will later discuss a
more practical setting where the matrix needs to be derived.

Problem Formulation
Given a network with a set of nodes N , the number of nodes
to be selected k, and an aggregation rule f , our objective is
to choose a set of nodes M ⊆ N such that |M | = k, and
aggregate their preferences to arrive at an aggregate prefer-
ence that is ‘close enough’ in expectation to the aggregate
preference of N using f . We now formalize this problem.

Let the expected distance between a set S ⊆ N and node
i ∈ N be

d(S, i) = min
j∈S

d(j, i) (1)

As d(i, i) = 0 ∀i ∈ N , we have d(S, j) = 0 ∀j ∈ S. Let
Φ(S, i) ∼U arg min

j∈S
d(j, i) (2)

be a node chosen uniformly at random from the set of nodes
in S that are closest to i in terms of preferences, in expecta-
tion. It can be said that Φ(S, i) represents node i in the set
S. In other words, Φ(S, i) is the representative of i in S.

The problem under consideration can be viewed as a set-
ting where given certain individuals representing a popula-
tion, every individual of the population is asked to choose
one among them as its representative; now the representa-
tives vote on behalf of the individuals who chose them.

Aggregating Preferences of Critical Nodes
Recall that preference profile is a multiset containing prefer-
ences of the voters. Let the preference profile of the popula-
tion N be P and that of the selected set M be Q. Suppose
M = {i, j} where j represents ten nodes, while i represents
one. If the preferences are aggregated by inputting Q to ag-
gregation rule f , the aggregate preference f(Q) so obtained
will not reflect the preference of the population, in general.

To capture this asymmetry in the importance of selected
nodes, their preferences should be weighted. That is, the
input for f should be a preference profile R 6= Q. In our
approach, the weight given to the preference of a node in M
is precisely the number of nodes that it represents.

Let Q′ be the preference profile obtained by replacing ev-
ery node’s preference in P by its representative’s preference.
Clearly, k = |M | = |Q| ≤ |Q′| = |P | = |N |. In our ap-
proach, the weight of a representative implies the number
of times its preference appears in the new profile, that is,
we use R = Q′. So in the above example, the new profile
R = Q′ consists of ten preference of j and one of i. Thus
we aggregate the preferences of selected nodes using f(Q′).

A Measure of ‘Close Enough’
Now given k, our objective is to select a set of nodesM such
that |M | = k, who report their preferences such that, in ex-
pectation, the distance between aggregate preference f(P )

obtained by aggregating the preferences of the individuals
in N and f(R) obtained by aggregating the preferences of
the individuals in M (in an unweighted manner if R = Q
or in a weighted manner if R = Q′), is minimized. Recall
that an aggregation rule f may not output a unique aggregate
preference, that is, f is a correspondence.

The aggregation rule f on the preference profile of the en-
tire population outputs f(P ) which is a set of preferences.
Suppose f(R) also is a set of several preferences, the ques-
tion arises: which of these to choose as the output? As
f(P ) is generally not known and all preferences in f(R)
are equivalent to us, we choose a preference from f(R) uni-
formly at random and see how far we are from the actual
aggregate preference, in expectation. In order to claim that a
chosen preference in f(R) is a good approximation to f(P ),
it suffices to show that it is close to at least one preference
in f(P ). Also, as any preference y in f(R) is chosen uni-
formly at random, we define the distance operator between
the above mentioned sets f(P ) and f(R) as

f(P ) ∆ f(R) = Ey∼Uf(R)

[
min
x∈f(P )

δ̃(x, y)

]
(3)

where δ̃(x, y) is the distance between preferences x and y in
terms of the same distance measure as d(·, ·). Notice that in
general, f(P ) ∆ f(R) 6= f(R) ∆ f(P ). Also, ∆ can be
defined in several other ways depending on the application
or the case we are interested in (worst, best, average, etc.).
In this paper, for the reasons explained above, we use the
definition of ∆ as given in Equation (3).

Recall that for a particular type of issue, the distance
between any pair of nodes is drawn from distribution D,
that is, the realized values for any particular question be-
longing to that type of issue are different in general. The
value f(P ) ∆ f(R) can be obtained for every question and
hence E[f(P ) ∆ f(R)] for a type of issue can be com-
puted by averaging the values for questions belonging to
that type of issue. As our treatment for personal and so-
cial issues is the same, we refer to this expected distance as
E[f(P ) ∆ f(R)]; the actual value depends on the type of
issue under consideration. So now our objective is to find a
set M such that E[f(P ) ∆ f(R)] is minimized.

