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Abstract

We created a spatial location identification task (SpLIT) in
which workers recruited from Amazon Mechanical Turk were
presented with a camera view of a location, and were asked
to identify the location on a two-dimensional map. In cases
where these cues were ambiguous or did not provide enough
information to pinpoint the exact location, workers had to
make a best guess. We tested the effects of two reward
schemes. In the “ground truth” scheme, workers were re-
warded if their answers were close enough to the correct lo-
cations. In the “majority vote” scheme, workers were told
that they would be rewarded if their answers were similar to
the majority of other workers. Results showed that the major-
ity vote reward scheme led to consistently more accurate an-
swers. Cluster analysis further showed that the majority vote
reward scheme led to answers with higher reliability (a higher
percentage of answers in the correct clusters) and precision (a
smaller average distance to the cluster centers). Possible rea-
sons for why the majority voting reward scheme was better
were discussed.

Introduction
Crowdsourcing has been shown to be useful for solving
problems that can be decomposed into micro-tasks. In addi-
tion to capitalizing on the massive number of crowd work-
ers, research on human computation has also shown that
leveraging human knowledge or cognitive processes can be
effective for accomplishing tasks that are beyond the capa-
bilities of current automated approaches (Law and von Ahn
2011). Typically, researchers identify task components that
are known to be difficult for machines, either because they
are computationally expensive (Lasecki et al. 2012) or be-
cause they require semantic information that are difficult to
be extracted in forms that can be processed automatically
(Bernstein et al. 2010).

This paper focuses on methods that improve human com-
putation using a spatial location identification task (SpLIT),
in which humans examine a three-dimensional camera view
of an environment to infer its spatial location on a two-
dimensional schematic map (e.g. a floor plan). The SpLIT
requires (1) detection of salient cues in the 3D camera view
image that are relevant for spatial inferences (e.g. landmarks,
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orientation, etc.), (2) mapping of the salient cues between
the 3D image and the 2D map, and (3) spatial inferences
based on integration and mapping of cues in both the 3D im-
age and the 2D map. These components are fundamental to
the success of applications that support spatial or location-
based tasks such as navigation (Afyouni, Ray, and Clara-
munt 2012), remote collaboration (Billinghurst and Kato
2002), spatial designs (Choi et al. 2007), and location-based
image retrieval (Zhang et al. 2011).

Although they are fundamental to many spatial or
location-based applications, these components in SpLIT
are often difficult to automate because the identification of
salient cues often requires semantic features that are chal-
lenging to recover from the image and the map. In addi-
tion, in many cases the cues are either ambiguous or do not
provide sufficient information to pinpoint the exact location.
On the other hand, humans seem to frequently encounter
these ambiguous or underspecified situations and can man-
age them “naturally” — e.g. when one attempts to locate
oneself in a shopping mall in a “you-are-here” map, when
doctors attempt to infer the location of a tumor on an X-
ray negative, or when interior designers collaborate with ar-
chitects to create new floor plans. In many of these cases,
humans are able to perform some variations of a SpLIT by
“filling in” with semantic information that ranges from com-
monsense knowledge (e.g. what are usually in a shopping
mall) to domain-specific knowledge (e.g. medical or archi-
tectural expertise). This form of semantic information, how-
ever, is often difficult to be extracted and used in fully auto-
mated systems.

One natural question to ask is how one can leverage hu-
man computation to perform a typical SpLIT. In order to
find the answer, we designed a study using Amazon Me-
chanical Turk to investigate how turkers can perform the task
in two kinds of reward schemes: ground truth and majority
vote, even when they were not familiar with the environ-
ment. Even though previous research (Shaw, Horton, and
Chen 2011) proved how majority voting could lead to bet-
ter results for tasks, such as content analysis, it is still not
clear whether and how it could lead to better results in a task
such as SpLIT, which had an objective answer and required
identification and integration of spatial cues — which made
the SpLIT unique compared to other tasks. So the goal of
the current study was to investigate to what extent human
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computation could be utilized in situation such as the SpLIT
and how the different reward schemes might affect the per-
formance in such task.

