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Abstract

The power of human computation is founded on the
capabilities of humans to process qualitative informa-
tion in a manner that is hard to reproduce with a com-
puter. However, all machine learning algorithms rely on
mathematical operations, such as sums, averages, least
squares etc. that are less suitable for human computa-
tion. This paper is an effort to combine these two as-
pects of data processing. We consider the problem of
computing a centroid of a data set, a key component
in many data-analysis applications such as clustering,
using a very simple human intelligence task (HIT). In
this task the workers must choose the outlier from a
set of three items. After presenting a number of such
triplets to the workers, the item chosen the least num-
ber of times as the outlier is selected as the centroid. We
provide a proof that the centroid determined by this pro-
cedure is equal the mean of a univariate normal distribu-
tion. Furthermore, as a demonstration of the viability of
our method, we implement a human computation based
variant of the k-means clustering algorithm. We present
experiments where the proposed method is used to find
an “average” image in a collection, and cluster images
to semantic categories.

Introduction
Finding a representative item, or a centroid, from a set D
of items is an important operation in many computational
learning and data-analysis tasks. In the simplest case the
items are numbers, and we can use any standard measure for
central tendency, such as the mean or the median. Moreover,
depending on the method used, the chosen centroid may ei-
ther be some particular x ∈ D, or it can be an item from the
same family as those in D. In general, a common definition
of a representative item can be given in terms of a distance
function d between items in D. The item in D that is “close”
to every other item in D according to the function d, is in
many cases a natural choice as the representative item.

In this paper we study the problem of finding the centroid
of a large setD of items in a distributed human computation
system using simple human intelligence tasks (HITs). The
evident challenge is that all straightforward implementations
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Figure 1: Example of a triplet task with images. The middle
photograph is different in terms of the content of the images,
as the scene it portrays (beach) is different from the two oth-
ers (mountains).

of the centroid measures listed above require either sort-
ing, nontrivial arithmetic (such as computing sums and divi-
sions), or assessments of the absolute distance between two
items. Furthermore, it can be assumed that no explicit nu-
meric feature space exists for our items to reside in. Instead,
an implicit distance is induced by the judgements of the hu-
man workers. As a solution to these challenges we present
a fully parallelized centroid computation method that uses
an intuitive and simple HIT as its basic building block. We
overcome the challenges listed above by avoiding the usage
of absolute measures of distance altogether, hence solving
the problem in a robust manner that is well suited for human
computation.

The solution we propose is based on the following simple
task, called a triplet task:

”Out of three shown items pick one that appears to be
different from the two others.”

Figure 1 illustrates landscape photographs as example items
for such a task. Two of the photos show mountains (albeit
of different kinds), while the middle photo is a beach scene,
clearly deviating by theme from the two mountain pictures.

The resulting algorithm, which we call CROWD-MEDIAN,
computes a centroid using such triplet tasks as follows:
1. Pick a large enough number of triplets (subsets of size

three) from D.
2. Let human computers solve the corresponding triplet

tasks.
3. For each item in D, compute a penalty score defined as
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the number of times the item was chosen to be ”differ-
ent”.

4. Return the item having the lowest penalty score (break-
ing ties at random).

As we will show empirically in this paper, this algorithm
will produce a centroid that is either the same, or very close
to the one that minimizes the sum of distances to every other
item in D. We also provide a formal proof that when the
method is applied to the univariate normal distribution with
mean µ, the produced centroid is equal to µ when all possi-
ble triplets are considered.

As a demonstration of the viability of the CROWD-
MEDIAN algorithm, we implement the k-means clustering
algorithm using human computation. We use two types of
HITs: a simple assignment HIT for the k-means’ assignment
step and the triplet task described above for the update step.
To the best of our knowledge, this is the first attempt at im-
plementing k-means in a full-fledged human computation
setting.

Summary of contributions
• We define the notion of a triplet centroid, and show that

it coincides with the mean of any univariate normal dis-
tribution.

• We propose the CROWD-MEDIAN algorithm that finds
good approximations to the triplet centroid using a sim-
ple and easy to understand HIT.

