
DataSift: An Expressive and Accurate Crowd-Powered Search Toolkit

Aditya Parameswaran, Ming Han Teh, Hector Garcia-Molina, Jennifer Widom
{adityagp, minghan, hector, widom}@cs.stanford.edu

Stanford University
353 Serra Mall

Stanford CA 94305, USA

Abstract

Traditional information retrieval systems have limited
functionality. For instance, they are not able to ad-
equately support queries containing non-textual frag-
ments such as images or videos, queries that are
very long or ambiguous, or semantically-rich queries
over non-textual corpora. In this paper, we present
DataSift, an expressive and accurate crowd-powered
search toolkit that can connect to any corpus. We pro-
vide a number of alternative configurations for DataSift
using crowdsourced and automated components, and
demonstrate gains of 2–3x on precision over traditional
retrieval schemes using experiments on real corpora.
We also present our results on determining suitable val-
ues for parameters in those configurations, along with a
number of interesting insights learned along the way.

1 Introduction
While information retrieval systems have come a long way
in the last two decades, modern search engines still have
quite limited functionality. For example, they have difficulty
with:

1. Non-textual queries or queries containing both text and
non-textual fragments: For instance, a query “cables that
plug into <IMAGE>”, where <IMAGE> is a photo of a
socket, cannot be handled by any current search engine.

2. Queries over non-textual corpora: For instance, a query
“funny pictures of cats wearing hats, with captions” can-
not be handled adequately by any image search engine.
Search engines cannot accurately identify if a given im-
age satisfies the query; typically, image search engines
perform keyword search over image tags, which may not
be sufficient to identify if the image satisfies the query.

3. Long queries: For instance, a query “find noise canceling
headsets where the battery life is more than 24 hours”
cannot be handled adequately by a product search en-
gine, e.g., Amazon (Amazon Inc. 2013a). Search results
are often very noisy for queries containing more than 3-
4 keywords. Most search engines require users to em-
ploy tricks or heuristics to craft short queries and thereby

Copyright c� 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

obtain meaningful results (MOOC on Searching the Web
2013).

4. Queries involving human judgment: For instance, a query
“apartments that are in a nice area near Somerville” can-
not be handled adequately by an apartment search engine,
e.g., Craigslist (Craigslist Apartment Listings 2013).

5. Ambiguous queries: For instance, a query “running
jaguar images” cannot be handled adequately by an im-
age search engine. Search engines cannot tease apart
queries which have multiple or ambiguous interpretations,
e.g., the car vs. the animal.

For all of these types of queries, currently the burden is
on the user to attempt to express the query using the search
interfaces provided. Typically, the user will try to express
his or her query in as few textual keywords as possible,
try out many possible reformulations of the query, and pore
over hundreds or thousands of search results for each refor-
mulation. For some queries, e.g., “buildings that look like
<IMAGE>”, identifying a formulation based solely on text
is next to impossible.

Additionally, there are cases where the user does not pos-
sess the necessary knowledge to come up with query refor-
mulations. For instance, for the query “cables that plug into
<IMAGE>”, a particular user may not be able to identify
that the socket is indeed a USB 2.0 socket.

To reduce the burden on the user, both in terms of la-
bor (e.g., in finding reformulations and going through re-
sults) and in terms of knowledge (e.g., in identifying that
a socket is indeed a USB 2.0 socket), we turn to humans
(i.e., the crowd) for assistance. In the past few years, crowd-
sourcing has been incorporated as a component of data pro-
cessing, gathering, and extraction systems (Park et al. 2012;
Franklin et al. 2011; Parameswaran et al. 2012; Bernstein et
al. 2010; Zhang et al. 2012; Law and Zhang 2011). Inspired
by these systems, in this paper, we present DataSift, a pow-
erful general-purpose search toolkit that uses humans (i.e.,
crowd workers) to assist in the retrieval process. Our toolkit
can be connected to any traditional corpus with a basic key-
word search API. DataSift then automatically enables rich
queries over that corpus. Additionally, DataSift produces
better results by harnessing human computation to filter an-
swers from the corpus.

112

Proceedings of the First AAAI Conference on Human Computation and Crowdsourcing

Figure 1 shows a high-level overview of DataSift: The
user provides a rich search query Q of any length, that may
include textual and/or non-textual fragments. DataSift uses
an internal pipeline that makes repeated calls to a crowd-
sourcing marketplace—specifically, Mechanical Turk (Me-
chanical Turk 2013)—as well as to the keyword search inter-
face to the corpus. When finished, a ranked list of results are
presented back to the user, like in a traditional search engine.
As an example, Figure 2 depicts the ranked list of results
for the query Q = “type of cable that connects to <IMAGE:
USB B-Female socket of a printer>” over the Amazon prod-
ucts corpus (Amazon Inc. 2013b). The ranked results pro-
vide relevant USB 2.0 cables with a B-Male connector.

