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Abstract

We present studies of the attention and time, or engagement,
invested by crowd workers on tasks. Consideration of worker
engagement is especially important in volunteer settings such
as online citizen science. Using data from Galaxy Zoo, a
prominent citizen science project, we design and construct
statistical models that provide predictions about the forth-
coming engagement of volunteers. We characterize the ac-
curacy of predictions with respect to different sets of features
that describe user behavior and study the sensitivity of pre-
dictions to variations in the amount of data and retraining.
We design our model for guiding system actions in real-time
settings, and discuss the prospect for harnessing predictive
models of engagement to enhance user attention and effort
on volunteer tasks.

Introduction
Numerous crowdsourcing applications, such as those fielded
on Amazon Mechanical Turk (MTurk), reimburse people
with monetary payments for their efforts on tasks. In con-
trast, some successful projects rely solely on volunteer ef-
fort. These include citizen science efforts that enlist the help
of large numbers of interested volunteers to provide input
on solving such problems as protein folding via an online
game (Khatib et al. 2011), classification of heavenly bodies
from images (Lintott et al. 2008), and bird identification and
tracking over large regions (McCaffrey 2005). The motiva-
tions and interests of volunteers drive the effort and attention
invested in citizen science. However, little analytical work
has been done to date on the engagement and disengagement
of volunteer crowd workers.

We explore the challenge of learning from data to pre-
dict signals of the attention and effort that workers allocate
to tasks. Such models for estimating the time and effort in-
vested by workers are useful for understanding worker be-
havior and improving existing systems. For instance, pre-
dictions about engagement can help explain the influence
of different interaction designs on user attention and effort
at points within and across sessions of crowd work. Stud-
ies of engagement could reveal patterns of engagement for
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different groups of users, predict users’ disengagement, di-
rect the assignment of task sequences to volunteers so as to
enhance interest, effort and attention, and measure and in-
fluence the likelihood that users will return to continue vol-
unteer efforts at a later time. The ability to predict forth-
coming disengagement of individual workers would allow
systems to make targeted interventions, such as providing
especially interesting tasks to workers at risk of becoming
bored, directing support to struggling new workers, help-
ing with the timing of special auxiliary materials or rewards,
and encouraging workers to return in the long run. Data col-
lection and modeling of engagement is also promising for
the comparative study of different designs such task struc-
tures or workflows (Kulkarni, Can, and Hartmann 2012; Lin,
Mausam, and Weld 2012), programs such as achievement-
based badges that provide different intrinsic incentives (An-
derson et al. 2013), and their influence on different types of
workers.

We construct predictive models of worker engagement
from large-scale usage data collected from a crowdsourcing
platform. We focus on predicting that a volunteer worker
will disengage within a given number of tasks or minutes,
based on data about volunteers’ characteristics and activities
logged in histories of interaction and sensed in real time. We
focus our studies on a citizen science platform called Galaxy
Zoo (Lintott et al. 2008). Using supervised learning, we
learn models for predicting worker engagement and evaluate
them on data collected from Galaxy Zoo. The results demon-
strate that learned models can successfully identify workers
that are soon to disengage. We study various notions of en-
gagement and compare the importance of different factors
in accurately predicting worker engagement. Finally, given
that real-world crowdsourcing systems accumulate data con-
tinuously over their lifetimes, we evaluate the amount of data
and retraining needed to learn such models accurately. These
studies help with understanding the factors that influence
workers’ engagement and provide insights about deploying
predictive models in real crowdsourcing systems.

Related Work
Previous work on applying machine learning techniques to
crowdsourcing has focused mainly on learning about worker
quality and optimizing decisions in a crowdsourcing plat-
form accordingly for improved task efficiency (e.g., White-
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Figure 1: Model of worker sessions in crowdsourcing.