• We show using simulations that the triplet centroid is a
good approximation to the point that minimizes the sum
of distances to other points.

• We show that the k-means algorithm can be imple-
mented in a human computation setting by building upon
CROWD-MEDIAN.

We continue with an overview of related work, and
present some design guidelines that we followed when de-
signing the CROWD-MEDIAN algorithm. Then we give a for-
mal definition of the triplet centroid, analyse its properties,
and describe the CROWD-MEDIAN algorithm in detail. Fi-
nally, we discuss experiments: first we present simulation
results, followed by descriptions of two real human compu-
tation experiments.

Related Work
We discuss existing work divided to two broad categories,
with the second being more related to this paper.

Human computation systems: Research on human com-
putation systems aims at finding general high-level abstrac-
tions to provide more standardized interfaces for crowd-
sourcing. Some approaches, such as CrowdDB (Franklin et
al. 2011), and Deco (Park et al. 2012; Parameswaran et al.
2012b), combine relational database technology with human
computation. Others provide support for human computa-
tion at the programming language level (Minder and Bern-
stein 2011; Barowy et al. 2012). CrowdForge is a frame-
work for executing complex work (rather than very simple
HITs) in a crowdsourcing environment (Kittur et al. 2011).
Our work is related to this area of research in the sense that
we aim at solving a simple and generic problem that is not

bound to a particular application. Our algorithm could be
included as a built-in function to any human computation
system.

Human computation algorithms: From an algorithmic
point of view the main question in human computation con-
cerns how a particular problem can be phrased in terms of
HITs, and how the answers to these are combined to produce
the desired solution. Human computation algorithms for ele-
mentary problems such as filtering a data set (Parameswaran
et al. 2012a), finding the maximum item in a data set
(Parameswaran et al. 2012a; Venetis et al. 2012), search in
a graph (Parameswaran et al. 2011), enumerating all items
that satisfy some criterion (Trushkowsky et al. 2013), and
building taxonomies (Chilton et al. 2013) have been consid-
ered. This paper falls in this category as well, since our main
aim is to design and analyze a novel human computation al-
gorithm for finding the centroid of a data set.

A HIT very similar to our triplet task has also been used
by others to find low-dimensional embeddings of a data set
(Tamuz et al. 2011; van der Maaten and Weinberger 2012).
However, the precise formulation of the HIT as given in
those papers differs from ours in a subtle but important way.
They fix one of the items as a reference point, and ask the
worker to choose from the two remaining items the one that
is more similar to the reference item. Our version of the HIT
uses no reference item, and the worker is asked to identify
one of the items in the triplet as an outlier. Both approaches
produce the same kind of output, but from the point of view
of the workers the tasks differ slightly.

Finally, a very related algorithmic problem is that of clus-
tering a given set of items to homogenous groups, a funda-
mental operation in exploratory data-analysis. Algorithms
for crowdclustering (Gomes et al. 2011; Yi et al. 2012a;
2012b) generally use human computation to assess the sim-
ilarity between the items being clustered. While our main
contribution is about centroid computation, we also apply
these results to implement the k-means clustering algorithm
using human computation.

Design Principles
A centroid is naturally defined in terms of a distance func-
tion, but assessing the absolute distance between two items
is very difficult for humans in most cases. We also want to
avoid phrasing the task in a way that the answer must be
chosen from some arbitrary distance scale. Rather, we for-
mulate the task so that finding the answer involves only rel-
ative judgements of distance.

In addition to this, our definition aims to satisfy the fol-
lowing technical requirements:

1. Correct: The centroid produced by the method should be
as close as possible to a centroid given by a standard ap-
proach (such as the mean). In general our definition is not
in a mathematical sense equal to any standard definition
of a centroid. However, we show that it is in fact equal
to the mean if the underlying distribution is the univari-
ate normal distribution. We also show empirically that for
high-dimensional distributions the centroid computed us-
ing CROWD-MEDIAN is almost always the same as the one
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found by the distance minimization approach.