Figure 1: DataSift Overview

Figure 2: DataSift Example

A disadvantage of our approach is that the response time
will be substantially larger than with a traditional search en-
gine. Thus, our approach is only applicable when the user is
willing to wait for higher quality results, or when he is not
willing or capable of putting in the effort to find items that
satisfy his query. Our experience so far is that the wait times
are of the order of 20 minutes to an hour. (Note that users
can see partial results as they come in.)

We now present some challenges in building DataSift, us-
ing our earlier example: Q = “type of cable that connects
to <IMAGE>”. We assume that we have a product corpus
(e.g., Amazon products) with a keyword search API. Con-
sider the following three (among others) possible configura-
tions for DataSift:
• Gather: Provide Q as is to a number of human workers

and ask them for one or more reformulated textual key-
word search queries, e.g., “USB 2.0 Cable” or “printer
cable”. Then retrieve products using the keyword search
API for the reformulated keyword search queries and
present the results to the user.

• Gather-Filter: The same configuration as Gather, but in
addition ask human workers to filter the retrieved prod-
ucts for relevance to the query Q, e.g., whether they are
cables that plug into the desired socket, before presenting
the results to the user.

• Iterative Gather-Filter: The same configuration as
Gather, but in addition first ask human workers to filter
a small sample of retrieved products from each reformu-
lated textual query for relevance to Q, allowing us to iden-
tify which reformulations produce better results. Then,
retrieve more from the better reformulations, e.g., more
from “USB 2.0 printer cable” instead of “electronic ca-
ble”. Finally, ask human workers to filter the retrieved
results before presenting the results to the user.

In addition to determining which configuration we want to
use, each of the configurations above has many parameters
that need to be tuned. For instance, for the last configuration,
DataSift needs to make a number of decisions, including:

• How many human workers should be asked for reformu-
lated keyword search queries? How many keyword search
queries should each worker provide?

• How many items should be retrieved initially for each re-
formulation? How many should be retrieved later (once
we identify which reformulations produce better results)?

• How do we decide if a reformulation is better than a dif-
ferent one?

• How many human workers should be used to filter each
product for relevance to Q?

• How should the cost be divided between the steps?

Our current implementation of DataSift is powerful
enough to be configured to match all of the configurations
we have described, plus others. We achieve this flexibility
by structuring the toolkit as six plug-and-play components
that can be assembled in various ways, described in detail
in the next section. In this paper, we present and evaluate a
number of alternative configurations for DataSift, and iden-
tify good choices for the parameters in each configuration.

To the best of our knowledge, we are the first in address-
ing the problem of designing a rich general-purpose search
toolkit augmented with the power of human computation.
By themselves, traditional information retrieval techniques
are insufficient for our human-assisted retrieval task. On
the other hand, existing crowd-powered systems, including
Soylent (Bernstein et al. 2010), Clowder (Dai, Mausam, and
Weld 2010), Turkit (Little et al. 2009), and CrowdPlan (Law
and Zhang 2011) do not address the problem of improving
information retrieval. Of these, perhaps the most similar is
the work on CrowdPlan (Law and Zhang 2011), where hu-
man workers assist in breaking down a high level goal into
smaller ones, and the operations performed by the human
workers are similar to those proposed here.

Unlike social or collaborative search, e.g., (Horowitz and
Kamvar 2010; Adamic et al. 2008; Morris and Teevan 2009;
Morris, Teevan, and Panovich 2010), we do not leverage the
social network, and the system moderates the interaction us-
ing reformulations and filtering to ensure high quality re-
sults. DataSift is also related to meta-search engines (Sel-
berg and Etzioni 1997), wherein users specify what they are
looking for in generic terms, and the meta-search engine
would reformat the search query to meet the specifications
of individual search engines. Here, too, users are free to

113

specify the query in whatever way they want, and DataSift
uses many crowd workers to provide accurate results to the
user.

Here are the main contributions of the paper:

1. We describe a number of plug-and-play components —
automated and crowdsourced — that form the core of
DataSift (Section 2).

2. We identify a number of configurations for DataSift using
the plug-and-play components (Section 3).

3. We present the current implementation of DataSift,
which supports all the described configurations (Sec-
tion 4).

4. We perform a performance evaluation of these configura-
tions. We show that configurations that use the crowd can
yield 100% more precision than traditional retrieval ap-
proaches, and those that ask the crowd for reformulations
can improve precision by an additional 100% (Section 5).

5. We optimize the selected configurations, identifying good
values for individual parameters (Section 6).

2 Preliminaries and Components
A user enters a query Q into DataSift, which could contain
textual and non-textual fragments. Fully textual queries or
fully textual reformulations are denoted with the upper case
letter T (denoting text). The corpus of items I (products,
images, or videos) over which DataSift is implemented has
a keyword search API: it accepts a textual keyword search
query and a number k, and returns the top k items (products,
images, or videos) along with their ranks. The crowdsourc-
ing marketplace M has the following interface: it accepts a
task and a number h. It asks h distinct human workers to
attempt the task independently, and then returns the h an-
swers to DataSift. DataSift makes repeated calls to both I

and M , and then eventually provides the user with n items
in ranked order. (In fact, DataSift is flexible enough to pro-
vide the user with a dynamically updated ranking of items
that is kept up-to-date as DataSift evaluates the items.)

