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Abstract
We develop a mechanism for setting discriminated re-
ward prices in order to group crowd workers accord-
ing to their abilities. Generally, a worker has a certain
level of confidence in the correctness of her answers,
and asking about it is useful for estimating the probabil-
ity of correctness. However, we need to overcome two
main obstacles to utilize confidence for inferring cor-
rect answers. One is that a worker is not always well-
calibrated. Since she is sometimes over/underconfident,
her confidence does not always coincide with the prob-
ability of correctness. The other is that she does not
always truthfully report her confidence. Thus, we de-
sign an indirect mechanism that enables a worker to
declare her confidence by choosing a desirable reward
plan from the set of plans that correspond to differ-
ent confidence intervals. Our mechanism ensures that
choosing a plan including true confidence maximizes
the worker’s expected utility. We also propose a method
that composes a set of plans that can achieve requester-
specified accuracy in estimating the correct answer us-
ing a small number of workers. We show our experi-
mental results using Amazon Mechanical Turk.

Introduction
One of the most notable services recently introduced to
the Web is crowdsourcing such as Amazon Mechanical
Turk (AMT). It is based on the idea of the wisdom of
crowds and solves a problem by combining the forces of
many people (Ho and Vaughan 2012; Law and Ahn 2011;
Shaw, Horton, and Chen 2011; Snow et al. 2008). Using
crowdsourcing services, a requester can ask many workers
around the world to do her task at a relatively low cost.
Crowdsourcing is also gathering attentions from computer
science researchers as a platform for Human Computation,
which solves problems that can only be solved by a com-
puter. It utilizes human intelligence as functions in computer
programs.

An advantage of crowdsourcing is a large work force
available at relatively low cost, but the quality of the results
is sometimes problematic. In image classification, for ex-
ample, workers label sample images that are used as train-
ing data in machine learning. Although the cost of labels by
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workers is lower than by experts, the possibility of errors in
the former is generally higher than in the latter.

One straightforward way to infer accurate labels in crowd-
sourcing is to ask multiple workers to label the same data
and accept the majority vote given by the workers. This cor-
responds to treating the quality of the labels given by dif-
ferent workers equally and simply considering the labels
that receive the largest number of votes as the true ones.
In crowdsourcing, however, since workers’ abilities are not
even, treating all labels given by different workers equally is
not always a good way to infer true labels.

We consider a quality control mechanism where a re-
quester asks workers not only for labels to the data but also
for their confidence about them. Confidence is a worker’s
private information about the probability of correctness of
her answer. For example, if we adopt a mechanism that pays
more reward to more confident workers, they will obviously
be tempted to over-declare their confidence. Therefore, we
have to develop a mechanism that is robust against strategic
manipulations by workers regarding their confidence.

Mechanism design studies the designing of a game’s
rules/ protocols so that agents have an incentive to truth-
fully declare their preferences, and designer can select so-
cially desirable outcomes. Traditionally, mechanism design
has been investigated in the areas of microeconomics and
game theory (Nisan et al. 2007). Recently, along with the
popularization of network environments, such study is at-
tracting much attention from computer scientists. In particu-
lar, much work in mechanism design has produced mech-
anisms for the Internet auctions, prediction markets and
so on. Furthermore, studies on designs for quality control
mechanisms for crowdsourced tasks have been advanced by
AI and multi-agent system researchers (Bacon et al. 2012;
Cavallo and Jain 2012; Lin, Mausam, and Weld 2012;
Witkowski and Parkes 2012a; 2012b)

Strictly proper scoring rules have been proposed for elic-
iting truthful subjective beliefs/prediction of agents (Gneit-
ing and Raftery 2007; Matheson and Winkler 1976; Sav-
age 1971). Recently, studies related to proper scoring rules
have been advanced by AI and multi-agent system re-
searchers (Boutilier 2012; Robu et al. 2012; Rose, Rogers,
and Gerding 2012; Witkowski and Parkes 2012a; 2012b).
If we assume each worker believes that her confidence is
well-calibrated and the requester will find a correct answer,
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applying a direct mechanism results in the identical mecha-
nism handled by the proper scoring rule.

However, our preliminary experiments show that it is
troublesome for workers to directly report their numeric con-
fidence and some crowd workers are not well-calibrated.
Also, in psychometrics, even if examinees are asked to nu-
merically give their confidence, many reported it as if it
was binary (0% or 100%) (Kato and Zhang 2010). How
precisely a worker estimates the confidence (probability of
correctness) depends on her intrinsic ability; she usually
cannot control it. That is, she cannot know whether she
is overconfident, underconfident, or well-calibrated. There-
fore, we need to design a mechanism that is tolerant against
over/underestimation. Furthermore, our mechanism must be
robust to the strategic behavior of workers who report their
confidence. How a worker reports her confidence is under
her control, because she can strategically over- or under-
declare it.