2. Scalable: The complexity of a single HIT should not de-
pend on the size of D. A very simple HIT for determin-
ing the centroid would be to show the worker all items
in D and ask to select the one that the user thinks is the
most representative. Clearly such a method is not scal-
able, as the task becomes very difficult when D contains,
say, hundreds or thousands of items. In our approach, the
complexity of each HIT (in terms of the number of items
shown to the user) is constant, that is, completely inde-
pendent of the size of D.

3. Parallelizable: The HITs should be as independent of
each other as possible, because this implies that all re-
quired HITs can be instantiated at the beginning, and be
each handled by a different worker. If an arbitrary large
number of HITs can be used, our approach is in this sense
fully parallelizable.

4. Economical: The number of HITs required to obtain a
useful solution should be linear in the size ofD, or at most
O(|D| log |D|). We show empirically that our method can
find good solutions using only a small number of HITs (in
relation to the size of D), but we must give up a little in
the ability to parallelize the computation.

The above requirements are in no way particular to our prob-
lem, but are relevant to any human computation task, and
may provide a useful approach to assess human computa-
tion algorithms in general.

The Crowd-Median Algorithm
We continue with a formal description of the CROWD-
MEDIAN algorithm and its analysis. Let D denote a set of
items. In this paper we mainly assume that D contains pho-
tographs, but our method is applicable to any items that can
be easily perceived by humans, such as text, video or sound.
Let d be a distance function between items in D. Our objec-
tive is to find the x ∈ D that is a centroid of D in terms of d,
commonly defined as the x ∈ D that minimizes the sum

D(x) =
∑
u∈D

d(x, u). (1)

However, in a human computation system we cannot assume
that d is defined explicitly. Rather, we say that the function
d is implicitly induced in the minds of the workers, who can
make decisions about the similarity of items in D on the
basis of d, without having to give absolute values of d. Our
main technical challenge is thus to approximate Equation 1
using only relative judgments of distance.

The Triplet Centroid
Next we define a novel notion of a centroid of a data set D
that is suitable for human computation. Let T denote the set
of all triplets ofD, that is, T = {T ⊂ D | |T | = 3}. For any
x ∈ D, let Tx ⊂ T denote those triplets to which x belongs
to: Tx = {T ∈ T | x ∈ T}. We say that x is an outlier in
the triplet T = (x, u, v) ∈ Tx, whenever the distance from

x to both u and v is larger than the distance between u and
v. More formally, we define the predicate

Ω(x | T ) = I{d(x, u) > d(u, v)} I{d(x, v) > d(u, v)},
where I{·} is the indicator function. Clearly the predicate
Ω(x | T ) can be evaluated using only relative statements of
distances, making it easy for humans to solve.

We continue by showing how a centroid can be defined in
terms of Ω(x | T ). The exact triplet score S(x) of an item
x ∈ D is equal to the number of triplets in Tx where the item
x is the outlier, defined as

S(x) =
∑
T∈Tx

Ω(x | T ). (2)

Definition 1. The exact triplet centroid ct of a data set D is
defined as

ct = argminx∈D S(x).

To find ct we must compute the exact S(x) for every x ∈
D. This can be done by considering every T ∈ T , and for
each T finding the x that satisfies Ω(x | T ). This is precisely
the triplet task that we outlined in the introduction:
Definition 2. Triplet task: Given the triplet T ∈ T , find the
x ∈ T that satisfies Ω(x | T ).

Computing the exact triplet centroid requires to solve(|D|
3

)
triplet tasks. This is infeasible in a real human com-

putation system unless D is very small. Later we show how
to find an approximate triplet centroid using only a relatively
small number of HITs.

Analysis of the Exact Triplet Centroid
The main result of this section is that for the univariate nor-
mal distribution the exact triplet centroid coincides with the
mean. This makes it a well-founded choice of a centroid.

First, observe that the exact triplet score has a simple
probabilistic interpretation. For every x ∈ D we have

Pr
T∼Tx

[Ω(x | T ) = 1] =
S(x)(|D|−1

2

) ,
which means that S(x) is proportional to the probability of
x being the outlier in a randomly chosen triplet T from Tx.
(In the following, we omit the subscript T ∼ Tx.) The above
equality implies that the x ∈ D that minimizes the outlier
probability also minimizes S(x). While S(x) is defined in
terms of a finite data setD, the probability Pr[Ω(x | T ) = 1]
is meaningful for continuous distributions as well.