Next, we describe the components internal to DataSift.
Components are categorized into: (1) Crowdsourced Com-
ponents: components that interact with the crowdsourc-
ing marketplace, and (2) Automated Components: compo-
nents that function independent of the crowdsourcing mar-
ketplace. The function signatures of the components are pro-
vided in Table 1. Note that the query Q and the corpus of
items I are implicit input arguments in the signatures for all
these components.

2.1 Crowdsourced Components
• (G) Gather Component: h, s ! {T}

The Gather Component G asks human workers for fully
textual reformulations for Q, providing DataSift a mech-
anism to retrieve items (using the keyword search API)
for Q (recall that Q may contain non-textual fragments).
Given a query Q, G uses the marketplace M to ask h

human workers for s distinct textual reformulations of Q
each, giving a total of h ⇥ s textual queries. Specifically,

human workers are asked to respond to the following task:
“Please provide s reformulated keyword search queries
for the following query:” Q. The human workers are also
able to run the reformulated query on the corpus I to see
if the results they get are desirable.

• (F) Filter Component:
{(I, T, rank)}, t ! {(I, T, p, n)}
The input to the Filter Component F is a set of items. We
will ignore T and rank for now, these parameters are not
used by F. For each item i in the set of items, F deter-
mines whether the item satisfies the query Q or not. The
component does this by asking human workers to respond
to the following task: “Does the item i satisfy query Q:
(Yes/No)”. Since human workers may be unreliable, mul-
tiple workers may be asked to respond to the same task on
the same item i. The number of humans asked is deter-
mined by designing a filtering strategy (Parameswaran et
al. 2012) using the overall accuracy threshold t (set by the
application designer). The number of positive responses
for each item is denoted p, while the number of negative
responses is denoted n.
In the input, each item i is annotated with T and rank:
T is the textual query T whose keyword search result set
item i is a part of. rank is the rank of i in the keyword
search results for T . Both these annotations are provided
as part of the output of the keyword search API call – see
component R). T, rank are part of the input for compat-
ibility with the calling component, and T is part of the
output for compatibility with the called component.

2.2 Automated Components
• (R) Retrieve Component:
{T} | {(T,w)}, k ! {(I, T, rank)}
The Retrieve Component R uses the keyword search API
to retrieve items for multiple textual queries T from the
corpus. For each textual query T , items are retrieved
along with their keyword search result ranks for T (as as-
signed in the output of the keyword search API call).
Specifically, given a set of textual queries Ti along with
weights wi, R retrieves k items in total matching the set
of queries in proportion to their weights, using the key-
word search API. In other words, for query Ti, the top
k ⇥ wiP

j
wj

items are retrieved along with their ranks for

query Ti. If the weights are not provided, they are all as-
sumed to be 1. We ignore for now the issue of duplicate
items arising from different textual queries; if duplicate
items arise, we simply retrieve additional items from each
Ti in proportion to wi to make up for the duplicate items.

• (S) Sort Component:
The Sort Component S has two implementations, depend-
ing on which component it is preceded by. Overall, S
merges rankings, providing a rank for every item based
on how well it addresses Q.
{(I, T, p, n)} ! {(I, rank)}
If preceded by the F component, then S receives as input
items along with their textual query T , as well as p and n,

114

the number of Yes and No votes for the item. Component
S returns a rank for every item based on the difference
between p and n (higher (p � n) gets a higher rank); ties
are broken arbitrarily. The input argument corresponding
to the textual query T that generated the item is ignored.
{I, T, rank} ! {(I, rank)}
If preceded by the R component, then S receives as input
items along with their textual query T , as well as rank,
the rank of i in the result set of T . Component S sim-
ply ignores the input argument corresponding to T , and
merges the ranks; ties are broken arbitrarily. For example,
if (a, T1, 1), (b, T1, 2), (c, T2, 1), (d, T2, 2) form the input,
then one possible output is: (a, 1), (b, 3), (c, 2), (d, 4); yet
another one is: (a, 1), (b, 4), (c, 2), (d, 3).

• (W) Weighting Component:{(I, T, p, n)} ! {(T,w)}
For Iterative Gather-Filter (Section 1), the weighting com-
ponent is the component that actually evaluates reformu-
lations. The component always follows F, using the re-
sults from F to compute weights corresponding to how
good different reformulations are in producing items that
address Q.
Component W receives as input items from the Filter
Component F, annotated with p and n (the number of Yes
and No votes), and the textual query T that generated the
items. For each textual query T , given the output of the
filtering component F, the weighting component returns
a weight based on how useful the textual query is in an-
swering Q.
There are three variants of W that we consider: W1, W2,
and W3, corresponding to three different ways in which
weights wi are assigned to Ti. For describing these vari-
ants, for convenience, we introduce two new definitions
for the output of F: for a given item, if p > n, then we say
that the item belongs to the pass set, while if n � p, then
we say that the item belongs to the fail set.
– W1: For each textual reformulation Ti, we set wi to

be the number of items (from that reformulation) in the
pass set.