An Abstraction of the Problem
If the aggregation rule is known, an objective function can
be φ(M) = 1 − E[f(P ) ∆ f(R)] with the objective of
finding a set M that maximizes this value. However, even if
the set M is given, computing φ(M) is computationally in-
tensive for most aggregation rules and furthermore hard for
rules like Kemeny. Consider a single question with two al-
ternatives {X,Y } and five voters {i, j, p, u, v} with prefer-
ences (X,Y )i, (Y,X)j , (Y,X)p, (X,Y )u, (X,Y )v . Using
Plurality rule, we have f(P ) = (X,Y ). For R = Q, it can
be seen that φ({i}) = 1, while φ({i, j, p}) = 0. Similarly,
φ({p}) = 0, while φ({p, u, v}) = 1. The non-monotonicity
of φ(·) can be checked for other non-dictatorial rules also.
The non-monotonicity of φ(·) for non-dictatorial rules for
R = Q′ can be seen from the non-monotonic plots of the
greedy hill-climbing approaches (Greedy-sum and Greedy-
avg) in the average case plots of Figure 2 (in a run of greedy
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hill-climbing, a set of certain cardinality is a superset of any
set having a smaller cardinality). It can also be checked that
φ(·) is neither submodular nor supermodular for R = Q,Q′

for non-dictatorial rules. Owing to these properties of the
objective function for non-dictatorial rules, it is hard to find
a set M that maximizes φ(·), even within any approxima-
tion factor. Moreover, the aggregation rule itself may not be
known a priori or may be needed to be changed frequently in
order to prevent strategic manipulation of preferences by the
voters. This motivates us to propose an approach that finds
set M agnostic to the aggregation rule being used.

To this end, we propose a property for preference aggre-
gation rules, weak insensitivity which we define as follows.

Definition 1. A preference aggregation rule satisfies weak
insensitivity property under a distance measure and a ∆, if
and only if a change of ηi ≤ εd in the preferences of all i,
results in a change of at most εd in the overall aggregate
preference, for all εd. That is, ∀εd,

ηi ≤ εd ∀i ∈ N =⇒ f(P ) ∆ f(P ′) ≤ εd
where P ′ is the preference profile of voters after deviations.

We call it ‘weak’ insensitivity property because it allows
‘limited’ change in the aggregate preference (strong insensi-
tivity can be thought of as a property that allows no change).
This is potentially an important property that an aggrega-
tion rule should satisfy as it is a measure of its robustness
in some sense. It is clear that under normalized Kendall-
Tau distance measure and ∆ as defined in Equation (3), an
aggregation rule that outputs a random preference does not
satisfy weak insensitivity property as it fails the criterion for
any εd < 1, whereas dictatorship rule that outputs the pref-
erence of a single individual trivially satisfies the property.
In fact, we observed using simulations that none of the ag-
gregation rules under consideration, except dictatorship, sat-
isfied this property. We use a weaker form of this property
for our purpose, which we call expected weak insensitivity.

Definition 2. A preference aggregation rule satisfies ex-
pected weak insensitivity property under a distribution, a
distance measure, and a ∆, if and only if a change of ηi,
where ηi is drawn from the distribution with mean δi ≤ µd
and any permissible standard deviation σd, in the prefer-
ences of all i, results in a change with an expected value of
at most µd in the overall aggregate preference, for all µd.
That is, ∀µd, ∀ permissible σd,

δi ≤ µd ∀i ∈ N =⇒ E[f(P ) ∆ f(P ′)] ≤ µd (4)

where P ′ is the preference profile of voters after deviations.

Note that in E[f(P ) ∆ f(P ′)], the expectation is over the
varying modified preferences of the agents (since ηi’s vary
across iterations and even if not, there are multiple prefer-
ences, in general, at a distance of ηi from any given prefer-
ence). In this paper, we study expected weak insensitivity
property under distribution D, normalized Kendall-Tau dis-
tance, and ∆ as defined in Equation (3). For distribution D
with µd ∈ [0, 1], the permissible range of σd depends on µd.
For instance, for most values of µd, the permissible range for
σd ≤ 1√