Related Work
There has been much work in crowdsourcing and human
computation research introducing methods that leverage hu-
man knowledge to solve problems that are too difficult
for machines. Human computation has been shown useful
in image labeling and interpretation (Sorokin and Forsyth
2008), word processing (Bernstein et al. 2010), and protein
folding (Eiben et al. 2012). Research on methods that im-
prove the quality of solutions from humans has focused on
introducing structures to task assignments (Kulkarni, Can,
and Hartmann 2012), having workers evaluate each other
(Dow et al. 2012; Huang and Fu 2013b), or leveraging so-
cial dynamics among workers to increase their motivation
(Huang and Fu 2013a). These methods often rely on our un-
derstanding of how humans are motivated to put more effort
into a certain task, how to provide more or better feedback
to humans to help them learn to do the task better, or how to
leverage social dynamics to guide humans to reflect on their
cognitive processes to generate better answers.

Previous studies have shown that situating human work-
ers in some forms of games can motivate workers to partici-
pate and encourage coordination among workers. For exam-
ple, the ESP game (von Ahn and Dabbish 2004) encouraged
humans to provide labels to images that match other’s la-
bels. Results showed that this form of coordination game
was in general useful to improve the quality of outcomes.
Given that there are usually plenty of cues (and labels) for
humans to select in the image labeling task, each of these
labels can be considered a potential focal point (Schelling
1960). Based on Schelling’s theory, “a focal point (also
called a Schelling point) is a solution that people will tend to
use in the absence of communication, because it seems natu-
ral, special or relevant to them”. It is therefore likely that the
game would encourage the selection of most salient labels in
the image, as these were more likely selected by others. It is,
however, still unclear whether and how the focal points that
emerge are related to the saliency of the cues or labels, and
how the labels generated would be different from those gen-
erated without the game environment. In addition, the im-
age labeling task is fundamentally different from SpLIT, as
SpLIT has only a single correct answer which requires more
interpretation and integration of cues to infer. The SpLIT
also allows more direct manipulation of the level of ambigu-
ity of cues to test how it impacts performance.

Automatically identifying locations have been an active
area of research, as it is a fundamental process for a wide
range of applications (Zamir and Shah 2010; Hansen et al.
2009; Mulloni, Seichter, and Schmalstieg 2011), such as
navigational guidance, remote collaboration, or augmented
reality displays. In particular, given the relative lack of
unique environmental cues, location identification is essen-
tial for applications that support indoor navigation as peo-
ple often lose their sense of direction. Indeed, despite the
fact that Global Positioning Systems (GPS) has been widely
used in outdoor navigation systems, they are not suitable

for the indoor use because buildings may block satellite
signals, making them unreliable, if not unusable. A num-
ber of researchers have provided new mobile methods to
capitalize on the ubiquitous wireless connections for lo-
cation identification (Afyouni, Ray, and Claramunt 2012;
Huang and Gartner 2010). Research on remote collaboration
has also identified unique challenges and solutions for lo-
cation identification in different task scenarios (Billinghurst
and Kato 2002; Gelb, Subramanian, and Tan 2011; Balakr-
ishnan, Fussell, and Kiesler 2008). While research on devel-
oping autonomous systems has made significant progress,
challenges remain. Some proposed that an optimal mix of
computing and human agents can provide a cost-effective
approach for many practical problems (Rao and Fu 2013).
The main challenge for designing such a system is how one
can more effectively use human computation to complement
computing agents.

The Current Study
The Spatial Location Identification Task
We used a Spatial Location Identification Task (SpLIT) to
test how people could make use of spatial cues. During the
task, participants were required to identify the location of
where a picture was taken in a two-dimension floor map.
Figure 1 shows the experimental interface. On the right hand
side of the screen (area B in Figure 1), a camera view of
an indoor location was presented. On the left hand side of
the screen (area C in Figure 1), a floor map was presented,
on which the workers were asked to place a marker on the
location at which they believed the camera view was taken.
Throughout the experiment, the same floor map was used;
but different camera views were presented.