Thus, we focus on the difficulty for a worker to estimate
her confidence and propose an indirect mechanism that en-
ables a worker to declare her confidence by choosing a de-
sirable reward plan from the set of plans that correspond
to different confidence intervals. By showing several reward
plans, a requester can entice workers to consider their con-
fidence at required levels of detail. Our mechanism ensures
that a worker’s expected utility is maximized if she faithfully
selects a reward plan that corresponds to her confidence.

We also develop a method with which a requester can
make a set of reward plans based on prior knowledge about
the relationship between confidence and the actual proba-
bility of correctness. Such knowledge can be obtained from
the requester’s previous experience or can be adopted from
more general observations in cognitive psychology such as
that humans tend to be overconfident with difficult problems
and underconfident with easy problems. Our method enables
a requester to determine the number of workers per task and
a set of reward plans that can achieve the specified accuracy.

Finally, we evaluated our proposed mechanism by posting
tasks on AMT. Our results show that workers can be classi-
fied into two groups with different abilities by referring to
the reward plans they choose. Furthermore, our method with
two reward plans determines a higher probability of correct
answers than direct mechanism and majority voting, even
when a requester’s prior knowledge about workers is not ac-
curate.

Preliminaries
For simplicity, we consider a task for which the answer is
given as a binary label {0, 1} such as a yes/no decision prob-
lem or image labeling. Let l ∈ {0, 1} denote the true la-
bel (answer) for the task. The set of workers is denoted as
N . The requester specifies the number of workers denoted
as n to solve the problem when he posts a task in crowd-
sourcing. The label given by worker i ∈ N is denoted as
li ∈ {0, 1}. We define the accuracy of worker i as follows.

Definition 1 (Correctness) The accuracy of worker i, that
is, the probability that worker i correctly assigns the label,
is defined as ai = P (li = l).

Next, we define the confidence estimated by worker i.

Definition 2 (Confidence) Confidence xi stands for worker
i’s subjective probability of her answer’s correctness. If the
worker is well-calibrated, xi is identical to ai. If the worker
is overconfident, xi > ai holds. If the worker is underconfi-
dent, xi < ai holds.

Also, we assume that a worker declares her confidence as
yi. yi is not always equal to xi.

We assume that xi ∈ [0.5, 1] holds, since we focus on a
task with binary labels. xi = 0.5 means that the worker ran-
domly decides her label. On the other hand, xi = 1 means
that she has absolutely no doubt about her label. Further-
more, since each worker executes a task at different times all
over the world, we assume that confidences x1, x2, . . . , xn
are independent and identically distributed.

Definition 3 (Reward) When the requester posts a task in
crowdsourcing, he sets two reward functions f and g. The
worker’s reward is f(yi) if the requester concludes that her
label li is true, and it is g(yi) if her label li is false.

For any confidence score of yi, it is natural to assume that
f(yi) ≥ g(yi). Without assuming this condition, a worker
may have an incentive to declare the opposite label.

Based on this definition, we assume that each worker de-
clares label li that she considers true. Next we define the
expected utility of worker i.

Definition 4 (Expected Utility) When worker i with her
true confidence xi declares yi, her expected utility is defined
as

u(xi, yi) = xif(yi) + (1− xi)g(yi).
We assume that each worker believes that the requester

will make a correct decision. In crowdsourcing, it is diffi-
cult for each worker to know other workers’ abilities as a
common knowledge, since the workers are gathered via the
network and do not know each other. Also, when the number
of workers is reasonably large, so single worker has a deci-
sive power to reverse the decision of the requester. Thus, we
assume that a worker thinks the requester will judge her an-
swer correct with probability xi.

Reward discrimination: m-plan mechanism
A requester infers the true label (answer) by aggregating
workers’ labels (answers) to the data by considering the dif-
ferent abilities of workers to produce true answers. We pro-
pose an indirect mechanism in which a worker selects her
desirable reward plan among multiple reward plans instead
of reporting her confidence. We call our mechanism the m-
plan mechanism. It can categorize the reliabilities of work-
ers’ labels by making workers select a reward plan. Also, it
gives a worker an incentive to report the most preferred plan
which indicates an interval including her true confidence.