Next we derive an analytic expression for the probabil-
ity q(x) of a fixed x being an outlier when u and v are
drawn from an arbitrary univariate distribution D over the
set of reals R with density function p. First fix both x
and u, and draw v from D. Observe that x is an outlier
in the triplet (x, u, v) if v belongs either in the interval[
2u− x, x+u2

]
for x > u, or

[
x+u
2 , 2u− x

]
for x <

u. Otherwise either u or v will become the outlier. Because
v is drawn fromD, the probability of x becoming the outlier
given a fixed u can be expressed as

Pr
v∼D

[Ω(x | (x, u, v)) = 1] =


∫ x+u

2

i=2u−x p(i) di, x > u,∫ 2u−x
i= x+u

2
p(i) di, x < u.
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By marginalization over u (also drawn from the distribution
D) the probability q(x) becomes

q(x) =

∫ x

u=−∞
p(u)

∫ x+u
2

i=2u−x
p(i) di du

+

∫ ∞
u=x

p(u)

∫ 2u−x

i= x+u
2

p(i) di du. (3)

The above equation holds for any univariate D.
We continue by showing that for distributions that are

symmetric around the median c the function q(x) has a sta-
tionary point at x = c. Recall that the median c satisfies∫ c
−∞ p(x) dx = 1

2 .

Lemma 1. Let p denote a density function with median c so
that p(c−i) = p(c+i) for all i. Define q(x) as in Equation 3.
We have q′(c) = 0.

Proof. The derivative of q is equal to

q′(x) =

∫ x

u=−∞
f(u, x) du−

∫ ∞
u=x

f(u, x) du, (4)

where

f(u, x) = p(u)

(
1

2
p(
x+ u

2
) + p(2u− x)

)
. (5)

To show that q′(c) = 0 it is enough to argue that the integrals
in Eq. 4 cancel each other out if f(u, c) is symmetric around
c, that is, if f(c − i, c) = f(c + i, c) holds for all i. This is
easy to show since p is symmetric around c.

The existence of a stationary point at c is only a necessary
condition for q(x) to have a minimum at x = c. Indeed, for
certain distributions that are symmetric around c the station-
ary point at c is in fact a maximum. An example of this is a
bimodal distribution with two peaks symmetrically on both
sides of c. If the peaks are sufficiently far apart from each
other, it can be shown that q(x) has a maximum at x = c.
A detailed analysis of sufficient conditions that the density
function p must satisfy so that q(x) has a minimum at x = c
is left as future work. However, next we show that for any
univariate normal distribution the stationary point of q(x) at
x = c is a minimum, and in this common and useful spe-
cial case the exact triplet centroid is therefore equal to the
median (and thereby the mean).
Theorem 1. Let D be the univariate normal distribution
with mean (and median) µ and variance σ2. The function
q(x) as defined in Eq. 3 has a global minimum at x = µ.

Proof. We substitute

p(x) =
1

σ
√

2π
exp(− (x− µ)2

2σ2
) (6)

into Equation 5, and show that when x < µwe have q′(x) <
0, and when x > µ we have q′(x) > 0, where q′(x) is given
in Eq. 4. After substituting we obtain

q′(x) = −
√

10 erf( 3
√
10(µ−x)
10σ ) exp( (µ−x)2

10σ2 )

5σ
√
π

, (7)

where erf(·) denotes the error function1, and is defined as

erf(z) =
2√
π

∫ z

0

exp(−t2) dt. (8)

First, observe that besides the leading minus, every term in
Equation 7 except erf( 3

√
10(µ−x)
10σ ) is always strictly posi-

tive. (Clearly the standard deviation σ is always positive.)
The sign of q′(x) is thus fully determined by the sign of the
error function. Second, observe that for positive arguments
the error function is positive, and and for negative arguments
the error function is negative. The sign of erf( 3

√
10(µ−x)
10σ ) is

thus fully determined by the sign of (µ−x). Indeed, we have
thus q′(x) < 0 when x < µ, and q′(x) > 0 when x > µ.
This shows that the stationary point at x = µ = c must be a
unique global minimum.