– W2: Unlike W1, which accords non-zero weight to ev-
ery reformulation with items in the pass set, W2, prefer-
entially weights only the best reformulation(s). Let the
size of the pass set for Ti be xi, and let X = maxi(xi).
For each reformulation Ti that has xi = X , we assign
the weight wi = 1. Otherwise, we assign the weight
wi = 0.

– W3: Each reformulation is weighted on how much
agreement it has with other reformulations based on the
results of F. For instance, if reformulation T1 has items
{a, b}, T2 has {b, c}, and T3 has {a, d} as ranks 1 and 2
respectively, then T1 is better than T2 and T3 since both
items a and b have support from other reformulations.
For the i-th reformulation, we set wi to be the sum,
across all items (from that reformulation), the number
of other reformulations that have that particular item.
Thus: (I stands for the indicator function)

wi =
X

8a from Ti

X

j 6=i

I(a is in Tj’s results),

Signature Followed by

G h, s ! {T} R
F {(I, T, rank)}, t ! {(I, T, p, n)} W, S

R {T} | {(T,w)}, k ! {(I, T, rank)} F, S
S {(I, T, p, n)} | {I, T, rank} ! {(I, rank)} —
W {(I, T, p, n)} ! {(T,w)} R

Table 1: Components, their function signatures (Q and I are im-
plicit input parameters in all of these functions), and other compo-
nents that can follow them.

3 Configurations
We now describe the DataSift configurations that we evalu-
ate in this paper. The goal of each configuration is to retrieve
n items in ranked order matching query Q. Some configura-
tions may retrieve n

0 � n, and return the top n items.
Given that the components described in the previous sec-

tion are plug-and-play, there is a large number of configu-
rations that we could come up with; however, we focus our
attention on a few that we have found are the most interest-
ing and important:

• RS: (Only possible if Q is textual) This configuration
refers to the traditional information retrieval approach:
component R uses the query Q to directly retrieve the
top n items with ranks using the keyword search API. In
this case, component S does nothing, simply returning the
same items along with the ranks.

• RFS: (Only possible if Q is textual) From the n

0 � n

items retrieved by component R, component F uses hu-
mans to better identify which items are actually relevant
to the query Q. Component S then uses the output of F
to sort the items in the order of the difference in the num-
ber of Yes and No votes for an item as obtained by F, and
return n items along with their ranks.

• GRS: (Gather from Section 1) Component G gathers tex-
tual reformulations for Q, asking h human workers for
s reformulations each. Subsequently, R retrieves the top
n/(hs) items along with ranks for each of these h⇥ s re-
formulations. Then, S sorts the items by simply merging
the ranks across the h ⇥ s reformulations, with ties be-
ing broken arbitrarily. Items are returned along with their
ranks.

• GRFS: (Gather-Filter from Section 1) Component G
gathers h⇥ s textual reformulations, after which compo-
nent R retrieves n0

/(hs) items with ranks for each of the
reformulations. Then, component F filters the n0 items us-
ing human workers. Subsequently, the n0 items are sorted
by component S based on the difference in the number of
Yes and No votes for each item, and the top n are returned
along with their ranks; ties are broken arbitrarily (the in-
put argument corresponding to the textual reformulation
is ignored).

• GRFWiRFS for i = 1, 2, 3: (Iterative Gather-Filter from
Section 1) Component G gathers h ⇥ s textual reformu-
lations, after which component R retrieves � items from
each of the reformulations (� is a small sample of results
from each reformulation, typically much smaller than n).
Component F then filters the set of � ⇥ h ⇥ s items. The

115

output of F provides us with an initial estimate as to how
useful each reformulation is in answering the query Q.
Subsequently, component W (either W1, W2, or W3)
computes a weight for each of the textual reformulations
based on the results from F. These weights are then used
by component R to preferentially retrieve n

0 � � ⇥ h⇥ s

items in total across reformulations in proportion to the
weight. Component F filters the retrieved items once
again. Eventually, the component S sorts the items in the
order of the difference between the number of Yes and No
votes (ignoring the input argument corresponding to the
reformulation, and breaking ties arbitrarily), and returns
the items along with their ranks.

For now, we consider only GRFW1RFS (and not W2 or
W3), which we refer to as GRFWRFS. We will consider
other variants of W in Section 6.

4 Implementation
We provide a very brief overview of the DataSift implemen-
tation. Additional details about the implementation of indi-
vidual components can be found in the extended technical
report (Parameswaran et al. 2013).