12
≈ 0.28 (value at which the truncated Gaussian

Bucklin 3 Smith 3 Borda 7 Veto 7

Minmax 3 Dictatorship 3 Schulze 7
Plurality 3 Kemeny 7 Copeland 7

Table 2: Results of empirical satisfaction of expected weak
insensitivity property by aggregation rules under distribution
D, normalized Kendall-Tau distance, and ∆ as defined

becomes a Uniform distribution), while for µd ∈ {0, 1}, the
permissible σd = 0. Table 2 presents the results of exten-
sive simulations investigating empirical satisfaction of this
property by the considered aggregation rules.
Lemma 1. Given a distance measure and a ∆, for a prefer-
ence aggregation rule satisfying expected weak insensitivity
property under distributionD, the distance measure, and the
∆, f(Q′) is at an expected distance of at most εd from f(P )
if the expected distance between every individual and the set
M is at most εd, for all εd. That is, ∀εd,

d(M, i) ≤ εd ∀i ∈ N =⇒ E[f(P ) ∆ f(Q′)] ≤ εd
Proof. In the preference profile P of all voters, the prefer-
ence of any node i ∈ N is replaced by the preference of its
representative node p = Φ(M, i) to obtain Q′. From Equa-
tions (1), (2), and the hypothesis, we have d(p, i) ≤ εd.

Since in P , preference of every i is replaced by that of
the corresponding p to obtain a new profile Q′, and dis-
tance between i and p is distributed according to distribu-
tion D with mean d(p, i) and some standard deviation σd,
the above is equivalent to node i deviating its preference by
some value which is drawn from distribution D with mean
d(p, i) = d(M, i). So δi = d(M, i) ∀i, µd = εd, and
P ′ = Q′ in Equation (4). Also, recall that the expectation
E[f(P ) ∆ f(P ′)] is over the varying modified preferences
of the agents. Here the expectation E[f(P ) ∆ f(Q′)] is over
varying preferences of the agents’ representatives inM with
respect to different questions and preferences of the agents.
These are equivalent given P ′ = Q′. As this argument is
valid for any permissible σd, the result follows.

Under the proposed model, this lemma gives a theoretical
guarantee on E[f(P ) ∆ f(Q′)] for aggregation rules that
satisfy expected weak insensitivity property under distribu-
tion D, and relevant distance measure and ∆.

Objective Functions in the Abstracted Problem
Recall that c(·, ·) = 1−d(·, ·). Our objective is now to find a
set of critical nodes M that maximizes some objective func-
tion, with the hope of minimizing E[f(P ) ∆ f(R)] where
R = Q′ in our case. As the aggregation rule is anonymous,
in order to ensure that the approach works well, even for
rules such as random dictatorship, the worst-case objective
function for the problem under consideration, representing
least expected similarity, is

ρ(S) = min
i∈N

c(S, i) (5)

It is clear that ρ(S) = 1−εd in Lemma 1 and so this function
provides a guarantee on E[f(P ) ∆ f(Q′)] for any aggrega-
tion rule satisfying expected weak insensitivity. However,
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Figure 2: Performance of methods on the survey data with respect to different issues and cases

extreme aggregation rules like random dictatorship are sel-
dom used in real-world scenarios; hence, an alternative ob-
jective function, representing average expected similarity, is

ψ(S) =
∑
i∈N

c(S, i) (6)

Proposition 1. Given constants χ and ω, it is NP-hard to
determine whether there exists a setM consisting of k nodes
such that (a) ρ(M) ≥ χ, (b) ψ(M) ≥ ω.

Proof. We reduce an NP-hard Dominating Set problem in-
stance to the problem under consideration. Given a graph
G of n vertices, the dominating set problem is to determine
whether there exists a set D of k vertices such that every
vertex not in D is adjacent to at least one vertex in D.

Given a dominating set problem instance, we can con-
struct a weighted undirected complete graph H consisting
of the same set of vertices as G such that, the weight c(i, j)
of an edge (i, j) in H is some high value (say 0.9) if there is
edge (i, j) in G, else it is some low value (say 0.6).

Now there exists a set D of k vertices in G such that the
distance between any vertex in G and any vertex in D is at
most one, if and only if there exists a set M of k vertices
in H such that ρ(M) ≥ 0.9 or ψ(M) ≥ k + 0.9(n − k).
Here χ = 0.9 and ω = k + 0.9(n − k). This shows that
the NP-hard dominating set problem is a special case of the
problem under consideration, hence the result.

It can be shown that the marginal contribution of any node
to the value of any set with respect to ρ(·), ψ(·) is no less
than that to its superset. Proposition 2 hence follows.
Proposition 2. The objective functions ρ(·) and ψ(·) are
non-negative, monotone, and submodular.