hill et al. 2009). Aggregation of the inputs from multi-
ple workers has been used to achieve higher quality so-
lutions for tasks (Little et al. 2010; Mao, Procaccia, and
Chen 2013). Beyond simple aggregation of answers, there
have emerged principled approaches to guiding crowdsourc-
ing using decision-theoretic methods. The CrowdSynth
project by Kamar, Hacker, and Horvitz (2012) introduces a
decision-theoretic methodology for reducing volunteer ef-
fort while maintaining accuracy by integrating the efforts
of machine vision with human perception and computing
the value of acquiring additional information from work-
ers. Efforts on TurKontrol (Dai, Mausam, and Weld 2010;
2011) provide mechanisms for choosing different workflows
in a crowdsourcing system. Beyond analyses of worker qual-
ity, research on the behavior of workers in crowdsourc-
ing platforms include observational studies on task prices,
task completion time, worker availability (Ipeirotis 2010),
worker incentives (Kaufmann, Schulze, and Veit 2011), and
on implicit and explicit motivations of workers (Rogsta-
dius et al. 2011). Understanding, sustaining and improving
worker engagement has been mentioned as a future chal-
lenge for the crowdsourcing community (Kittur et al. 2013).

Apart from crowdsourcing, studies have shown that
worker attention is related to other qualities of collective in-
telligence. Huberman, Romero, and Wu (2009) show that
video upload activity on YouTube strongly depends on the
number of views of previous videos. Kittur and Kraut (2008)
find that the quality of articles on Wikipedia critically de-
pends on the activity of numerous editors and their method
of coordination. Cosley et al. (2006) describe how on-
line communities can produce quality contributions, and
gives several examples where various methods of mediating
worker contributions have succeeded and failed. Beyond ef-
forts in crowdsourcing, there have been several methodolog-
ically related studies of user attention in the context of web
browsing. These efforts include work by Adar, Teevan, and
Dumais (2008) that examines patterns of browsing across
web browsing sessions and by Sculley et al. (2009) that ex-
plores supervised learning for making predictions about in-
dividual behavior on the web. In aggregate, the literature
suggests that the effectiveness of crowdsourcing is signifi-
cantly influenced by the state of worker attention.

Data, Outcomes, and Model
We consider crowdsourcing settings where workers com-
plete a series of tasks over time. These settings can include
tasks on paid crowdsourcing platforms or volunteer efforts

Figure 2: The Galaxy Zoo 1 classification interface.

such as commonly seen with citizen science tasks. A task is
the smallest indivisible unit of work that can be completed,
e.g., a single classification in a citizen science system or a
human intelligence task (HIT) on Amazon Mechanical Turk
(MTurk). We consider sessions of a worker on a crowdsourc-
ing platform to be the periods of time that workers spend
engaged with the platform. Workers complete multiple tasks
over the course of a task-centric session. The progress of a
worker can be interrupted for various reasons. Short-lived
demands for attention such as bathroom breaks or brief con-
versations divide a sequence of contiguous tasks into con-
tiguous sessions of uninterrupted work, divided by short
breaks where workers intend to return to the task. Workers
can also decide to stop working for longer periods of time or
end their work for a variety of reasons; these longer pauses
in activity divide the activity into aggregate sessions, com-
prised of one or more contiguous sessions.

Contiguous and aggregate sessions may have different
properties in terms of the engagement of a worker. Workers
are likely to maintain the cognitive context of previous tasks
for contiguous sessions that start soon after the end of the
prior session. Workers starting a new session after the end
of an aggregate session can be assumed to return without
such mental context. Because engagement within contigu-
ous and aggregate sessions may have different implications
for the crowdsourcing platform, we study them separately.

Figure 1 shows a visual representation of worker activity
over time under these session definitions. Each inner seg-
ment (green) represents a task. Workers may complete tasks
at different rates and the width of the segment is the length
of time used to complete the task. Groups of tasks divided by
brief interruptions comprise contiguous sessions (red). A se-
quence of one or more contiguous sessions defines an aggre-
gate session (blue). As shown in the figure, individual work-
ers may differ in terms of the frequency of their contiguous
and aggregate sessions, the amount of time they spend in
sessions, and the number of tasks they perform.

Galaxy Zoo as Testbed
Galaxy Zoo (Lintott et al. 2008) is a citizen science project
that began in 2007, harnessing the power of many to clas-
sify images of galaxies from the Sloan Digital Sky Survey
(SDSS) via the internet. Volunteer citizen scientists (work-
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Figure 3: Cumulative distribution of inter-session times on
Galaxy Zoo.

ers) engaging with Galaxy Zoo are asked to evaluate the
morphologies of galaxies in the survey. To date, volunteers
have examined nearly a million SDSS images. Currently in
its fourth iteration, Galaxy Zoo is one of the longest run-
ning, most publicized, and most established examples of an
unpaid, volunteer crowdsourcing system.