DataSift is implemented in Python 2.7.3 using Django,
the popular web application development library. We use
Amazon’s Mechanical Turk (Mechanical Turk 2013) as our
marketplace M . We leverage the Boto library (Boto Web
Services Library 2013) to connect to Mechanical Turk, and
the Bootstrap library (Twitter Bootstrap 2013) for front-end
web templates. A complete trace of activity from previ-
ous queries on DataSift, along with the results, are stored
in a MySQL 5 database. The current version of DataSift
connects to four corpora: Google Images (Google Images
2013), YouTube Videos (Google Inc. 2013), Amazon Prod-
ucts (Amazon Inc. 2013b), and Shutterstock Images (Shut-
terstock Inc. 2013).

5 Initial Evaluation on Textual Queries
We perform an initial evaluation of the configurations de-
scribed in Section 3. Specifically, we assess how much ben-
efit we can get from using various crowd-powered configura-
tions over the traditional fully-automated retrieval approach
(RS). Since rich media queries are simply not supported by
traditional retrieval approaches, for our initial comparison,
we focus on fully textual queries. (We consider rich media
queries in the next section.)
Setup: We hand-crafted a set of 20 diverse textual queries
(some shown in Table 2). We executed these 20 queries
using each of four configurations RS, RFS, GRS, GR-
FWRFS on the Google Images corpus. For each of the
configurations, we set n0, i.e., the total number of items re-
trieved, to be 50. For both GRS and GRFWRFS, we used
h = w = 3 and for GRFWRFS, we used � = 3.
Evaluation: To evaluate the quality of the ranked results,
we measure the fraction of true positives in the top-n items,
i.e., the number of items in the top n satisfying Q divided by
n. Note that this quantity is precisely precision@n. To de-
termine the number of true positives, we manually inspected

Easy Queries (5)
funny photo of barack obama eating things
bill clinton waving to crowd
matrix digital rain
eiffel tower, paris
5 x 5 rubix cube

Hard Queries (5)
tool to clean laptop air vents
cat on computer keyboard with caption
handheld thing for finding directions
the windy city in winter, showing the bean
Mitt Romney, sad, US flag

Selected Others
funny photos of cats wearing hats, with captions
the steel city in snow
stanford computer science building
database textbook

Table 2: List of textual queries for initial evaluation

Figure 3: Precision curve

the results, carefully checking if each item returned satisfies
the query Q or not.
Basic Findings: Our results can be found in Figure 3. We
plot the fraction of true positives in the top-n result set for
each of the configurations, on varying the threshold n. As an
example, for threshold n = 30, GRS and RFS have preci-
sion 0.4 (i.e., 0.4 * 30 = 12 items satisfy Q on average from
the top 30), while RS has precision 0.35, and GRFWRFS
has precision 0.7, 100% higher than the precision of RS.
Therefore, sophisticated configurations combining the bene-
fits of the crowdsourced components F and G perform much
better than those with just one of those components, and per-
form significantly better than fully automated schemes.

Notice that the configuration RFS is better than GRS
for smaller n. Configuration RFS retrieves the same set of
items as RS, but the additional crowdsourced filter F com-
ponent ensures that the items are ranked by how well they
actually satisfy Q. Configuration GRS on the other hand,
gathers a number of reformulations, ensuring a diverse set
of retrieved items. However, the items may not be ranked
by how well they actually satisfy Q – the good items may in
fact be lower ranked. As a result, for smaller n, RFS does
better, but GRS does better for larger n.
Summary: Crowd-powered configurations RFS, GRS, and
GRFWRFS outperform RS. GRFWRFS clearly does the
best, with 50-200% higher precision than RS on average,
followed by GRS. RFS is better than GRS for smaller n

due to F, but GRS does better for larger n.
Query Difficulty: To study the impact of query difficulty

116

Figure 4: Precision curves for easy vs hard queries

Rich Queries (5)

buildings around <IMAGE: UC Berkeley’s Sather Tower>
device that reads from <IMAGE: Iomega 100MB Zip Disk>
where to have fun at <IMAGE: Infinity Pool at Marina Bay Sands hotel in
Singapore>
tool/device that allows me to do hand gestures such as in: <VIDEO: motion
sensing demonstration using fingers >
type of cable that connects to <IMAGE: USB B-Female socket of a printer>

Table 3: List of Rich Queries

on results, we ordered our queries based on the number of
true positive results in the top 10 results using the traditional
retrieval approach. We designated the top 5 and the bottom
5 queries as the easy and the hard queries respectively —
see Table 2 for the list of queries in each category. We then
plotted the fraction of true positives on varying n for each
category. We depict the results in Figure 4. The general
trend is consistent with Figure 3 except that for easy queries,
RFS and RS outperforms GRS. This somewhat counterin-
tuitive result makes sense because for easy queries, most of
the results from the traditional retrieval approach are already
good, and therefore it is more beneficial to use the filter com-
ponent rather than the gather component. In fact, the gather
component may actually hurt performance because the re-
formulations may actually be worse than the original query
Q. On the hard queries, GRFWRFS performs significantly
better than the other configurations, getting gains of up to
500% on precision for small n.
Summary: Crowd-powered configurations RFS and GR-
FWRFS outperform RS even when restricted to very hard
or easy queries. However, the benefits from using crowd-
powered configurations is more evident on the hard queries.