Reducing the Number of HITs Needed
In practice computing the exact triplet score as defined in
Equation 2 for every x ∈ D is going to be only rarely feasi-
ble. The number of HITs needed,

(|D|
3

)
, is simply too much

even for a moderately sized D. For example, a relatively
small data set of 1000 items results in over 166 million HITs.
In practice we can only use a fraction of these.

Recall that S(x) is proportional to the probability of x be-
ing the outlier in a randomly chosen T form Tx. Rather than
computing this probability exactly, we can compute its sam-
ple mean estimator, by sampling triplets with replacement.
While this approach is in theory feasible, the accuracy of the
sample mean is in practice not enough, given that we can
afford only a few triplets for each x.

We propose a heuristic that prunes data points until we
are left with a reasonably small subset of D from which we
simply select the solution at random. A more formal analysis
of the heuristic is left as future work. In this paper we show
experimentally that it can perform very well. The method
works as follows:
• GivenD, pick a small (of orderO(|D|)) sample of triplets,

and compute S(x) for every x ∈ D.
• Identify the median score Sm, and remove all such points
x from D for which S(x) > Sm.

• Repeat this recursively on the remaining points in D for
L pruning cycles.
Sampling of the triplets in each cycle is done in a special

way to guarantee that we have at least some evidence for ev-
ery x ∈ D. Specifically, we iterate over every x ∈ D, and se-
lect for each x two other points fromD uniformly at random.
After one pass over D we have thus |D| triplets. By making
H passes, we obtain a sample of H|D| triplets, with every
x ∈ D appearing in at leastH triplets, and 3H triplets in ex-
pectation. Now we have all necessary ingredients to present
the CROWD-MEDIAN algorithm in Algorithm 1. It takes as
input the data set D, as well as two parameters, L and H ,
that determine how the sampling is to be carried out. Here L
is the number of pruning cycles, i.e., the number of times D

1The error function is encountered in certain problems in
e.g. statistics.
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Algorithm 1 CROWD-MEDIAN(D, H, L)

for l ∈ 1 to L do
T ← ∅, S(x)← 0 for every x ∈ D
for h ∈ 1 to H do

for x ∈ D do
sample y, z from D unif. at random
T ← T ∪ {(x, y, z)}

for (x, y, z) ∈ T do
w ← OUTLIER(x, y, z)
S(w)← S(w) + 1

Sm ← median{S(x) | x ∈ D}
D ← {x ∈ D | S(x) ≤ Sm}

Smin ← min{S(x) | x ∈ D}
return a random point from {x ∈ D | S(x) = Smin}

is pruned. At its core, however, the algorithm is the same as
the one outlined in the Introduction.

Clustering Images
As an example of an application of the CROWD-MEDIAN al-
gorithm we describe a simple system for clustering images.
Unlike existing approaches to crowdclustering, we propose
to implement the k-means algorithm on a human computa-
tion system.

Implementing k-means
The standard k-means algorithm (Lloyd 1982) requires the
following two operations:

1. ASSIGN: Given a set of items C ⊂ D and an additional
item x ∈ D, find the item c ∈ C that is closest to x ac-
cording to the distance function d.

2. UPDATE: Given the set C ⊆ D, find the “center” of C,
that is, the item x ∈ C that minimizes

∑
c∈C d(x, c).

The algorithm starts from an initial (randomly chosen) set
of centers, and alternates between the two operations until
convergence. Observe that we do not need a direct mecha-
nism to evaluate the function d provided we can carry out the
above operations through some other means. The ASSIGN
operation is straightforward to frame as a HIT: we simply
show the worker all images in the set C, as well as the im-
age x ∈ D, and ask her to pick the image inC that resembles
x the most. The UPDATE step can be implemented in an ap-
proximate manner with the CROWD-MEDIAN algorithm.