We study data about task completion from the first ver-
sion of Galaxy Zoo. In that version, workers are shown a
picture of a celestial object, and press one of six buttons
to classify the object into categories such as an elliptical
galaxy, spiral galaxy, or other type of object (See Figure 2).
The dataset collected from the Galaxy Zoo system enables a
large-scale study of engagement of workers in crowdsourc-
ing platforms. The dataset includes 34 million votes col-
lected from 100,000 participants about 886,000 galaxies.

Worker Behavior
The tasks and associated patterns of interaction on Galaxy
Zoo are nicely captured by the representation of contiguous
and aggregate tasks: each new effort at completing a classi-
fication represents the completion of a new task, which can
be as short-lived as a couple of seconds. Workers complete
many tasks over time, represented as one or more sessions of
work divided by breaks. Some workers spend a great deal of
time on the site; one worker classified nearly 12,000 galaxies
in a single session, while another spent more than 17 hours
making contributions. In both of these cases, no break was
longer than 30 minutes.

We define the end of a contiguous session as a break of
more than 5 minutes, since it is unlikely for a worker to
spend this amount of time on a Galaxy Zoo task without ac-
tivity. With this definition of disengagement for contiguous
sessions, the average amount of time spent on each Galaxy
Zoo task is 9 seconds with a standard deviation of 21 sec-
onds.

To define a disengagement criteria for aggregate sessions,
we study the distribution of the time it takes for workers
to return to the platform after disengaging for more than 5
minutes (end of a contiguous session). Figure 3 shows the
cumulative distribution of time between tasks when pauses
are greater than 5 minutes. As displayed in the figure, many
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Figure 4: The distribution of inter-session times on Galaxy
Zoo over a two-day period.

contiguous sessions are followed with a new session from
the same worker in a few hours. Indeed, 41% of workers
start a new contiguous session within 30 minutes of the end
of their previous session. Since, 30 minutes may still pre-
serve the context of the earlier contiguous session, we admit
adjacent contiguous sessions that are less than 30 minutes
apart into a single aggregate session. In the rest of the paper,
we use breaks of lengths 5 and 30 minutes as the definitions
of disengagement from contiguous and aggregate sessions,
respectively. In Galaxy Zoo, a worker completes an average
of 81 tasks (σ = 146) and spends on average 693 seconds
(σ = 938) in a contiguous session. On average workers com-
plete 135 tasks (σ = 233) within an aggregate session and
the average time spent is 1629 seconds (σ = 2282). These
composites of task completion and engagement times natu-
rally resemble power law distributions.

The interval distribution shown in Figure 3 shows sev-
eral aspects of the engagement behaviors of workers. Al-
though the distribution reveals a power-law taper, visible
jumps appear in the distribution at around one day, with
smaller jumps at two days, three days, etc. This suggests that
the longer breaks between worker sessions are not smoothly
distributed, which suggests that workers have strong pat-
terns of engagement. Indeed, for some noticeable fraction of
workers, there is a high probability of returning at the same
time each day—these workers have a relatively predictable
schedule for investing time. This trend is more visible in Fig-
ure 4, which displays a histogram of such times for periods
up to two days, using a linear scale on the time axis. Much
of the mass is concentrated in the period of several hours
shortly after completing a task. However, the exponential de-
cay of return rate after completing the task is interrupted by
a jump leading up to the one-day mark. If the worker does
not return within one day, the distribution is similar for the
second day. However, the marginal probability of returning
is much lower for returns on later days. We shall now turn to
analyses using machine learning and inference.

Instance Generation
We model the problem of predicting worker engagement as
a binary classification problem. Each interaction of a worker
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Figure 5: Instances created as cases for learning from Galaxy
Zoo dataset. An instance is created for each task that each
worker has completed, including features describing the his-
torical behavior of the worker and the system.

with a task becomes an instance that is considered as a case
in a library of events for training and testing predictive mod-
els. We define for each instance a set of features describing
the state of the worker’s interaction (including the worker’s
historical behavior). The label on the outcome for each in-
stance is assigned by observing the state of the worker’s en-
gagement. We define the prediction challenges as follows:

Given the current state of a worker’s session, will the
worker stop participating within a given number of
tasks or minutes of time?

