
CASTLE: Crowd-Assisted System for
Text Labeling and Extraction

Sean Goldberg
Comp Info Sci & Eng

Univ. of Florida
sean@cise.ufl.edu

Daisy Zhe Wang
Comp Info Sci & Eng

Univ. of Florida
daisyw@cise.ufl.edu

Tim Kraska
Comp Sci

Brown University
tim kraska@brown.edu

Abstract

The amount of text data has been growing exponentially and
with it the demand for improved information extraction (IE)
efforts to analyze and query such data. While automatic
IE systems have proven useful in controlled experiments, in
practice the gap between machine learning extraction and hu-
man extraction is still quite large. In this paper, we propose a
system that uses crowdsourcing techniques to help close this
gap. One of the fundamental issues inherent in using a large-
scale human workforce is deciding the optimal questions to
pose to the crowd. We demonstrate novel solutions using mu-
tual information and token clustering techniques in the do-
main of bibliographic citation extraction. Our experiments
show promising results in using crowd assistance as a cost-
effective way to close up the ”last mile” between extraction
systems and a human annotator.

1 Introduction
In recent years, the amount of unstructured text data has
been growing exponentially in social networks like Twitter
and Facebook, in enterprises via emails and digitized doc-
uments, and on the Web. Automatic information extraction
(IE) over large amounts of text is the key to a slew of ap-
plications that depend on efficient search and analysis. Vari-
ous types of structured information that can be extracted in-
clude part-of-speech labels from tweets, named entities from
emails, and relational attributes from bibliography citations.

The state-of-the-art approach for IE uses statistical ma-
chine learning (SML) techniques such as hidden Markov
models (HMM) and conditional random fields (CRF) (Laf-
ferty, McCallum, and Pereira 2001). Most current IE
systems store the maximum likelihood extraction into a
database for querying, but such extractions from even the
best models are still prone to errors.
Example 1 Consider the following example citation:

Building New Tools for Synthetic Image
Animation by Using Evolutionary Techniques
Xavier Provot, David Crochemore, Michael
Boccara, Jean Louchet Artificial Evolution
3-540-61108-8 Springer

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

With no obvious delimiter bewtween fields, the model may
mislabel Xavier as part of the title rather than author. It
may also be confused between two possible extractions: Ar-
tificial Evolution as a journal attribute or as the last author
attribute.

A possible means of correcting errors and improving the
accuracy of SML-based extraction results uses a human-
in-the-loop, manually validating extractions that the ma-
chine performs poorly on or is highly uncertain of. When
the validated extractions are re-introduced into the train-
ing set, this is known as active learning. While generally
able to produce better results, human annotation is expen-
sive and time-consuming. Platforms like Amazon Mechan-
ical Turk (AMT) deploy Human Intelligence Tasks (HITs)
that make it possible for the first time to include humans
as a resource during the text extraction process in a con-
venient, timely, and scalable fashion. An ideal IE system
would be one that efficiently leverages the advantages of
both human and machine computation (Wang et al. 2012;
Quinn et al. 2010) into a single cohesive unit.

For this purpose we introduce CASTLE: a crowd-
assisted SML-based IE system. CASTLE uses a probabilis-
tic database to execute, optimize, and integrate human and
machine computation for text extraction. The human com-
putation aspect is based on crowdsourcing services and the
machine computation on linear-chain CRF models. CAS-
TLE initially uses a CRF to annotate all input text data.
In contrast to other IE systems, however, CASTLE uses a
probabilistic data model to store IE results, automatically in-
cludes humans to correct the most uncertain tokens, and in-
tegrates their responses back to the probabilistic data model.

CASTLE Architecture: Figure 1 outlines the basic ar-
chitecture of CASTLE. The outer boxes partition the sys-
tem into four main components: 1) Extraction & Labeling,
2) Question Selection, 3) HIT Management, and 4) the Prob-
abilistic Database used for storage and data management.

CRF Extraction & Labeling transforms a set of unlabeled
data into a set of probabilistic extractions which are stored
in the database. After some pre-processing and feature ex-
traction on the input data, inference is performed using a
previously trained Conditional Random Field model. If the
database contains any evidence from the crowd, the infer-
ence is constrained so certain hidden states conform to their
evidence values.

51

Proceedings of the First AAAI Conference on Human Computation and Crowdsourcing

Figure 1: Architecture of the CASTLE system.

The Question Selection component acts on the database
and determines which individual tokens to map into HITs
for querying the crowd. Tokens are chosen by their within-
document and cross-document importance using the con-
cept of mutual information and a trigram-based clustering
scheme. The three-step process of Filtering, Clustering, and
Ranking will be described in Section 4.

We use Amazon Mechanical Turk as our crowdsourcing
platform. All management settings for the HITs including
interface, price, and qualification tests are handled by the
HIT Management component.

The remainder of the paper is outlined as follows. Sec-
tion 2 describes the initial extraction process using a CRF.
Section 3 outlines our probabilistic data model. In Section 4
we cover the Question Selection problem in more detail and
our proposed solutions. HIT Management is described in
Section 5. Our experiments are found in Section 6, while
Sections 7 & 8 cover the Related Work and our Conclusions.