There were a number of pre-defined markers for the floor
map. These markers represented the locations of the class-
rooms, stairs, exits, elevators, and restrooms. In each of
the camera views, a varying number of these pre-defined
markers were present. Workers not only had to associate the
markers between the camera view and the map, but also had
to derive their spatial relations and use them to infer the loca-
tion at which the camera view was taken. As we will explain
later in the experimental design, the pre-defined markers in
some of the camera views did not provide sufficient informa-
tion to determine their exact location. In such cases, workers
had to extract other spatial cues (e.g. a corner, a long corri-
dor, the width and/or height of the space, etc.) to identify
the location of the camera views. Once workers determined
the location, they could drag-and-drop the solution maker to
the location on the map. Before they submitted the answer,
each of them were asked to provide a brief (one sentence)
explanation on how they came up with the answer.

Experimental Design
In order to explore how differently these two schemes
(ground truth and majority vote) would impact workers’ per-
formance in the SpLIT, we created five pictures with differ-
ent numbers of pre-defined markers (stairs, classrooms, re-
strooms, elevators, exits, and intersections). As shown in
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Table 1: Summary of the camera views designed with different combination of cues
Camera View Num. Stairs Classroom Restroom Elevator Exit Intersection Total Difficulty
1 0 0 1 1 1 1 4 1
2 0 1 0 1 0 1 3 2
3 1 0 0 0 1 0 2 3
4 0 0 0 0 0 1 1 4
5 0 0 0 0 0 0 0 5

Figure 1: Experimental interfaces used in our experiment:
(A) Instruction (B) Picture to identify location (C) Floor map
with a pin to put where it should be (D) Textbox to enter the
descriptions of how the location was identified.

Table 1, these five pictures were carefully chosen to repre-
sent different levels of ambiguity, in terms of the extent to
which workers could use the pre-defined markers (cues) to
infer the location of the camera view. For example, Picture 1
(see Figure 2) had 4 cues; but in Picture 5 (see Figure 3),
there was no pre-defined markers.

Figure 2: Camera View 1: there were four pre-defined cues
that could be found also on the floor map: restroom, elevator,
exit, intersection.

We created two sets of instructions for each experimen-
tal condition to explain the two reward schemes. In the
ground truth scheme, participants were told that they would
get paid if their choices were close enough to the actual loca-
tion where the picture was taken; while in the majority vote
scheme, they were told their performance was measured by

Figure 3: Camera View 5: there were no pre-defined cues
that could be found also on the floor map.

Figure 4: Figure presented to workers showing them how
they would be paid in ground truth scheme.

whether their choices were close enough to the majority of
choices by other turkers. The exact words used in the in-
structions were listed in Table 2, and figures that illustrate
the reward schemes (see Figure 4 and Figure 5) were also
provided.

Procedure
We used the crowdsourcing platform provided by Amazon’s
Mechanical Turk (AMT). We published our Human Intelli-
gence Tasks (HITs) on AMT from 4/10/2013 to 4/30/2013,
each with a price tag of $0.15. Duplicate worker IDs or IP
addresses would be rejected.

The workers were randomly assigned to one of the two re-
ward schemes, and the five pictures were presented in a ran-
dom order except for Picture 1, which was always presented
as the first one. Given that the first picture had enough cues
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Table 2: The exact instruction texts for the two reward schemes
Scheme Instruction

Ground truth The left image shows a floor map of a building, and the right image is a picture taken at a certain point in
the same building. Please find the location of the point where the picture was taken on the floor map. Then
click and drag the pin at the top of the left image to the location on the floor map to submit your answer.
You will be paid based on your performance, which is measured by whether the pin location that you placed
is close enough to the actual location where the picture was taken. You also need to provide an acceptable
description of how you figure out the location.

Majority vote The left image shows a floor map of a building, and the right image is a picture taken at a certain point in
the same building. Please find the location of the point where the picture was taken on the floor map. Then
click and drag the pin at the top of the left image to the location on the floor map to submit your answer.
You will be paid based on your performance, which is measured by whether the pin location that you placed
is close enough to the majority of the locations by other turkers. You also need to provide an acceptable
description of how you figure out the location.

Figure 5: Figure presented to workers showing them how
they would be paid in majority vote scheme.

to pinpoint the exact location of the camera, it allowed the
workers to practice the task. Another purpose of the first
picture was to test whether the workers understood the task,
and to potentially catch spammers who did not put in the
minimal amount of effort to finish the task.