If the condition defined above holds for the current state of a
worker, the corresponding instance is assigned a positive la-
bel for either the time-based or task-completion versions of
the prediction challenge. Otherwise, the instance is assigned
a negative label.

Figure 5 shows a graphical depiction of the definition of
instances. When each worker finishes a task, we create a
data instance capturing the state of the worker’s session, a
set of features about the worker’s recent and past activities
(described in more detail below), and a corresponding label
about engagement. The dataset consists of all worker-task
interactions. We use different portions of this data to train,
validate, and test learned models for predicting engagement.

The data extraction and analysis is complicated by the
temporal nature of the activities and outcomes. Since each
instance includes historical information about the behavior
of a worker and the system, careless ordering of the data
could lead to potential inconsistencies where instances in
the training set contain information about instances in the
test set. To avoid this potential confounding, we select train-
ing and validation instances that come strictly before test
instances, as shown in Figure 5. This methodology mimics
how predictions would be used in practice: training and val-
idation instances would be constructed from existing data,
and predictions would be used to make decisions about sub-
sequent worker sessions at run time.

Labels
In the context of the instances above, we can employ sev-
eral labels on outcomes that describe disengagement over
time. We may be interested in how soon a worker will stop
working, or how many more tasks they will perform. Some

outcomes may be easy to predict. Other outcomes may be
less easy to predict but make for more valuable predictions.

The challenge of predicting whether a worker will stop
working in the next 30 seconds is significantly different from
the challenge of predicting whether the worker will stop
within 30 minutes. These predictions would likely be used
in different ways in the operation of a crowdsourcing sys-
tem. The former outcome has very few positive instances,
and training a classifier for such biased data sets can be chal-
lenging. We focus on binary outcomes on disengagement—
on the challenge of predicting whether the worker’s session
will end within a given amount of time or number of tasks,
and report our findings in the following section.

Features
As shown in Figure 4, workers may have strong patterns of
engagement, including recurrent activities with time-of-day
resonances. Such patterns of effort can inform the construc-
tion of features. We formulate features and group them under
three general categories.

Task-Based Features. Without considering behavioral
changes over time, workers may be affected simply by the
tasks that they observe; this assumption underpins many
worker/task latent-feature models in crowdsourcing (see
Raykar et al. 2010 for an example). The Galaxy Zoo team
shared with us anecdotal evidence suggesting that workers
tend to have a longer session if the first few galaxies they see
are interesting, high-quality pictures, rather than the more
common less interesting or low-quality galaxy images. We
can evaluate this objectively by computing features that cap-
ture worker behaviors in response to sequences of difficult
or banal tasks, based on the activity of other workers. These
features include those based on use of an estimate of the run-
ning difficulty of the last X tasks, computed by considering
differences in votes on objects by others. We summarize dif-
ferences in votes on objects via computing the entropy of a
set of answers.

Session Features. We also consider attributes that char-
acterize workers’ activities within the current session. We
consider statistics around the number of tasks completed
in the current session versus completed in typical sessions
for each worker. We also compute statistics about the dwell
time, capturing the amount of time spent on each task, and
the worker’s vote entropy, which represents the diversity of
workers’ classifications. We believed these statistics could
serve as signals of a worker’s attention to tasks at hand. For
example, a running average of dwell time as compared to the
average dwell for sessions can measure whether the worker
is starting to pay less attention or struggling on a given task.
Similarly, a worker providing a set of votes with low vote
entropy on a spectrum of randomly sorted tasks may be se-
lecting the same classification for many tasks in the absence
of deep analysis, and thus paying less attention than some-
one who is providing input that is better matched to the dis-
tribution of cases. All of the features mentioned can be de-
rived from behavior in the current session regardless of the
worker’s histories or habits. We compute these features for
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both contiguous and aggregate sessions as the characteristics
may be different.

Worker Features. We can also compute multiple features
that characterize workers based on their history and habits.
Such features are a rich source of information for learning
to predict future engagement of individual workers. These
features include the following classes:
• Summary features. These features include the typical

time spent on tasks, number of past sessions, and average
time spent on sessions. These features implicitly distin-
guish among segments of the worker population.

• Start-/end-time features. Features build on periods of
time when workers engage with the system, including
comparison of the current time of day to the typical time
of day that the worker has started or ended a session in the
past.