The procedure of m-plan mechanisms is as follows:
(1) After solving a labeling problem, the requester shows
a set of reward plans to a worker and asks her to select the
most preferred reward plan as well as a label for the data.
(2) A worker reports her choice for the reward plan and the
label. (3) The requester infers the true label from labels by

148



multiple workers and pays each worker based on her reward
plan and her label.

Method of determining rewards
We explain a method for determining the rewards for each
plan. First, we assume that the requester divides the range of
confidence scores into m intervals. Let s = (s0, . . . , sm−1,
sm) be the list of threshold confidences, where 0.5 = s0 ≤
s1 ≤ . . . ≤ sm−1 ≤ sm = 1. Plan j means the inter-
val (sj−1, sj ]1. The case of m = 1 corresponds to majority
voting, because the requester cannot classify the workers by
their confidences. On the other hand, when we set m to +∞
and let intervals be small enough, it becomes equivalent to
the direct revelation mechanism.

Plan j has two different reward amounts (αj , βj): αj
when a reported label is correct and βj when it is incor-
rect. Reward functions f and g consist of α1, . . . , αm and
β1, . . . , βm. Thus, we define

f(yi) =
∑

1≤j≤m

αjI(sj−1,sj ](yi),

g(yi) =
∑

1≤j≤m

βjI(sj−1,sj ](yi)

where I(a,b](yi) means that I(a,b](yi) = 1 if yi ∈ (a, b] and
I(a,b](yi) = 0 if yi 6∈ (a, b].

Mechanism design studies are to design rules/ protocols
so that agents have an incentive to truthfully declare their
preferences. Here, we give a definition of a sincere report for
workers in our indirect mechanism with a set of m reward
plans.

Definition 5 (Sincere report) For a set of m reward plans,
a sincere (or straightforward) report of player i, whose true
confidence is xi, is to choose plan j∗, which corresponds
to the confidence interval of (sj∗−1, sj∗ ] which includes her
true confidence xi.

We show how to construct the reward plans to derive sin-
cere reports from the workers.

Definition 6 (Set of m Reward Plans) The requester sets
reward plans as follows to classify the workers into m
groups based on their confidences.

• For any plan j, the reward for correct labels should be
higher than the reward for incorrect labels:

αj ≥ βj .

• The rewards for correct labels increase with respect to j:

α1 < α2 < . . . < αm.

• The rewards for incorrect labels decrease with respect to
j:

β1 > β2 > . . . > βm.

• The expected utility of plan j is the same as that of
plan j + 1 at sj:

αjsj + βj(1− sj) = αj+1sj + βj+1(1− sj).

Expected Utility

confidence
0.5

α1x i+β1(1-x i)

α2x i+β2(1-x i)

α3x i+β3(1-x i)

1s1 xk s2

Figure 1: Expected utilities for m-plan mechanism

Next, we show that this method can guarantee that truthful
reports are the best strategy for worker expectations.

Theorem 1 When the requester offers workers a set of m
reward plans in Definition 6, a worker can maximize her
expected utility by sincere report. To be more specific, if xi ∈
(sj∗−1, sj∗ ],

∀ yi ∈ (sj∗−1, sj∗ ], u(xi, yi) = max
y′
i

u(xi, y
′
i).

Proof If we regard F (xi, yi) as a function of yi, F (xi, yi)
is constant in each interval yi ∈ [sj−1, sj ]. So it suffices
to show that maxy′

i
F (xi, y

′
i) = F (xi, xi). First, yi ∈

[sj∗ , sj∗+1] implies F (xi, xi) ≥ F (xi, yi), since we obtain
that

F (xi, xi)− F (xi, yi)
= −xi(αj∗+1 − αj∗) + (1− xi)(βj∗+1 − βj∗)
≥ −sj∗(αj∗+1 − αj∗) + (1− sj∗)(βj∗+1 − βj∗) = 0.

Using this inequality repeatedly, we have F (xi, xi) ≥
F (xi, yi) for j∗ < j and yi ∈ [sj−1, sj ]. We see F (xi, xi) ≥
F (xi, yi) in case of j∗ > j and yi ∈ [sj−1, sj ] in a similar
way.

Example 1 Consider a task with a set of three reward plans.
We assume that the confidence of worker k, named xk, is
founded in (s1, s2]. Then the maximum expected utility is
determined by the function of α2xk + β2(1− xk). As shown
in Fig. 1, worker k can maximize her expected utility by se-
lecting plan 2.