As shown in Figure 1, workers would be presented with
(A) the instruction (also see Table 2) as well as a link to a fig-
ure showing the details of the reward scheme (see Figure 4
and Figure 5), (B) one of the five camera views of a spot
in the indoor environment (there was also a hint above the
picture telling them to click on the camera view, after which
the picture would be magnified to occur the whole screen),
(C) the floor map with signs and a legend of the pre-defined
cues, and (D) a textbox for workers to write a short descrip-
tion of how they did the task. The red pin at the top of the
floor map beside the legend could be dragged to any location
on the floor map to indicate their answers. When workers
finished one task, they clicked the “Next” button to proceed
to the next camera view. The system would not proceed and
would pop up a warning message if it detected that workers
never moved the pin or if the text box was empty. The coor-

dinates of the pins on the map and the explanations workers
provided in the textbox were recorded in our database.

Results
Pre-processing of Data Since low quality answers are
common in AMT, in addition to rejecting repeated turkers
by tracking their worker IDs and IP addresses, we also re-
moved workers who had answers that were outside the build-
ing. We also removed workers whose answers were almost
exactly the same for all five tasks. 103 workers were re-
cruited from AMT, of which 50 performed SpLIT on the
five pictures in the instruction scheme of ground truth and
53 did it in the instruction scheme of majority vote. Af-
ter pre-processing these data according to the above criteria,
there were 41 valid workers for the ground truth scheme and
43 for majority vote scheme.

Accuracy of Location Identification For each correct lo-
cation of the five tasks, we manually determined an area
within which the points chosen by turkers were counted as
correct. The size of the area was based on the width of the
space as captured by the corresponding camera view. In
other words, we considered any answers on the floor map
that corresponded to any of the visible space in the camera
view as correct ones, whereas any answers outside the cam-
era view would be considered incorrect.

We calculated the accuracies of each task in each scheme
by dividing the total number of correct answers by the total
number of answers given by the workers. To test whether
the accuracies between the two reward schemes were statis-
tically significant, we performed a paired t-test to test the
difference. Because accuracies were calculated as percent-
ages and did not often follow a normal distribution (they are
limited in the range between 0 and 1), we performed a stan-
dard arcsin transform to the accuracies to correct for possible
violation of normality. Results showed that the difference of
the accuracies between these two schemes were significant
t(4) = 8.29, p < 0.001.

As shown in Figure 6, accuracies drop as the level of am-
biguity increases. This suggests that the lack of spatial cues
did make the task harder. And it is obvious from the figure
that performance in majority vote scheme was better than
that in the ground truth reward scheme.
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Figure 6: Accuracies of SpLIT in each of the tasks for the
two reward schemes.

Figure 7: Percentage of points in each cluster: the aster-
isk indicates the correct cluster.G=ground truth scheme and
M=majority vote scheme.

Accuracies of Individual Participants As each partici-
pant performed the five tasks, we calculated their accuracies
in terms of the percentages of these tasks completed cor-
rectly. The best workers could perform all five tasks cor-
rectly, lead to an accuracy of 1.0; while the poorest workers
would perform all tasks incorrectly, leading to an accuracy
of 0.0. For each reward scheme, we counted the percentages
of the workers with a specific accuracy level (i.e. how many
of them were correct in one, two, etc. tasks correct). The cu-
mulative histogram for the percentages is shown in Figure 8.
As it indicates, there were more turkers that at least chose
one correct location in the majority vote scheme than in the
ground truth one. In addition, the percentage with high ac-
curacies (0.8 and 1.0) in the majority vote scheme is also
higher than that in the ground truth one.

Cluster Analysis After visualizing the points on the floor
map for each picture, we noted that most of the points were
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Figure 8: Cumulative histogram of the accuracies of indi-
vidual workers.

Figure 9: Clustering illustrations for Picture 2 in ground
truth scheme: the size of the circle represents the mean in-
ner distance of the cluster and the stroke width of the circles
represents the percentage of points in that cluster.

clustered around certain locations, although not all clusters
were close to the correct location. There were also a small
number of answers scattered all over the map, however most
of them did not offer meaningful descriptions about how
they had been chosen. These points (less than 10%) there-
fore were not included in our cluster analysis.