• Session history features. Features describing the
worker’s behavior in aggregate sessions, including the
number of short breaks that are taken and the length of
contiguous sessions.

• Inter-session features. These features capture informa-
tion about the period of time (gap) since the worker’s last
session and how this compares with past gaps.

• Dwell time features. Features on the amount of time that
the worker spends on tasks, including consideration of
statistics of different running averages compared to pre-
vious computed averages over the worker’s history.

• Session task features. These features include a set of
compound features that compare the worker’s task-related
statistics on the current session with the mean statis-
tics observed on past sessions, including number of tasks
completed and amount of time spent.
We compute statistics on features for the complete history

of a worker and also for the most recent history (i.e., last
10 sessions) to identify behavioral changes. The worker fea-
tures also implicitly include session features, as they com-
pare a worker’s current session to longer histories of behav-
ior. Overall, we computed nearly 150 features for our data
instances.

The features that we compute do not explicitly encode
domain-specific knowledge about the specific task of clas-
sifying galaxies. For example, no feature depends on the re-
sults of any automated classification of galaxies, or a prior
distribution of the types of galaxies. While using domain-
specific features may improve predictive performance, we
focused on how well we can detect worker engagement us-
ing features that are applicable to numerous other types of
tasks. We believe that the methods can be generalized to sim-
ilar crowd work settings.

Evaluation
We seek the construction of statistical models that can pre-
dict that a worker will disengage within some horizon of
time or tasks. We generate our datasets for experiments on
these predictions from the three months of Galaxy Zoo data
using the methodology described in the earlier section. We
remove from consideration workers for whom we observed

little activity (less than 10 contiguous sessions). The gen-
erated data set consists of over 24 million instances, cor-
responding to each task that was performed by the set of
workers that we considered. For each experiment, we ran-
domly sample 500,000 training instances, 250,000 valida-
tion instances, and 250,000 test instances, preserving tem-
poral consistency per above. This approach ensures that all
of the methods use the same amount of data when possible.
Unless otherwise noted, we used the complete set of features
in the experiments.

Predicting the instances described below typically results
in biased data sets, containing very few positive instances
where users disengage. As a result, we consider the mea-
sure of area under the receiver-operator characteristic curve
(AUC) to evaluate the relative performance of different clas-
sification algorithms. The AUC measure can be interpreted
as the likelihood that a classifier will distinguish a randomly
selected positive instance from a randomly selected negative
instance. A random classifier that assigns each instance the
prior probability of the dataset has an AUC of 0.5, and a
classifier that can always distinguish positive from negative
instances has an AUC of 1.0. The AUC is invariant to the
prior distribution of labels in different datasets, which can be
highly skewed. We additionally measure the log-loss reduc-
tion (LLR) achieved by each classifier as compared to the
random classifier as a measure of the accuracy of probabili-
ties assigned to each instance by the model. Higher positive
log-loss reduction values predict more accurate probability
estimates. In all of our experiments, classifiers with higher
AUC values showed higher log-loss reduction metrics. For
simplicity of presentation, we report AUC values for the ex-
periments, since they provide a robust metric for comparing
the success of predicting different outcomes.

For each classification task, we performed a validation
phase to learn the best classifier. We explore the predictive
power of models constructed with boosted decision trees,
linear SVM, and logistic regression for predicting the out-
comes described below. For each procedure, we normalized
the data and performed parameter sweeps using the valida-
tion set. We created a single best classifier for each task by
identifying the procedure and parameters that performed the
best on the validation data. We report the results of the final
models on the test set below. In our experiments, boosted
decision trees consistently outperformed SVM and logistic
regression on the validation set, and thus was used to train
all of the final classification models.

Outcomes of Interest
For each instance in our dataset, we are defining outcomes
according to the definition below:

Does the worker’s current (contiguous / aggregate)
session end within (X tasks / Y minutes)?

For example, if the particular outcome of interest is whether
the aggregate session ends in 20 tasks, then a positive in-
stance indicates that the worker will stop within the next 20
tasks and that they will not return for at least 30 minutes.