6 Rich Queries and Parameter Tuning
We now describe our results on running the sophisticated
configurations on rich media queries, and also describe our
experiments on choosing appropriate values for parameters
for the sophisticated configurations. For both these objec-
tives, we generated a test data-set in the following manner:
Data Collection: We constructed 10 queries: 5 (new) fully
textual queries and 5 queries containing non-textual frag-
ments — that we call rich queries. (See Table 3 for the list of
rich queries.) For each query, we gathered 25 reformulations
(5 human workers ⇥ 5 reformulations per worker), then re-
trieved a large (> 100) number of items for each reformula-

tion, and filtered all the items retrieved using crowdsourced
filter component F. This process actually provided us with
enough data to simulate executions of all configurations (de-
scribed in Section 3) on any parameters h, s 5, n

0 100.
Moreover, by randomizing the order of human participation
in G, we can get multiple executions for a fixed configura-
tion with fixed parameters. That is, if we have h = 3, then
we get

�5
3

�
simulated executions by allowing G to get refor-

mulations from any 3 workers out of 5.

Figure 5: Curves for: (a) textual queries (b) rich queries
Monetary Costs: So far, while we have compared the con-
figurations against each other on precision, these configu-
rations actually have different costs. We tabulate the costs
for each configuration in symbolic form in Table 4. In ad-
dition to precision, we will use the costs described above to
compare configurations in subsequent experiments.
Basic Findings: We first study the differences in perfor-
mance of DataSift configurations on rich queries and on
textual queries. We set h = s = 3, � = 1, and simulated
the execution of configurations GRS (for n0

= 50), GRFS
(for n

0
= 50, 100), GRFWRFS (for n

0
= 50, 100). We

plot the the average fraction of true positives in the top n,
divided by n, on varying n from 1 � 50, for textual queries
in Figure 5(a) and for rich queries in Figure 5(b). As can
be seen in the two figures, the relative positions of the five
configurations are similar in both figures.

We focus on the rich queries first (Figure 5(b)). As can be
seen in the figure, for n0

= 50, GRFWRFS has higher pre-
cision than GRFS (with the differences becoming more pro-
nounced for larger n), and much higher precision than GRS.
For instance, for n = 50, GRFWRFS has 15% higher pre-
cision than GRS and GRFS — the latter two converge at
n = 50 because the same set of n0

= 50 items are retrieved
in both configurations. For n

0
= 100, GRFWRFS has

higher precision than GRFS and GRS, as well as the plots
for n0

= 50. For instance, for n = 50, GRFWRFS with
n

0
= 100 has close to 100% higher precision than GRS,

and close to 50% higher precision than GRFWRFS with
n

0
= 50. This is not surprising because retrieving more

items and filtering them enables us to have a better shot at
finding items that satisfy Q (along with ordering them such
that these items are early on in the result set). We study the
behavior relative to n

0 in more detail later on. GRS con-
tinues to perform similarly independent of the items n

0 re-
trieved since only the top n items are considered, and since
n

0 � n.

117

Configuration Cost

RS Free
RFS n0 ⇥ ⌧ ⇥ C1

GRS h ⇥ s ⇥ C2

GRFS h ⇥ s ⇥ C2 + n0 ⇥ ⌧ ⇥ C1

GRFWRFS h ⇥ s ⇥ C2 + n0 ⇥ ⌧ ⇥ C1

Table 4: Breakdown of monetary costs associated with each con-
figuration. ⌧ is the expected number of human workers used to
filter the item. C

1

is the cost of asking for a reformulation and C
2

is the cost of getting a human worker to filter a single item. Typical
values are C

1

= $0.003 (for images), C
2

= $0.10, ⌧ = 4.

Recall that GRFWRFS has the same cost as GRFS (Ta-
ble 4). Thus, GRFWRFS strictly dominates GRFS in terms
of both cost and precision. On the other hand, GRFWRFS
may have higher cost than GRS, but has higher precision.