By applying the standard clustering method PAM (Par-
titioning Around Medoids), we obtained several clusters for
each picture in the two schemes. To test the difference in
precision in each cluster, the average distances within each
clusters were calculated for each tasks for each instruction
condition. Results are listed in Table 3. It shows that the
answers in the majority vote scheme are significantly more
precise than those in the ground truth scheme, as confirmed
by the paired t-test t(4) = 2.8885, p < 0.05.

We also counted the number of answers in each cluster
and calculated the percentages of these answers with respect
to all answers in each scheme. The result is shown in Fig-
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Figure 10: Clustering illustrations for Picture 2 in majority
vote scheme: the size of the circle represents the mean inner
distance of the cluster and the stroke width of the circles
represents the percentage of points in that cluster.

Table 3: Average distances within clusters in the ground
truth and majority vote reward schemes.

Pic Num. 1 2 3 4 5
Ground Truth 46.94 30.76 39.53 19.33 39.24
Majority Vote 44.03 22.51 39.71 13.13 28.44

ure 7. In the figure, percentage of each cluster identified by
PAM were shown. The asterisk means that the cluster was
the correct location, which we called “correct” cluster. As
shown in the figure, in the majority vote scheme, the clus-
ters with the largest percentage were more likely the correct
ones.

To further test whether sizes of the clusters in the majority
vote reward scheme were more “extremely distributed” (i.e.
the largest one was much larger than the smallest one) than
those in the ground truth scheme, we compared the cluster
sizes of the largest clusters in each of the tasks in the major-
ity scheme to the sizes of the corresponding clusters in the
ground truth scheme. The difference in cluster sizes between
the two schemes were statistically significant based on a
one-tail paired t-test t(4) = −2.4198, p < 0.05, with the
largest clusters in majority vote larger than those in ground
truth. In contrast, we compared the largest clusters in each of
the tasks in the ground truth scheme to those in the majority
vote scheme and one-tailed t-test showed that the difference
was not statistically significant. This indicated that the clus-
ters in the majority vote scheme were more unevenly dis-
tributed (the largest ones were much larger than the smaller
ones) than those in the ground truth scheme. Given that the
largest clusters also tended to be the correct clusters, thus
the results provided further support that the majority vote
reward scheme led to more reliable results than the ground
truth reward scheme. As an example, we drew the clusters
as circles on the floor map for each scheme for Picture 2 in

Figure 11: Clustering illustrations for Picture 5 in ground
truth scheme: the size of the circle represents the mean inner
distance of the cluster and the stroke width of the circles
represents the percentage of points in that cluster.

Figure 9 and Figure 10. The thickness of the boundaries of
the circles represented the percentages of workers who pro-
vided answers in the clusters, while the sizes of the circles
represented the average distances of the answers to the clus-
ter centers. We can see that, generally speaking, the clus-
ters in the scheme of majority vote had higher percentages
(thicker lines) and smaller averages distances to the center
(i.e. more clustered) than the corresponding clusters in the
ground truth scheme.

And mentioned above, the clusters with the largest per-
centages were usually the correct ones in the scheme of ma-
jority vote. However, one exception was the results in Cam-
era view 5. As seen in Figure 7, the largest cluster was clus-
ter 4 in both schemes. Because this camera view (see Fig-
ure 3) had no pre-defined cues that could be used to identify
its location, workers varied in their detection of relevant cues
for location identification, as shown in the clusters on the
floor map for camera view 5 (see Figure 11 and Figure 12).
Some explanations provided by the workers provided hints
on how they identified the locations. For example, workers
reported:

“I could see an exit symbol at a corner in the picture
with that I have assumed that it must be the place.”

“I did it based on the long corridor and what looks to
be an exit at the end.”