This definition is quite general; it includes definitions of
disengagement outcomes based on different session defini-
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Figure 6: Prediction performance with different outcomes, us-
ing all features.

tions. The closeness to disengagement can be defined based
on the number of tasks or the amount of time, and the degree
of closeness can vary with different X or Y values. While
some outcomes may be more easily predictable than others,
specific predictions may be particularly useful for a domain
in guiding decisions, such as interventions aimed at increas-
ing effort allocated by volunteers. Designs for valuable tar-
get predictions and best uses of inferences will typically be
domain-centric exercises. Given the range of potential uses
of predictions about disengagement, we do experiments over
a spectrum of outcomes.

Figure 6 shows the performance of predictions for differ-
ent target outcomes, as indicated on the x-axis of the graphs.
Generally, we can better predict the end of an aggregate ses-
sion (where the worker does not return for at least 30 min-
utes) than the end of a contiguous session (the worker does
not return for at least 5 minutes), especially in terms of time.
As might be expected, we can better predict whether a ses-
sion will end within a larger number of tasks or longer pe-
riod of time than within a small period. Figure 7 shows the
ROC curves for predicting the end of an aggregate session
by number of tasks. The AUC monotonically increases as
we increase the number of tasks.

Despite these trends, the analyses show that extreme dif-
ferences do not exist among the predictability of different
outcomes. We shall focus on the example of predicting the
outcome that a worker will quit an aggregate session within
20 tasks since the target outcome is far enough ahead to al-
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Figure 7: ROC curves of different models predicting the end
of an aggregate session by number of tasks.

low for the execution of targeted interventions.
To put the performance of the predictive model in a us-

age context, consider the following: suppose that we seek to
guide interventions based on identifying workers who will
leave an aggregate session within 20 tasks. Using random
targeting, only 14% of interventions would reach our target
group. However, using the predictions on outcome to target
the top 0.1% of workers likely to leave, 85% would reach
our target group, a significant increase from the 14% made
by random choice. This number would be 79%, 72%, 54%,
and 44% by targeting the top 0.5%, 1%, 5% and 10% re-
spectively, giving a tradeoff between accuracy and number
of targets reached.

Feature Selection
The next set of experiments study which sets of features
are most predictive of disengagement within a horizon. We
wish to understand the accuracy of predictions as models are
provided with larger sets of features. We are also interested
in the relative influence of different feature sets on predict-
ing disengagement for workers when we have small versus
larger histories of interaction. For example, worker features
may be more discriminatory when we have a great deal of
historical information. We study the influence of quantity of
historical data on prediction performance by sampling two
additional test sets, consisting of data instances in the top
and bottom quartiles of worker history activity by number
of past aggregate sessions.

Figure 8 shows the prediction performance for small
amounts of history history, large amounts of history, and for
all workers for combinations of the following sets of fea-
tures: task (T), contiguous session (C), aggregate session
(A), and worker features (U). The results show that all fea-
ture sets individually help to predict worker engagement.
However, adding worker features with session features re-
sults in a large boost in prediction performance, and the ben-
efit of including task features is diminished. We also see that
workers with larger histories are more predictable even when
the models do not include worker features. On the other
hand, adding features describing past behavior produces less
improvement (relative to the population at large) for workers
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with small amounts of history, as one would expect.
For the model trained with all of the features, the most

predictive features, as measured by information gain in the
boosted decision tree ensemble, are primarily about contigu-
ous and aggregate sessions and the worker’s history. The
most informative feature is the average number of tasks in
recent (the last 10) aggregate sessions, followed by the num-
ber of tasks over the worker’s entire history, and over the last
10 contiguous sessions. Other informative features compare
past behavior with recent behavior (e.g., difference of the
average number of tasks done in an aggregate session in the
entire history versus completed more recently) and features
about the current session (e.g., average dwell time in the cur-
rent session).

Worker Groups
Our results in the previous section suggest that the perfor-
mance of predictive models depends on the specific worker
subgroup at focus of attention. Hence, we consider whether
we can gain a further advantage by training a prediction
model for only specific subsets of workers. For example, we
may be particularly interested in using targeted interventions
to enhance the engagement of workers with small amounts
of history so as to guide them early on to becoming more
involved with a specific citizen science community.

Figure 9 shows the results for predicting the engagement
of workers with small and large histories when models are
trained with the data collected only from each class of work-
ers. The results show that training for specific subsets of the
workers does not improve the performance of predictions.
These results suggest that, when there is a large amount of
data available from a crowdsourcing system to generate in-
stances and create features, a relatively complex classifier
trained on the entire dataset may generalize well to specific
subcategories of workers.