For a non-negative, monotone, submodular function, se-
lecting elements one at a time, each time choosing an ele-
ment that provides the largest marginal increase in the func-
tion value (greedy hill-climbing), gives a (1 − 1

e ) ≈ 0.63-
approximation to the optimal solution (Nemhauser, Wolsey,
and Fisher 1978). As the considered objective functions in
Equations (5) and (6) satisfy these properties, we can use
the greedy hill-climbing algorithm to obtain a good approx-
imation to the optimal solution. Moreover, as desired, the
functions are agnostic to the aggregation rule being used.

Experimental Results
Given k, our objective is to select a subset M ⊆ N such
that |M | = k and E[f(P ) ∆ f(R)] is minimized, where
R = Q,Q′, etc. depending on the method. Note that |M | is
exactly k as opposed to the general trend in literature where
it is at most k. This is because we select the k most critical
nodes by solving the abstracted problem and so selecting at
most k nodes instead of exactly k nodes does not guarantee
that the solution obtained to the original problem by select-
ing at most k nodes is better than that obtained by selecting
exactly k nodes. It is also to be noted that the selected set
may be different for personal and social types of issues.

Recall that the profile of N is P , that of M is Q, and that
obtained by replacing every node’s preference in P by that
of its representative in M , is Q′. We consider four methods
for obtaining f(R). In each method, we initialize M to {}.
Greedy-min (Greedy hill-climbing for maximizing ρ(·)):

Until |M | = k, choose a node j ∈ N\M that maximizes
ρ(M ∪ {j})− ρ(M). Then, obtain f(R) = f(Q′).

Greedy-avg (Greedy hill-climbing for maximizing ψ(·)):
Until |M | = k, choose a node j ∈ N\M that maximizes
ψ(M ∪ {j})− ψ(M). Then, obtain f(R) = f(Q′).

Random-poll (Random selection without representation):
Until |M | = k, choose a node j uniformly at random
such that j ∈ N\M . Then, obtain f(R) = f(Q).

Random-rep (Random selection with representation):
Same as Random-poll, except that f(R) = f(Q′).

For Dictatorship, if the dictator D /∈ M , Random-poll out-
puts the preference of a node in M chosen uniformly at ran-
dom, else it outputs D’s preference itself; while other meth-
ods always output the preference of D’s representative inM .

The values of E[f(P ) ∆ f(R)] are computed using ex-
tensive simulations with the considered aggregation rules.
The results for personal and social issues are obtained by
averaging f(P ) ∆ f(R) for the questions related to those
respective issues. Given k, the selected set M and also the
uniquely chosen representatives of nodes vary in different
runs and so, we observe average and worst case results for
each method (the worst case plot for a type of issue is ob-
tained by averaging the worst results for the questions that
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are grouped in that type of issue). Apart from dictatorship,
the plots for all aggregation rules are similar (albeit with dif-
ferent scaling) to the ones plotted in Figure 2 for average and
worst cases with respect to personal issues and average case
with respect to social ones. The plots of worst case for social
issues are similar to the worst case for personal ones but with
a scaling of approximately 2

3 for Greedy-min, Greedy-avg,
and Random-rep; here Random-poll performs almost at par
with Random-rep. For dictatorship, the average case plots
decrease linearly with k, while the worst case plots retain
certain values after which they dip suddenly for some high
values of k; here Greedy-avg performs the best, followed by
Greedy-min, Random-rep, and Random-poll, in that order.

Our key observations are as follows:
• Greedy-avg consistently performs considerably better

than other methods; but its plots display high entropy
(lack of pattern) as compared to other methods.

• Greedy-min performs better than Random-rep for low
values of k; this difference is not salient in average cases
owing to low standard deviation of the data. Random-rep
performs at par with Greedy-min for higher values of k.

• Random-poll performs quite poorly for personal issues,
but reasonably well for social issues with moderate and
high values of k. This justifies its use for social issues
with a non-negligible sample size.

• Random methods do not perform very poorly in average
cases owing to low standard deviation of the data. But in
worst cases, they perform quite poorly for low values of k
which precludes their use when the sample size is low.

• Random-rep consistently performs better than Random-
poll, which justifies using R = Q′ instead of R = Q.

• The effect of satisfiability of expected weak insensitivity
is not very prominent, because the property is not violated
by an appreciable enough margin for any aggregation rule
in case of only five alternatives. This makes our approach
more attractive in practice as it performs well irrespective
of the aggregation rule. Nonetheless, the property gives a
guarantee for performance for an aggregation rule.