Comparing the percentages of cluster 4 and other clusters
between the two schemes (see Figure 7 , Figure 11 and Fig-
ure 12), we found that they were both larger in the scheme
of majority vote. Cluster 4 was apparently due to the wrong
cue of the wrongly interpreted“Exit” sign. In fact, it was
pointing to the direction where one should turn to find the
exit, but not where the exit was. However, without any other
cues, many workers chose cluster 4. It was interesting to see
that there were more workers in the majority vote scheme
who chose cluster 4 than in the ground truth scheme. The
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Figure 12: Clustering illustrations for Picture 5 in majority
vote scheme: the size of the circle represents the mean inner
distance of the cluster and the stroke width of the circles
represents the percentage of points in that cluster.

exit cue was apparently interpreted as a cue that workers be-
lieved others would notice and use to infer the location of the
camera view, and thus the percentages of workers who chose
the answers using this cue was higher. This also hints that fo-
cal points may not always be correct, especially when some
workers believe that a wrong answer or wrong cue could
be more salient than the correct answer to most other work-
ers, they may choose the wrong one instead of the correct
one. Although in our case, the majority vote scheme still
outperformed the ground truth scheme, one could imagine
that in certain situations the reverse could be true. Future re-
search can focus on how to provide some forms of feedback
or guidance to give workers the perception that other work-
ers are more likely going to choose the correct answers or
cues than the wrong ones, such that workers are motivated
to choose the best answers that they can.

Discussions
The main effect we were interested in was the difference
between the ground truth and majority vote reward scheme.
As we presented in previous section, general speaking, the
majority vote reward scheme led to more accurate and more
reliable answers. Figure 13 shows the general results of the
effect of the two schemes.

For the sake of simplicity, we assume that workers are
generating answers on a line (instead of a two-dimensional
map). The x-axis of Figure 13 represents the value of the
answers generated by the workers, while the y-axis repre-
sents the percentages of workers who generated the answers.
Assuming that answers provided by workers are generated
from some probability distributions, the distributions of an-
swers may show up as clusters of answers as in Figure 13.
The peaks of the distributions represent the center of the
clusters. As the result was shown that the answers given
in majority vote scheme were more precise — i.e. they were

Figure 13: A notational figure showing the distributions of
answers given by workers in the ground truth and majority
vote schemes.

closer to each other (more clustered). This is represented
by the narrower distribution of the majority vote than the
ground truth scheme in the figure. In addition, the result also
showed that the majority vote scheme were more reliable —
i.e. the percentages of workers that were in the cluster of an-
swers that were closest to the correct answer were higher in
the majority vote than the ground truth scheme. This is in-
dicated by the taller distribution of answers that were closer
to the correct answers in the majority vote than the ground
truth scheme in the figure.

Although our findings showed that the majority voting
scheme led to higher precision and reliability when identi-
fying spatial locations, this experiment could not pinpoint
exactly how the reward scheme could influence precision
and reliability. One likely explanation was that the majority
voting scheme was more successful in filtering out spam-
mers. In other words, workers recruited by the majority re-
ward scheme tended to be those who put more effort in the
task than those recruited by the ground truth reward scheme,
assuming that those who put in more effort would lead to
higher precision and reliability.

Another explanation was that the majority vote reward
scheme encouraged workers to reflect more on what other
workers would choose, and thus led to the results we found
– an effect similar to the coordination effect in Schelling’s
experiment (Schelling 1960).

The current experiment was limited in its ability to di-
rectly test which explanation was correct. One possible way
to further test whether the first explanation is correct is to
disclose the reward scheme after workers selected the task.
If the majority vote reward scheme is more effective for fil-
tering spammers, we will see a higher dropout rate. De-
spite of the limitation, the current findings have highlighted
the nature of the differences in workers’ answers in a spatial
identification task induced by the reward schemes. The re-
sults have provided many possible future research directions
to gain a deeper understanding of applying human computa-
tion techniques to spatial tasks.
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Conclusion
We presented results from a study that tested the effects of
the majority vote reward scheme on performance in the Spa-
tial Location Identification Task (SpLIT). To summarize the
results, we found that the majority vote reward scheme in
general led to a higher level of precision and reliability in
the answers provided by the workers. Though there were
not enough data to fully understand this result, the current
study is clearly a first step towards understanding how hu-
man computation can be incorporated into applications that
support spatial tasks, such as navigation and remote collab-
oration. In addition, it does point to a promising direction of
research that incorporates humans into automated methods
that perform complex graphic or spatial computations. Sim-
ilar to many previous attempts to incorporate human com-
putations into system development, the current results show
that it is possible to use simple methods to utilize human
knowledge (in our case, general knowledge about spatial en-
vironments) to complement existing technologies.
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