Relations with proper scoring rule
We explain relationships between proper scoring rules and
our mechanism. Proper scoring rules have been proposed for
eliciting truthful subjective beliefs or prediction of agents,
e.g., weather forecast, prediction market, and so on.

When a requester sets the number of reward plans to in-
finity, the mechanism converges to a proper scoring rule.
Conversely, from reward functions of the direct mechanism,

1Although plan 0 indicates the interval [0.5, s1] in a precise
sense, to simplify notation, we denote (sj−1, sj ] as an interval
without exception.
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we can define am-plan mechanism by linear approximation.
For example, let us consider a quadratic proper rule. When
we assume f(yi) = 1 − (1 − yi)

2 and g(yi) = 1 − y2i ,
we obtain that f(1/2) = g(1/2) = 3/4, f(3/4) = 15/16,
g(3/4) = 7/16 and f(1) = 1, g(1) = 0. In this case, we can
define (α1, β1) = (3/4, 3/4), (α2, β2) = (15/16, 7/16),
and (α3, β3) = (1, 0) as a set of reward plans. Here, we can
describe three expected utilities as shown in Fig. 1 where
s1 is set to 5/8, s2 is set to 7/8. Thus, a worker can maxi-
mize her expected utility by choosing the plan that includes
her true confidence. The expected utility becomes a convex
function of her confidence.

Actually, a set of reward plans consists of discrete and
finite reward plans. Therefore, a requester only has to define
a set of reward plans according to the conditions as stated.
In more detail, he can flexibly define the values of αj and βj
and there is no need to use a specific proper scoring rule.

Furthermore, we do not restrict whether reward functions
are symmetric (f(yi) = g(1 − yi)). If reward functions are
confined to be symmetric, f(1/2) = g(1/2) must be satis-
fied which means that a worker who randomly decides her
label obtains an identical reward whether the label is cor-
rect or not. However, in our preliminary experiments, some
workers estimated 50% confidence, but could exceed 50%
accuracy as a result. Thus, it is desirable for requesters to
utilize the labels from such workers and so give a worker an
incentive to make those with 50% confidence report the true
label. Thus, we allow asymmetric reward functions to cover
that f(1/2) > g(1/2) holds.

Judgment rule
The advantage of utilizing the elicited confidence interval
to determine true labels is that a requester can effectively
achieve a higher probability of correctness using a smaller
number of workers than majority voting. Most requesters
repeatedly post their tasks in crowdsourcing. Therefore, we
suppose that a requester has prior knowledge about the abil-
ities of the workers in the population, e.g., the relationship
between the confidence estimated by workers and the actual
probability of correctness. We develop an efficient judgment
rule with which a requester can determine correct answers
by utilizing his prior probability information.

First, we define the requester’s prior probability informa-
tion about possible workers.
Definition 7 (Prior information of requester) A requester
has the following information about the worker population
before posting a task.

• ν(xi): density function of worker’s confidence xi.∫ 1

0.5

ν(xi)dxi = 1

is satisfied.
• hj: probability that a worker selects plan j on condi-

tion that the worker is truthful. Formally, we define hj
as P (sj−1 ≤ xi < sj), that is,

hj =

∫ sj

sj−1

ν(xi)dxi.

• E(xi) : conditional expectation of answer accuracy for
given confidence x = xi, that is,

P (ai | x = xi).

The requester can properly classify the abilities of work-
ers and achieve the higher required accuracy, due to the in-
crease in prior information about workers. However, practi-
cally, the amount of information a requester can learn about
workers is limited. From this point of view, it is reasonable
that requesters can learn such probability information about
workers as defined above. They can calculate the average
accuracy for each plan based on this prior information.

Definition 8 (Average accuracy) The average accuracy
for plan j is given by

cj = (

∫ sj

sj−1

E(xi)ν(xi)dxi)× h−1j .

Next we introduce the judgment rule. In aggregating the
workers’ labels, w1,j denotes the number of labels 1 in plan
j and w0,j denotes the number of labels 0 in plan j. We
denote the set of the number of each label reported from the
workers by

W = {w =

(
w1,1, . . . , w1,m

w0,1, . . . , w0,m

)
|
∑

wi,j = n}.

If the true label l = 1, the conditional probability of w is

P (w | l = 1) = n!(
∏

k∈{0,1},1≤j≤m

wk,j !)
−1

×
∏

1≤j≤m

(hjcj)
w1,j (hj(1− cj))w0,j

≡ dw.

We define a judgment rule for determining the correct an-
swer.