A Model for Deriving the Data
The above analysis was conducted assuming that the simi-
larity matrix is known from some past data or it can be ob-
tained from some parameters that reveal the expected simi-
larities between nodes. But this data may be unavailable in
practice. For instance, in online social networks, it is fea-
sible to obtain expected distances between connected nodes
by analyzing their interactions. However, the distances be-
tween unconnected pairs is generally unknown. In an effort
to obtain expected distance between any two nodes in the
network, we propose a model based on the survey.

Obtaining Distances between Unconnected Nodes
Recall that cell (i, j) of a distance matrix contains d(i, j),
the expected distance between preferences of nodes i and j.
We initialize all values in this matrix to 0 for i = j and to
1 (the upper bound on the value of the distance) for any un-
connected pair {i, j}. In the case of a connected pair {i, j},

dx

0.00 0.00
0.10 0.10 0.17
0.20 0.20 0.26 0.32
0.30 0.30 0.33 0.37 0.40
0.40 0.40 0.42 0.43 0.45 0.47
0.50 0.50 0.50 0.50 0.50 0.50 0.50

0.00 0.10 0.20 0.30 0.40 0.50
dy

Table 3: A partial view of the table T5

the value d(i, j) is initialized to the actual observed expected
distance (this value is known). Following the initialization
of the distance matrix, we now explain how to update it.

Consider nodes {p, i, j}where we know the expected dis-
tances d(p, i) and d(p, j) and we are interested in finding
d(i, j) via node p. Given the preference of p and dx =
d(p, i), let the preference of i be chosen uniformly at ran-
dom from the set of preferences that are at a distance η from
the preference of p, where η is drawn from distribution D
with mean dx and some standard deviation. Similarly, given
dy = d(p, j), let the preference of j be obtained. Using this
procedure, the distance between the obtained preferences of
i and j via p over several iterations and various standard
deviations, is observed to follow distribution D. Let the cor-
responding expected distance constitute cell (dx, dy) of a ta-
ble, say Tr, where r is number of alternatives. It is clear that
this distance is independent of the actual preference of p.

We empirically observe that Tr is different from Tr′ for
r 6= r′. Following are the general observed properties of Tr:
• Tr(dy, dx) = Tr(dx, dy)

• Tr(1− dx, dy) = Tr(dx, 1− dy) = 1− Tr(dx, dy)

• Tr(1− dx, 1− dy) = Tr(dx, dy)

We define an operator +©r as follows:

dx +©r dy =

{
Tr(dx, dy), if dx ≤ 0.5 and dy ≤ 0.5

max{dx, dy}, if dx > 0.5 or dy > 0.5

The two different cases while defining +©r are based on the
reasonable assumption that d(i, j) via p should be assigned a
value which is at least max{d(p, i), d(p, j)} (but Tr does not
follow this rule when either d(p, i) or d(p, j) exceeds 0.5).
As the questions of our survey has 5 alternatives, we obtain
the table T5 and hence dx +©5 dy for any pair {dx, dy}. Ta-
ble 3 presents a partial view of T5. Now the next question
is to find d(i, j) for any pair {i, j}. In order to provide a fit
to the distances obtained from the survey, we initialize the
distance matrix as explained in the beginning of this sub-
section and update it based on the all pairs shortest path
algorithm (Cormen et al. 2009) with update rule:
if d(p, i) +©r d(p, j) < d(i, j) then d(i, j) = d(p, i) +©r d(p, j)
where r = 5 for us. The corresponding similarity matrix is
obtained by assigning value c(i, j) = 1− d(i, j).

As mentioned earlier, in online networks, it is feasible
to obtain expected distances between connected nodes. But
this is generally not the case for offline social networks. We
propose a model in this direction based on the survey, quan-
tifying homophily for connected nodes in social networks.
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Obtaining Distances between Connected Nodes

In order to relate the graph structure with the observed dis-
tances between preferences of connected nodes, we propose
a method that intuitively captures how similar a connected
pair should be. Bigger the cluster(s) the pair is a part of (pair
with more common friends which are well connected among
themselves), the less distant their preferences should be, in
expectation. However, it is possible that the pair is a part of
multiple clusters and the individual clusters may not be ex-
actly cliques. Hence we generalize the notion of clique size
by proposing what we call cliqueness coefficient by defining
it as an increasing function of the number of edges in the
subgraph spanned by the pair and their common neighbors.

Definition 3. Consider two connected nodes i and j. Let ξ
be the number of edges in the subgraph spanned by i, j, and
their common neighbors. The cliqueness coefficient between
i and j is γ ≥ 1 such that γ(γ−1)2 = ξ, or γ = 1+

√
1+8ξ
2 .