A downside of the k-means algorithm is that the num-
ber of clusters must be specified in advance, and usually the
cluster centers are initialized at random. We implemented a
simple initialization method for k-means that uses the triplet
task. This initialization phase finds initial cluster centers,
and is completely parameter free, i.e., k is not an input to
the algorithm. The method is as follows: we scan over the
data D, maintain a set of current cluster centers, and create
new triplet tasks on the fly where every x ∈ D is compared
with the current set of cluster centers. If x is an outlier with
respect to every cluster center found so far, then x is added
to the set of cluster centers.

Figure 2: Schematic depictions of the user interfaces for the
assignment (left, k = 4) and triplet tasks (right) in the image
clustering system used in our experiments. The worker must
in both cases simply click on one of the photographs, upon
which the system immediately retrieves a new task.

We implemented the k-means and the initialization
method in a system for clustering images. This system con-
sists of a server that provides a simple HTTP interface for
requesting HITs, submitting results, and performing a num-
ber of maintenance operations. The client is a lightweight
HTML5 application that runs in all modern web browsers.
The server maintains a pool of tasks and sends the next
available task to the client upon request. After a task is com-
pleted, the client submits the result back to the server and re-
quests a new task, which is shown immediately shown to the
worker. The complete system is available as open-source2.

The system operates in three different phases: the initial-
ization phase, the assignment phase, and the update phase.
The assignment and update phases correspond to the two
steps of the k-means algorithm. The update phase is imple-
mented with the CROWD-MEDIAN algorithm, while the as-
signment phase is based on a HIT where the worker is shown
a image in the top left corner, with a number of other im-
ages laid out below it. The task is to click on the image in
the bottom row that is most similar to the image above. The
assignment phase consists of |D| such HITs, one for every
x ∈ D. Schematic depictions of the user-interface for the
assignment and triplet tasks are shown in Figure 2.

Experiments
Simulating Crowd-Median on Artificial Data
Accuracy of the Exact Method We first provide some
empirical evidence that the exact triplet centroid ct indeed
is a very good approximation of the distance sum minimiz-
ing centroid cd also for high dimensional data. To this end
we ran a simulation where 100 samples of 100 points were
drawn from a multivariate Gaussian of m dimensions, for
different values of m. For each point x in each sample we
computed both the distance sumD(x) (Eq. 1), as well as the
exact triplet score S(x) (Eq. 2).

Table 1 shows the fraction of the 100 samples in which the
exact triplet centroid ct was equal to the distance centroid
cd. We observe that this fraction seems to be increasing in
m, suggesting that the approach is also applicable when the
data space is high-dimensional.

2http://anttiukkonen.com/hcomp
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Figure 3: Correlation between distance sum D and the exact
triplet score S for different dimensionalities m of the data.

Table 1: Fraction of cases where the triplet centroid ct coin-
cides with the distance centroid cd

data dimensionality 2 5 10 50 100
fraction correct 0.60 0.81 0.89 0.86 0.93

rand. success prob. 0.03 0.05 0.19 0.93 1.00

Table 1 also shows the probability that a random point
drawn from the distribution is equally close to the distance
centroid cd as is the triplet centroid ct. (The reported num-
bers are medians from the 100 samples.) More formally, this
probability is defined as Pr[X ≤ ‖ct − cd‖2], where X fol-
lows the χ2 distribution with m degrees of freedom. The
random success probability tells us that in low dimensions
ct is very close to cd. As m increases the pairwise distances
become more concentrated, and almost all points are roughly
at the same distance from cd as the exact triplet centroid ct.

It is therefore also of interest to understand how well the
exact triplet score S agrees with the distance sum D for
all data points x ∈ D, in particular as m increases. Fig-
ure 3 shows the correlation between D(x) (Eq. 1) and S(x)
(Eq. 2) in random samples of 100 points from a standard m-
dimensional Gaussian distribution. We observe that the cor-
relation decreases as m increases. However, the variation is
in practice negligible, and in absolute terms the correlations
are very high, over 0.98 in almost every case. This means
that the triplet score is also useful for finding points that are
close to cd, as well as locating outliers.