Definition 9 (Judgment rule) If P (w | l = 1) > P (w |
l = 0), the requester judges the answer to be 1. If P (w |
l = 1) = P (w | l = 0), the requester judges the answer to
be 1 or 0 randomly. This judgment rule is equivalent to∑

1≤j≤m

(w1,j − w0,j) log
cj

1− cj
> 0 (= 0).

The requester decides the answer by weighted voting, where
a vote from a worker who selects plan j is counted with
log(cj/(1 − cj)). This is based on a maximum likelihood
estimation method.

Method of constructing m-plans
In practice, requesters want to achieve specific accuracy
from the aggregated labels of workers. We refer to ζ as
the expected accuracy required by requesters. We propose a
method to determine the required number of workers and re-
ward plans to achieve required accuracy ζ, when a requester
applies our judgment rule. Without loss of generality, here-
after we assume the true label l = 1.
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Definition 10 We define the expected accuracy of the re-
quester’s judgment as

d(n,m, s) =
∑

w∈W ′
dw +

1

2

∑
w∈W ′′

dw,

where W ′ = {w ∈ W | P (w | l = 1) > P (w | l = 0)}
and W ′′ = {w ∈W | P (w | l = 1) = P (w | l = 0)}.

We provide a lower bound of the expected accuracy.
Theorem 2 When a requester offers a set ofm reward plans
to n workers, he obtains a lower bound of the required ac-
curacy: for any 0 < θ < 1,

d(n,m, s)

≥ 1− (
∑

1≤j≤m

hj(c
θ
j (1− cj)1−θ + c1−θj (1− cj)θ))n.

If we select θ = 1/2, we have

d(n,m, s) ≥ 1− (2
∑

1≤j≤m

hj

√
cj(1− cj))n.

Proof Let zi be the weighted vote of worker i. Then its
probability distribution is P (zi = log

cj
1−cj ) = hjcj and

P (zi = log
1−cj
cj

) = hj(1 − cj) for each j. We regard
d(n,m, s) as the probability that the sum of zi becomes pos-
itive. By considering the expectation of exp(−θ(z1 + z2 +
· · ·+ zn)), we can get

P (z1 + . . .+ zn ≤ 0)

≤ (
∑

1≤j≤m

hj(c
θ
j (1− cj)1−θ + c1−θj (1− cj)θ))n

by exponential Chebyshev’s inequality. 2

Let c represent the average accuracy of the workers: c =∫ 1

0.5
ν(xi)E(xi)dxi. We assume c > 0.5, since we assume

that not all of the workers randomly decide their labels. For
m = 1, Th. 2 induces d(n, 1, ·) ≥ 1− (2

√
c(1− c))n. This

inequality implies limn→∞ d(n, 1, ·) = 1 if c > 0.5.
Next, we determine the minimal number of workers so

that the required accuracy achieves ζ. We also show that this
theorem guarantees the existence of the minimal value.
Theorem 3 We assume that a requester sets his required ac-
curacy to ζ (< 1). The minimal number of workers such that
d(n,m, s) ≥ ζ is obtained by n∗ = min{n | dm(n) ≥ ζ},
where the definition of dm(n) is given in the following proof.

Proof We define the upper bound of d(n,m, s) for fixed
n,m:

dp(n,m) = sup
s
d(n,m, s).

Since this dp(n,m) is increasing with respect to n andm,
the limit

dm(n) = sup
m
dp(n,m) = lim

m→∞
dp(n,m)

exists. Therefore, limn→∞ dm(n) = 1 holds and then it
is guaranteed that dm(n) ≥ ζ is satisfied for sufficiently
large n. As a result, we can obtain n∗ = min{n | dm(n) ≥
ζ}. 2

We define non-deficit property which is important for a
requester in practice.

Definition 11 (Non-deficit) The mechanism satisfies non-
deficit property, if the expected total payments of the re-
quester be are not greater than his budget b: b− be ≥ 0.

Here, guaranteeing non-deficit in expectation means that the
mechanism satisfies non-deficit on average if a requester ex-
ecutes identical tasks multiple times. Furthermore, in mech-
anism design literatures, it is common to estimate non-deficit
in expectation when a mechanism designer has prior proba-
bility information.

We show how to determine proper reward plans under
budget constraints. The upper bound of the number of work-
ers is denoted as na, and the upper bound of the number of
plans is denoted asma. We estimate cost be ofm-plan mech-
anism by calculating the total amount of expected rewards:

be =
∑

w∈W ′
{dw

∑
1≤j≤m

(w1,jαj + w0,jβj)}

+
∑

w∈W ′′
{dw

∑
1≤j≤m

(w1,j + w0,j)
αj + βj

2
}

+
∑

w′∈W\(W ′∪W ′′)

{dw
∑

1≤j≤m

(w1,jβj + w0,jαj)}.