We now move back to comparing text and rich queries.
As can be seen in the two figures, the gains in precision
for textual queries from using more sophisticated configura-
tions are smaller than the gains for rich queries. Moreover,
the overall precision for the rich queries (for similar config-
urations) is on average much lower than that for text-only
queries; not surprising given that the rich queries require
deeper semantic understanding and more domain expertise.
Summary: On average, the relative performance of DataSift
configurations is similar for both textual and rich queries,
with lower precision overall for rich queries, but higher
gains in precision on using sophisticated configurations. For
both textual and rich queries, on fixing the total number of
items retrieved n

0 and the number of reformulations, GR-
FWRFS does slightly better than GRFS, and does signif-
icantly better than GRS. For individual queries, the gains
from using GRFWRFS may be even higher. On increasing
the number of items retrieved, GRS continues to performs
similarly, while GRFS and GRFWRFS both do even better.
Optimizing GRFWRFS: Previously, we have found that of
the configurations considered so far, GRFWRFS provides
the best precision. We now focus our attention on optimiz-
ing the parameters of GRFWRFS for even better precision.
Specifically, we try to answer the following questions:
1. How do the variations of Wi, i = 1, 2, 3 perform against

each other?
2. How do the number of human workers (h) and number of

reformulations per worker (s) affect the results?
3. How should the sample size � (used to evaluate the refor-

mulations) be determined?
4. How does the number of target items n0 affect precision?

Questions 1 and 2: Varying h, s and Varying W1�3:
We simulate the five configurations: GRS, GRFS,
GRFW1�3RFS on the 10 textual and rich queries, for
n

0
= 100, � = 3. (Similar results are seen for other pa-

rameter settings.) We depict the fraction of true positives in
the top-50 on varying h, s, as a heat map in Figure 6. In
general, GRFW1�3RFS has a higher number of true posi-
tives than GRFS, and GRFS has a higher number of true
positives than GRS. We see a clear trend across rows and
across columns: fixing one dimension while increasing the

Figure 6: Heat map of no. of true positives for the top 50 items.
Each configuration uses � = 3, n0 = 100. The 3 white-colored
cells on the top left in each grid are masked due to insufficient
data. Note: view this figure in color!

other increases the fraction of true positive results. For the 3
GRFWiRFS configurations, having 1 worker with 5 refor-
mulations outperforms 5 workers with 1 reformulation each;
additionally, recreating the benefits of two workers with four
reformulations each (a total of 8) requires at least five work-
ers with three or more reformulations each (a total of 15).
These results indicate that forcing more reformulations from
a human workers prompts them to think deeper about Q, and
provide more useful reformulations overall. We see dimin-
ishing returns beyond three workers providing five reformu-
lations each.
Summary: W1 performs marginally better than W2 and W3.
The precision improves as we increase h and s for all con-
figurations, however having fewer human workers providing
more reformulations each is better than more human work-
ers providing fewer reformulations each.
Question 3: Varying � (size of retrieved sample) in
GRFW1�3RFS: We fixed n

0
= 100, and plotted the num-

ber of true positives in the top 50 items as a function of the
number of the number of items sampled �. The results are
displayed for h = s = 5 in Figure 7(a), and for h = s = 3

in Figure 7(b).
We focus first on h = s = 5. Since the total num-

ber of items retrieved n

0 is fixed, there is a tradeoff be-
tween exploration and exploitation: If � = 1, then a total
of h⇥ s⇥ � = 25 items are sampled and evaluated, leaving

118

(a) (b) (c)

Figure 7: (a) Effect of varying sampled items � in GRFW
1�3

RFS. Using n0 = 100, n = 100, h = s = 5 (b) Effect of varying sampled
items � in GRFW

1�3

RFS. Using n0 = 100, n = 100, h = s = 3. (c) Effect of varying target number of items n0

us n0 � 25 = 75 items for the second phase of retrieval. On
the other hand, if � = 3, then a total of h⇥ s⇥ � = 75 items
are sampled and evaluated — giving us a better estimate of
which reformulations are good, however, we are left with
only n

0 � 75 = 25 items to retrieve from the good reformu-
lations. With � = 1, we do very little exploration, and have
more budget for exploitation, while with � = 3, we do a lot
of exploration, and so, have less budget for exploitation.

Figure 7(a) depicts the effects of exploration versus ex-
ploitation: the number of true positives for all three plots
increases as � is increased, and then decreases as � goes be-
yond a certain value. When � = 0, the configurations are
identical to one another and have the same effect as GRFS.
Increasing � by 1 gives a ⇡15% improvement in precision
of results with the exception of GRFW3RFS. GRFW3RFS
(which uses a weighting component based on the agreement
across reformulations) shows a dome-shaped curve which
peaks at 1-3 items. As � is increased further, the number of
true positives decreases as n0 is wasted on exploration rather
than exploitation.

The results in Figure 7(b) are similar, however,
GRFW2RFS’s trend is erratic. This is because taking the
single best-looking reformulation may not be a robust strat-
egy when using smaller h and s. For � = 0 and 1, for both
figures, the number of true positives for GRFW2RFS is
similar to GRFW1RFS. This is expected since the weight-
ing approach used is similar in practice for the two corner
cases.
Summary: On fixing the total number of items retrieved n

0,
retrieving and filtering a sample of � = 1 items from each
reformulated query is adequate to find the best queries from
which to retrieve additional items.
Question 4: Varying Target Number of Items n

0: Fig-
ure 7(c) shows the effect of varying the number of retrieved
items n0 on the number of true positives in the top 50 items.
We use h = s = 4 for each configuration, and � = 3 for
GRFWRFS. As is evident from the plot, GRS is unable to
effectively utilize the additional items retrieved when n

0 is
increased. On the other hand, we see a positive trend with
the other two configurations, with diminishing returns as n0

increases. Note that for GRFS and GRFWRFS cost is di-
rectly proportional to n

0 (ignoring a fixed cost of gathering
reformulations) — see Table 4 — so the figure still holds
true if we replace the horizontal axis with cost.
Summary: The fraction of true positives increases as n0 in-
creases, with diminishing returns.