Accuracy vs. Cost Trade-off Next we study how well the
heuristic we introduced for reducing the number of triplets
works in a simulated setting. The purpose of this experiment
is to find out what parameters of CROWD-MEDIAN lead to
a good trade-off between the number of HITs used and the
quality of the centroid found as compared to the true dis-
tance centroid. As data we use samples of 500 points drawn

from a standard bivariate normal distribution. Note that com-
puting the exact S(x) for every x ∈ D would require over 20
million HITs in this case, which is clearly too much for prac-
tical purposes. Like above, we measure error as the proba-
bility of a point drawn randomly from the underlying distri-
bution being at least as close to the true centroid cd as the
chosen point ct. For simplicity we do not consider replicat-
ing the same HIT across a number of workers.

From the leftmost plot in Figure 4 we can see that the er-
ror is decreasing both in the number of passes H as well as
the number of pruning cycles L. However, of these the num-
ber of cycles has a stronger effect. Apart from some noise,
the curves corresponding to using l pruning cycles is below
the curve for l−1 cycles. The middle plot in Figure 4 shows
the number of HITs as a function of H . We can observe
that when using more than 3 cycles the cost of adding one
more pass exceed the costs of adding a new pruning cycle.
Finally, in the rightmost plot of Figure 4 we show the error
as a function of the number of HITs used. For each prun-
ing cycle, the leftmost symbol corresponds to using a single
pass, while the rightmost symbol indicates the performance
with 10 passes. We have highlighted the symbols for L = 6
in bold. The optimum performance has an error somewhat
below 0.1, and this is reached already when using 6 cycles
with 3 passes on each, resulting in about 4000 HITs for a
dataset of 500 points. This is four orders of magnitude less
than what computing the exact triplet scores requires. On the
other hand, as a comparison with Table 1 (for m = 2) re-
veals, the error we obtain using the heuristic is only roughly
twice that of the exact method. We consider such errors to
be perfectly acceptable for practical purposes.

Crowd-Median with Image Data
We ran simple human computation experiments using our
image clustering system. In this paper we describe two of
those. The objective of the experiments is twofold. On the
one hand we want to demonstrate that the CROWD-MEDIAN
algorithm produces intuitive centroids, as well as study hu-
man performance on the triplet task. On the other hand we
want to show that our implementation of the k-means algo-
rithm finds thematically coherent clusters in a real human
computation setting.

Datasets Our first data set (NATURE) is a collection of
120 images with four thematic clusters (forest, open coun-
try, coast, mountain) that consists of randomly chosen pho-
tographs from the corresponding categories of the Scene
data set3 (Oliva and Torralba 2001). These categories were
chosen because the photographs they contain are all of nat-
ural subjects, mainly landscape shots of different types, and
are all rather easy for humans to distinguish. (We also ex-
perimented with the “urban” categories highway, street, city
center, and tall building of the same image collection, and
obtained very similar results.)

The second dataset (VOGUE) is a set of 60 cover images
of the UK edition of the Vogue magazine, chosen at random
from the time interval 1970 to 2012. URLs to the images

3http://cvcl.mit.edu/database.htm
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Figure 4: Simulation study of the triplet centroid: Error and number of HITs as a function of h, as well as number of HITs
vs. error.

Cluster 1: Mountains Cluster 2: Forest Cluster 3: Coast

Figure 5: Results of a human computation experiment: Images having the lowest and highest triplet scores in three clusters we
found in the NATURE data set (score shown next to the photographs). In all cases the images having a low score are thematically
homogenous, while the high scoring photos are diverse, and contain thematical outliers.
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were crawled from the Vogue website4.
Experiment setup We recruited six workers (3 male, 3

female) who volunteered to participate in the experiment.
Both experiments reported here were carried out in a single
one hour session with all workers simultaneously present
in the same space, working together on the same job. The
workers were given a brief introduction to human computa-
tion, as well as written instructions of the two HITs. The test
subjects were not rewarded in any way. In both experiments
we employed a simple version of the CROWD-MEDIAN al-
gorithm that only uses one pruning cycle with five passes,
i.e., we set L = 1 and H = 5 (see Alg. 1). Every HIT was
replicated three times, and the outcome was determined by
majority vote, breaking ties at random.