Definition 12 (Method of constructing m plans) When a
requester defines the parameters for the constraints, she can
construct appropriate reward plans:
Implementability: a requester needs to confirm that it is
possible to satisfy the required accuracy under his restric-
tions. The required number of workers is calculated by nr =
inf{n|dm(n) > ζ}. If nr > na, the requester needs to de-
crease the value ζ.
Searching for a triplet (n,m, s): By increasing the number
of workers n from nr to na and the number of plans m from
1 to ma, the requester searches for a triplet (n,m, s) that
satisfies Dp(n,m, s) > ζ.
Checking non deficit: Check whether expected cost be is
smaller than his budget b. If be > b, then lower the rewards.

In a real setting, the assumption of m � n is reasonable,
since most tasks posted in crowdsourcing are micro tasks
with micro cost. The increase in m increases the requester’s
total cost. When m � n holds, the computational cost of
executing this method is O(n2m). Furthermore, given a re-
quester’s budget, we can compute the a set of reward plans
which minimizes the number of workers needed in order to
guarantee a required accuracy.

Example 2 A requester estimates that ν(xi) = 2 for xi ∈
[0.5, 1], i.e., xi is uniformly selected. Also, he estimates
E(xi) = 0.8xi + 0.1, i.e., each worker tends to be slightly
overconfident. Now, the requester sets the maximum num-
ber of plans ma = 5, required accuracy ζ = 0.9, and bud-
get b = 30. He wants to determine the smallest number of re-
ward plans and the minimum number of workers to achieve
his required accuracy under a budget constraint.

First, we calculate limm→∞ dp(n,m) and get nr = 7
since dm(7) = 0.911 > 0.9. Next, from m = 1 to ma = 5,
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we calculate whether s exists such that d(7,m, s) ≥ 0.9.
We find s = (s0, s1, s2) = (0.5, 0.75, 1), which satisfies
d(7, 2, s) = 0.902 > 0.9. As a result, the requester sets
n = 7 and m = 2. We can divide the workers into two
groups by threshold confidence 0.75 with (α1, β1) = (4, 3)
and (α2, β2) = (5, 0). The expected total cost becomes be =
27.03. Since 27.03 < 30 holds, the requester determines his
appropriate reward plans.

Them-plan mechanism may decrease accuracy more than
the direct revelation mechanism. Thus, we can diminish the
loss of accuracy by increasing the number of plans.

Evaluation
We experimentally evaluated the performance of our pro-
posed method on AMT. We show the two experimental re-
sults: (1) how well a crowdsourced worker determines her
confidence in the correctness of her answers. (2) how ef-
fectively them-plan mechanism categorizes worker abilities
and obtains higher accuracy in estimating true labels com-
pared to majority voting.

In AMT, as Human Intelligence Tasks (HITs), we posted
tasks that are considered difficult for computers to solve
without human assistances. We set two acceptance criteria
for workers: (1) HITs approval rate for all requester HITs
exceeds 80% and (2) number of approved HITs exceeds 50
HITs, since a requester can limit his HITs to workers who
meet specific criteria on AMT.

Preliminary Experiments
In our preliminary experiments, we evaluate the relation-
ship between the confidence that a worker estimates and her
actual accuracy. We executed two kinds of tasks on AMT:
name disambiguation and image labeling. In a task of name
disambiguation, a worker views two web pages and guesses
whether the name Alexander Macomb appearing on both
pages refers to the same person. Alexander Macomb who
commanded the army at the Battle of Plattsburg is a famous
historical personage. In a task of image labeling, a worker
views an image of a bird and selects its correct name.

In our HITs, a worker solved 10 problems and declared
her confidence in her estimate of the percentage of correct
answers. We proposed two kinds of monetary incentives to
workers:

• Reward for reporting correct answers: If a worker’s an-
swer is correct, she gets 1 cent. Otherwise, she gets 0
cents.

• Reward for estimating and reporting true confidence: If
the estimation of a worker is correct, she receives 3 cents.
Otherwise, she gets 0 cents.