7 Conclusion
We presented DataSift, a crowd-powered search toolkit that
can be instrumented easily over traditional search engines
on any corpora. DataSift is targeted at queries that are hard
for fully automated systems to deal with: rich, long, or am-
biguous queries, or semantically-rich queries on non-textual
corpora. We presented a variety of configurations for this
toolkit, and experimentally demonstrated that they produce
accurate results — with gains in precision of 100-150% —
for textual and non-textual queries in comparison with tradi-
tional retrieval schemes. We identified that the best config-
uration is GRFW1RFS, and identified appropriate choices
for its parameters.

As future work, we plan to incorporate user intervention
during execution as feedback to the DataSift toolkit, en-
abling a more adaptive execution strategy. In addition, while
we already enable users to view partial results as they are
computed, we plan to focus on optimizing DataSift to gen-
erate partial results. Finally, we plan to investigate the ben-
efits of adding a crowdsourced ranking component in place
of the filtering component.

Acknowledgements
We thank Akash Das Sarma for help with the implementa-
tion, and Alkis Polyzotis for initial discussions.

References
Adamic, L. A.; Zhang, J.; Bakshy, E.; and Ackerman, M. S.
2008. Knowledge sharing and yahoo answers: everyone knows
something. In WWW.
Amazon Inc. 2013a. http://www.amazon.com.
Amazon Inc. 2013b. http://www.amazon.com.
Bernstein, M. S.; Little, G.; Miller, R. C.; Hartmann, B.; Ack-
erman, M. S.; Karger, D. R.; Crowell, D.; and Panovich, K.
2010. Soylent: a word processor with a crowd inside. In UIST,
313–322.
Boto Web Services Library. 2013.
https://github.com/boto/boto.
Craigslist Apartment Listings. 2013. http://craigslist.org.
Dai, P.; Mausam; and Weld, D. S. 2010. Decision-theoretic
control of crowd-sourced workflows. In AAAI.
Franklin, M. J.; Kossmann, D.; Kraska, T.; Ramesh, S.; and
Xin, R. 2011. Crowddb: answering queries with crowdsourc-
ing. In SIGMOD.

119

Google Images. 2013. http://images.google.com.
Google Inc. 2013. http://www.youtube.com.
Horowitz, D., and Kamvar, S. D. 2010. The anatomy of a
large-scale social search engine. In WWW.
Law, E., and Zhang, H. 2011. Towards large-scale collabora-
tive planning: Answering high-level search queries using hu-
man computation. In In AAAI.
Little, G.; Chilton, L. B.; Goldman, M.; and Miller, R. C. 2009.
Turkit: tools for iterative tasks on mechanical turk. In HCOMP.
Mechanical Turk. 2013. http://www.mturk.com.
MOOC on Searching the Web. 2013. Google Inc.
Morris, M. R., and Teevan, J. 2009. Collaborative web search:
Who, what, where, when, and why. Synthesis Lectures on In-
formation Concepts, Retrieval, and Services 1(1):1–99.
Morris, M. R.; Teevan, J.; and Panovich, K. 2010. What do
people ask their social networks, and why?: a survey study of
status message q-a behavior. In CHI.

Parameswaran, A.; Garcia-Molina, H.; Park, H.; Polyzotis, N.;
Ramesh, A.; and Widom, J. 2012. Crowdscreen: Algorithms
for filtering data with humans. In SIGMOD.
Parameswaran, A.; Teh, M. H.; Garcia-Molina, H.; and Widom,
J. 2013. Datasift: An expressive and accurate crowd-powered
search toolkit. In Infolab Technical Report.
Park, H.; Pang, H.; Parameswaran, A.; Garcia-Molina, H.;
Polyzotis, N.; and Widom, J. 2012. Deco: A system for declar-
ative crowdsourcing. In VLDB.
Selberg, E., and Etzioni, O. 1997. The metacrawler architecture
for resource aggregation on the web. IEEE Expert 12(1):11–14.
Shutterstock Inc. 2013. http://www.shutterstock.com.
Twitter Bootstrap. 2013. twitter.github.com/bootstrap/.
Zhang, H.; Law, E.; Miller, R.; Gajos, K.; Parkes, D. C.; and
Horvitz, E. 2012. Human computation tasks with global con-
straints. In CHI, 217–226.

120