Cold-Start Performance
In a typical scenario, a crowdsourcing system begins so-
liciting contributions on a new type of task. At the outset
of the use of the system, there is little data about workers
and it may be difficult to make predictions about engage-
ment when few workers have extensive histories. A best cur-
rent model may not generalize well to future predictions as
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Figure 9: Comparison of the general model applied to a sub-
population with one trained explicitly on the subpopulation.

worker habits evolve and change. In our next set of exper-
iments, we study the effect of the amount of data collected
about workers on prediction performance.

Figure 10a demonstrates the approach for studying this
“cold-start” problem. In each experiment, starting from the
specific date when our dataset begins, we sample training
and validation instances from the first day, first two days,
first three days, first week, first two weeks, and first month of
the system’s records. Except for the first day, the amount of
training data sampled stays constant between experiments;
however, the data set becomes more heterogeneous and rep-
resents more diversity among workers with the expansion of
the training period. The test set is always sampled from the
one-week period immediately after the training and valida-
tion sets. This formulation of sampling mimics the challenge
of making predictions about engagement in real time as the
test set is exactly the subsequent set of worker sessions ap-
pearing in the system.

Figure 10b displays the results of this set of experiments.
The figure shows that the system needs to collect almost a
month of data to reach AUC of 0.75—the accuracy of the
model trained with the complete data. The performance of
the models improves rapidly as data arrives during the first
few days of the system’s life. This suggests that in early
stages of deployment, it is generally important to continue
training a prediction algorithm when more diverse informa-
tion is collected about workers over time.
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Figure 10: Testing prediction performance in a cold-start set-
ting.

Model Generalization
Finally, we study how well a trained model generalizes for
instances encountered at later times and whether the perfor-
mance may diminish over time. Figure 11a shows the pro-
cess for testing this problem. After training models using
data sampled from the first day, first week, first two weeks
and first month of the system’s life, we evaluate the mod-
els on test sets for each two-week period following the first
month of the system’s use. Figure 11b shows the perfor-
mance of the models when tested on later time segments.
The results show that all models generalize well to future
instances and that the performance of the models does not
diminish over time. They also confirm our earlier result that
models trained with data sets (of equal size) containing ob-
servations about a more diverse population consistently per-
form better.

Discussion and Future Work
We presented the construction of predictive models of en-
gagement in volunteer crowdsourcing, using data logged on
the activity of citizen scientists using Galaxy Zoo. We per-
formed several different experiments to probe characteris-
tics of the prediction challenge. Our results demonstrate the
performance of predictive models of engagement on a large-
scale citizen-science platform. The trained models reached
desirable performance with predicting forthcoming disen-
gagement in different experimental conditions. Finally, we
provide insights about the quantity of data needed to train
models to perform well and how well the models generalize
to making predictions about future instances.

We see numerous practical applications of predictive
models of engagement. We expect that inferences about
workers nearing disengagement can be employed in designs
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(b) Performance over future testing sets with increasing
distance.

Figure 11: Testing generalization performance.

that use well-timed interventions to extend the engagement
of workers. For example, it may be useful to target new
workers who are about to leave a system by presenting a
tutorial or a link to a discussion forum. Similarly, interven-
tions may target workers who are struggling or losing inter-
est by presenting more interesting tasks or by encouraging
them with merit programs such as a badge programs (An-
derson et al. 2013). If even only a small fraction of these
workers respond to the interventions by staying and contin-
uing to work, or returning to the platform with higher like-
lihood, then the platform can gain a significant benefit from
predictions about disengagement.

We foresee opportunities for developing a variety of pre-
dictive models about engagement. For example, we may
wish to predict if and when a worker will return after one or
more sessions, based on multiple features, including traces
of the worker’s history of experiences with the platform.
Models of engagement can be expanded to make predictions
about more general notions of worker engagement, attention
and effort, and they can be applied to tasks that go beyond of
labeling. Beyond use on volunteer-centric tasks, we envision
applications of models of engagement in paid systems. Such
models may include distinctions and inferences about the
joy or excitement associated with tasks, the link between in-
trinsic reward, payments, and effort, and leveraging of more
detailed worker profiles, including demographic information
and long-term histories of engagement. We hope that this
work will stimulate further research on user attention, effort,
and engagement in crowd work.
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