Figures 2 and 3 present results for the 50 workers. The
size of point indicates the number of workers. In image
labeling, overconfident workers were 60%, well-calibrated
workers were only 14%, and underconfident workers were
20%. 66% workers reported their confidence within 10% of
the actual percentage of correct answers. On the other hand,
in name disambiguation, overconfident workers were 84%,
well-calibrated workers were only 6%, and underconfident
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Figure 2: Results of preliminary experiment in Name disam-
biguation
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Figure 3: Results of preliminary experiment in Image label-
ing

workers were 10%. Most workers are over/underconfident,
since this task is complicated and difficult for workers. How-
ever, for 28% of workers, the difference between her re-
ported confidences and accuracy was within 10% and also
for 46%, the difference was within 20%.

Furthermore, in another kind of HITs for image labeling,
we asked a worker to declare a numeric confidence score on
each answer. We provided an identical reward for all work-
ers and did not give any monetary incentive to workers to
declare her confidence truthfully, since this incentive mecha-
nism is identical to the proper scoring rule. We gathered 100
workers and a worker answered 10 problems. After solv-
ing each problem, a worker entered any numeric confidence
score from 0% to 100%. The following table shows the rela-
tionships between average confidence and average accuracy.
3 workers did not answer her confidence scores. We found
that about half the workers always answered 100% or the
score close to 100%.
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Table 1: Relationships between average confidence and av-
erage accuray

Confidence 30% ∼ 40% ∼ 50% ∼ 60% ∼
Accuracy 80% 65% 66% 68.5%
] workers 1 2 7 9

Confidence 70% ∼ 80% ∼ 90% ∼ 100%
Accuracy 68.5% 68.3% 83.3% 94.1%
] workers 12 17 27 22

Our results suggest that the precision of estimating a
worker’s confidence depends on task difficulty. These results
indicate that it is more appropriate to roughly ask workers
about their confidence rather than to ask them for precise
values of it.

Experiments for reward plans
We executed two kinds of tasks to evaluate the performance
of our proposed reward plans: name disambiguation and im-
age labeling.

Name disambiguation First, in name disabiguation, we
executed experiments on AMT using 5 problems whose
average percentages of correct answers exceeded 50% in
the preliminary experiment. Based on the preliminary ex-
periment, we calculated that ν(xi) = 2.68xi − 0.01 and
E(xi) = 0.6xi + 0.24 for name disambiguation. For name
disambiguation, d(5, 2, (0.5, 0.99, 1)) = 0.65 is the best re-
quired accuracy. Although this expected accuracy might be
low, we can improve the accuracy by increasing the num-
ber of workers and the number of plans. Since we wanted to
show how well our mechanism could perform e ven when
the expected accuracy is relatively low, we evaluated our
mechanism in the simplest settings where the number of
workers was 5 and the number of plans was 2.

We evaluated our mechanism for three types of sets of re-
ward plans. For sets 1, 2, and 3, the threshold confidence
was set to 1/2, 2/3, and 3/4, respectively. As shown in Ta-
ble 2, we determined each pair of rewards as the pair of min-
imal prices that satisfy the threshold condition. For Set 1,
this setting means that choosing Plan 2 is the best strategy
when a worker has any confidence score in (0.5, 1], since
the expected utility of Plan 2 exceeds Plan 1. If a worker’s
confidence score is 0.5, her expected utility becomes 2 for
both plans. Thus, there exist possibility that a worker with
confidence score 0.5 selects Plan 1. Strictly speaking, Set 1
cannot divide agents’ abilities into 2 groups.

We aggregated the results by five workers for all HITs.
Table 3 shows the percentages which plan workers selected.
For both Sets 2 and 3, 68% workers selected Plan 1. Table
4 shows how many seconds it took to be completed. Inter-
estingly, workers in Set 3 spent longer time than workers in
Sets 1 and 2.

Table 6 shows the average percentages of correct answers
for each plan. The reason why setting five workers is to ver-
ify the performance of our mechanism for a small number
of workers. Our mechanism separates a set of workers into
two groups when the threshold is set to 2/3 which is close

Table 2: Reward plans for a HIT on AMT
Plan 1 Plan 2

Set 1 (1/2) (2, 2) (3, 1)
Set 2 (2/3) (2, 2) (3, 0)
Set 3 (3/4) (4, 4) (5, 1)

Table 3: Percentage of workers for each plan
Plan 1 Plan 2

Set 1 (1/2) 40% 60%
Set 2 (2/3) 68% 32%
Set 3 (3/4) 68% 32%

Table 4: Average work time (second)
Plan 1 Plan 2 Total

Set 1 (1/2) 44.2 49.4 47.32
Set 2 (2/3) 44.29 102 62.76
Set 3 (3/4) 124.94 51.13 101.32