If such a subgraph is a clique, then cliqueness coefficient
is equal to the size of that clique.

It can be seen from the survey network as depicted in
Figure 1 that several pairs of nodes have the same values
of cliqueness coefficient. It was observed from the survey
data that given a cliqueness coefficient and a type of issue,
the expected normalized Kendall-Tau distance between the
pairs of nodes having that particular cliqueness coefficient
between them, followed distribution D. Let the cliqueness
coefficient between any two connected nodes i and j be γij
and let the distance between the two nodes be drawn from
a distribution D with mean d(i, j). In order to fit the sur-
vey data, d(i, j) is set to be an inverse exponential function
of γij ; specifically, there exist some α ∈ [0, 1] and β ≥ 1
such that d(i, j) = αβ−γij . We deduce the values of α and
β from the data by minimizing weighted L1 norm. Con-
sider vectors A and B of size equal to the number of dis-
tinct values of γ in the network. Exactly one element of
A is αβ−γ corresponding to a unique γ. The correspond-
ing element in B is the actual mean distance between all
pairs with that particular γ. By minimizing weighted L1

norm of A − B where the weight of any of its elements is
equal to the number of pairs with the corresponding γ, the
deduced values were: αpersonal = 0.50, βpersonal = 1.06,
αsocial = 0.31, βsocial = 1.01. But α, β may not be known
a priori. Two of the ways in which they can be inferred are:

• Directly use the parameters deduced from some previous
data and update the expected distances based on the new
γ’s (owing to the change in network structure since then).

• Take a few samples of pairs of nodes who report their
preferences, such that the number of edges in subgraph
spanned by them and their common neighbors is known.

No concrete conclusions regarding the standard devia-
tion of the distribution of distances between connected pairs,
could be drawn from the data. However, it could be observed
that the more mutually exclusive neighbors a pair {i, j} had,
the more the distance between them deviated from d(i, j).

Discussion
Our main finding is that social network structure can be ex-
ploited for aggregating preferences related to personal is-
sues; but for social issues, random polling is acceptable with
a non-negligible sample size. Though the survey network
was small, it was suitable for our experiments since ho-
mophily is present in any social network irrespective of its
size. The nodes had very similar preferences regarding per-
sonal issues on average; also the standard deviation was on
a lower side. These, actually, were some of the reasons why
the random approaches did not fare very poorly for personal
issues. Nonetheless, the experiments, conducted with this
data, validated our theoretical results well. In fact, for any
network with homophily property, the results guarantee ex-
cellent performance of our approach, particularly for aggre-
gation rules satisfying expected weak insensitivity property.

If the similarity matrix is known, the time complexity
for obtaining M and hence R using greedy hill-climbing is
O(k|N |2), while that using random selection with represen-
tation is O(k|N |). The time complexity for arriving at the
aggregate preference(s) f(R), however, depends on the ag-
gregation rule. If the similarity matrix is unknown, the time
complexity for deriving it is largely decided by the all pairs
shortest path algorithm, which is O(|N |2 log |N |+ |N ||E|)
by Johnson’s algorithm where |E| the number of edges is
generally small owing to sparsity of social networks.

Future Work
A primary objective of this paper was to select k nodes so as
to minimize E[f(P ) ∆ f(R)]. This work can be extended
to select minimum number of nodes such that this value is
bounded. The expected weak insensitivity property may be
of prime importance in social choice theory and so, it will
be interesting to analytically determine the rules that satisfy
it. It may be of practical interest to study its generaliza-
tion where the aggregate preference changes by at most θµd
instead of µd (see Equation (4)), in expectation, for some
constant θ. We used a particular form of modified profile
R = Q′. It will be interesting to study the ‘best’ form of R.

The time complexity of the greedy algorithm is large ow-
ing to the global nature of the abstracted optimization prob-
lem. It may be useful to consider localized algorithms like
degree centrality heuristic. As the scale of our survey was
modest, it is essential to have a survey on a larger scale to
verify and refine the proposed model. It will also be useful to
study models and approaches which take standard deviations
of the data into consideration. We assumed that the voters
are not strategic and so report their preferences truthfully.
From a game theoretic viewpoint, it would be interesting to
look at the strategic aspect of the problem. General random
utility models are complementary to our model, exploiting
attributes of nodes and alternatives instead of the underlying
social network. It will be interesting to consider attributes as
well as the underlying social network for node selection.
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