Experiment 1: Clustering landscape images We ran the
initialization phase, as well as one assignment and one up-
date phase of our k-means algorithm on the NATURE data.
The workers were not instructed to carry out the triplet task
according to any specific criteria, but to simply go by their
intuition.

Completing all 3812 HITs took 29 minutes and 35 sec-
onds. The fastest worker submitted 871 HITs, while the
slowest completed 381. The number of HITs, as well as the
median completion time (in parenthesis) of the HITs in the
initialization, assignment, and update phases were, 1220 (1.8
sec), 370 (1.4 sec), and 2222 (2.2 sec), respectively. Clearly
the assignment task was in general easier than the triplet
task. According to the Wilcoxon rank sum test the comple-
tion times of the triplet tasks in the initialization and update
phases differ significantly (p-value < 2.2 × 10−16). This
suggests that the repetitive nature of the triplet task in the
initialization phase leads to slightly faster processing, albeit
the test subjects reported this part as being rather boring.

The initialization phase discovered three centroids that
correspond to the forest, mountain, and coast categories.
This makes sense, as the open country images are more diffi-
cult to distinguish. They are easily confused with one of the
other main categories of the NATURE data set. We consider
this an excellent result, given that the workers were not given
any instructions specific to the images being clustered, and
that initialization was completely automatic. Figure 5 shows
the clusters as well as 10 images having the lowest and high-
est triplet score after the update phase. In every case the im-
ages having a low score are thematically homogenous, sug-
gesting that the CROWD-MEDIAN algorithm indeed identi-
fied images that are representative of the clusters. Moreover,
images with a high score are diverse, and contain some ex-
amples of the open country category.

Experiment 2: Finding an “average” magazine cover
The purpose of this experiment was to study if we can use
human computation to identify a centroid in terms of “style”
or “fashion”. For modern computer vision algorithms, dis-
tinguishing an ’80s look from a contemporary style is ex-
tremely difficult, if not impossible. This task, while by no
means trivial, is still perfectly doable for humans. The work-
ers were instructed to take aspects of “style” into account
when solving the triplet task.

4http://www.vogue.co.uk/magazine/archive/

Running CROWD-MEDIAN with the VOGUE data took 12
minutes and 11 seconds. The total number of completed
triplet tasks was 1131, with a median completion time of
2.6 seconds per HIT, which is slightly slower than with the
NATURE data set. The fastest and slowest worker completed
328 and 105 tasks, with median completion times of 1.7 and
4.8 seconds per HIT, respectively.

We observe that the CROWD-MEDIAN algorithm gave a
low triplet score to pictures that are examples of stereotypi-
cal women’s magazine covers: a simple headshot of a female
model. However, other stylistic attributes, such as hairstyle
or clothing of the models did not affect the result. The lowest
triplet score was awarded to the April 2011 cover5 portray-
ing Kate Winslet. In comparison, covers with a high triplet
score feature either more than one model, or are otherwise
different in their composition. Not surprisingly, the Decem-
ber 1999 cover6 that has no image at all had the highest
triplet score.

Conclusion and Future Work
We have proposed the notion of a triplet centroid, as well
as the CROWD-MEDIAN algorithm for finding this type of
centroid from a given data set D using human computation.
We consider the CROWD-MEDIAN algorithm to be an in-
teresting novel contribution to human computation. Unlike
many existing human computation algorithms that process
data sets, CROWD-MEDIAN computes a nontrivial aggregate
of D, rather than applying some function independently to
every x ∈ D. We provided both theoretical and empiri-
cal evidence that the triplet centroid coincides with exist-
ing centroid definitions. We also showed how the k-means
clustering algorithm can be implemented using the CROWD-
MEDIAN algorithm in the update step.

As future work, it is of interest to use CROWD-MEDIAN
to implement other algorithms that require centroid com-
putations, such as time series segmentation, or naive Bayes
models. Also, instead of selecting a single centroid, find-
ing a collection of representative items is also easily accom-
plished using the triplet score. This might have some ad-
vantages in practical applications when identifying a unique
centroid is difficult. Finally, a more thorough analysis of the
exact triplet score (Eq. 3) is of interest for a better theoretical
understanding of the proposed algorithm.
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