Table 5: Average percentages of correct answer
Name

Plan 1 Plan 2
Set 1 (1/2) 60% 53%
Set 2 (2/3) 41% 100%
Set 3 (3/4) 65% 50%

Table 6: Accuracy of judgment
Name

WL PE MV
Set 1 (1/2) 60% 60% 60%
Set 2 (2/3) 100% 80% 80%
Set 3 (3/4) 80% 80% 80%

to theoretical appropriate threshold confidence. In Set 2, the
result of Plan 2 reached 100% accuracy. First reason is that
our mechanism worked well and the second reason might be
that the reward for incorrect answer was set to 0. As shown
in Table 4, the workers in Plan 2 of Set 2 spent the longest
time. This result implies that the workers made a deliberate
decision. In Set 3, the result of Plan 2 was not so good. We
suppose that some workers with over-confidence selected
Plan 2.

Furthermore, we compared the obtained accuracy of our
judgment rule with that of majority voting.@ In the field of
machine-learning, several useful techniques to control qual-
ities of crowdsourced tasks have been proposed and more
elaborated machine-learning based methods for label aggre-
gation exist (Dai, Mausam, and Weld 2010; Whitehill et al.
2009). However, to estimate the ability of workers, they re-
quire each worker to do many tasks. On the other hand, our
proposal is to design a quality-control mechanism that can
work even when a requester asks workers to perform a single
task. Majority voting can be applied to a single task. Thus,
we used it as a baseline.

The accuracy means the ratio of correct answers to five
problems. WL indicates the accuracy when we assume that
ν(xi) = 2 (uniform distribution) and E(xi) = xi (well-
calibrated workers) for our proposed judgment rule, which is
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Figure 4: Example of HITs for image labeling

considered a standard case. PE indicates the accuracy when
we set ν and E for our proposed judgment rule. MV means
the result when we apply majority voting. Our method per-
formed the best when the threshold confidence was set to
2/3 (Set 2). These results indicate that our mechanism can
categorize a set of workers into groups based on their abili-
ties and improve the accuracy in a real setting. Due to space
limitation, we show only a fraction of our experimental re-
sults. The obtained results were not sensitive to particular
parameter settings.

Image labeling As another kinds of tasks with binary la-
bels, we put tasks of image labeling for a flower on AMT as
shown in Figure 4. This task is easier for workers than name
ambiguation. In this HITs, we gathered 11 workers and of-
fered sets of reward plans for them (Table 7). Based on the
preliminary experiment, we calculated that ν(xi) = 2.7xi−
0.03 and E(xi) = 0.6xi + 0.24. f(5, 2, (0.75)) = 0.86 is
the best required accuracy. Tables 8, 9, 10, and 11 show the
average results for 5 problems. Our mechanism worked well
for this task, especially for Set 2.

Conclusion
In a crowdsourcing service, asking workers about their con-
fidence is useful for improving the quality of task results.
However, it is difficult for workers to precisely report their
confidence. So, we focused on the difficulty of estimating
confidence and developed an indirect mechanism in which
it is guaranteed that it is the best strategy for workers to se-
lect a desirable reward plan which includes the worker’s true
confidence among the small number of plans. We also pro-
posed a method for constructing an appropriate set of reward
plans under a requester’s constraints on budget and required
accuracy.

Future works will include generalizing our mechanism to
multiple-choice problems. Also, we will evaluate the useful-
ness of our mechanisms for various AMT tasks.
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Table 7: Reward plans for a HIT on AMT
Plan 1 Plan 2

Set 1 (1/2) (2, 2) (3, 1)
Set 2 (2/3) (3, 3) (4, 1)
Set 3 (3/4) (4, 4) (5, 1)

Table 8: Percentage of workers for each plan
Plan 1 Plan 2

Set 1 (1/2) 38.2% 61.8%
Set 2 (2/3) 29.1% 70.9%
Set 3 (3/4) 36.4% 63.6%

Table 9: Average work time (second)
Plan 1 Plan 2 Total

Set 1 (1/2) 21.8 49.2 38.7
Set 2 (2/3) 24.2 27.7 25.1
Set 3 (3/4) 23.6 29.6 25.8

Table 10: Average percentages of correct answer
Name

Plan 1 Plan 2
Set 1 (1/2) 76.2% 88.2%
Set 2 (2/3) 53.8% 87.5%
Set 3 (3/4) 57.1% 75.0%

Table 11: Accuracy of judgment
Name

WL PE MV
Set 1 (1/2) 80% 100% 100%
Set 2 (2/3) 80% 100% 80%
Set 3 (3/4) 80% 80% 80%
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