2 CRF Extraction & Inference
The initial extraction and labeling of unstructured text is
performed using a linear-chain Conditional Random Field
(CRF) (Lafferty, McCallum, and Pereira 2001; Sutton and
Mccallum 2006). In the context of IE, a CRF model en-
codes the probability distribution over a set of label random
variables (RVs) Y, given the value of a set of token RVs
X. Assignments to X are given by x and to Y by y. In a
linear-chain CRF model, label yi is correlated only with la-
bel yi−1 and token xi. Such correlations are represented by

Figure 2: Example CRF model.

the feature functions {fk(yi, yi−1, xi)}Kk=1.

Example 2 Figure 2 shows an example CRF model over
a subset of the citation string from Example 1. Observed
(known token) variables are shaded nodes in the graph. Hid-
den (unknown label) variables are unshaded. Edges in the
graph denote statistical correlations. For citations, the pos-
sible labels are Y = {title, author, conference, isbn, pub-
lisher, series, proceedings, year}. Two possible feature func-
tions of this CRF are:

f1(yi, yi−1, xi) = [xi appears in a conf list] · [yi = conf]
f1(yi, yi−1, xi) = [yi = author] · [yi−1 = title]

The conditional probability of a segmentation y given a
specific token sequence x of T tokens is a weighted log-
linear sum of feature functions:

p(y|x) = 1

Z(x)
exp{

T∑
i=1

K∑
k=1

λkfk(yi, yi−1, xi)}, (1)

where Z(x) is a partition function and {λk) ∈ R are a col-
lection of real-valued parameters.

There are three types of inference queries over the CRF
model used in CASTLE.

Top-k Inference: The top-k inference computes the seg-
mentations with the top-k highest probabilities given a token
sequence x from a text-string d. The Viterbi dynamic pro-
gramming algorithm (Forney 1973; Rabiner 1989) is the key
algorithmic technique for CRF top-k inference.

The Viterbi algorithm computes a two-dimensional V ma-
trix, where each cell V (i, y) stores a ranked list of entries
e = {score, prev(label, idx)} ordered by a score. Each en-
try contains (1) the score of a top-k (partial) segmentation
ending at position i with label y; and (2) a pointer to the
previous entry prev on the path that led to the top-k score’s
in V (i, y). The pointer e.prev consists of the label label
and the list index idx of the previous entry on the path to
e. Based on equation 1, the recurrence to compute the ML
(top-1) segmentation is as follows:

V (i, y) =

maxy′(V (i− 1, y′)

+
∑K

k=1 λkfk(y, y
′, xi)), if i > 0

0, if i= −1
(2)

The complexity of the Viterbi algorithm isO(T ·|L|2), where
|L| is the number of possible labels.

Constrained Top-k Inference: Constrained top-k infer-
ence (Kristjansson et al. 2004) is a special case of traditional
top-k inference. It is used when a subset of the token labels

52

has been provided from the crowd(e.g., via a user interface
such as Amazon Mechanical Turk). Let s be the evidence
vector {s1, . . . , sT }, where si is either NULL (i.e., no evi-
dence) or the evidence label for yi. Constrained top-k infer-
ence can be computed for a variant of the Viterbi algorithm
which restricts the chosen labels y to conform to the evi-
dence s.

Marginal Inference: Marginal inference computes a
marginal probability p(yt, yt+1, . . . , yt+k|x) over a single
label or a sub-sequence of labels (Sutton and Mccallum
2006). The Forward-Backward algorithm, a variation of the
Viterbi algorithm is used for such marginal inference tasks.

CASTLE makes use of all three types. The initial top-1
extraction is used in the absence of any crowd input. For
each token in each document in the corpus, marginal infer-
ence is performed as part of the Question Selection process
(see next section). Finally, after the crowd has responded
by labeling a selected set of tokens, constrained inference
makes use of the available evidence by constraining the se-
lected tokens to their crowd-appointed values. As more and
more evidence is gathered, constrained inference converges
to the same result had the crowd labeled the entire sequence.

3 Probabilistic Data Model
Probabilistic Databases arose out of the need to model large
amounts of imprecise data. In the Possible Worlds Data
Model (Dalvi and Suciu 2007), let I = {I1, I2, ..., IN}
be the set of all possible instances of a typical rela-
tional database. A PDB is the set (Ii, p(Ii)) of all
instance-probability pairs, where p(Ii) → [0, 1] such that∑N

i=1 p(Ii) = 1. Queries may be modified to return prob-
abilistic results, though the number of possible worlds may
grow exponentially with the size of the database. It is for
this reason that queries generally return only the top k most
probable results.

A probabilistic databaseDBp consists of two key compo-
nents: (1) a collection of incomplete relations R with miss-
ing or uncertain data, and (2) a probability distribution F on
all possible database instances. These possible worlds de-
noted by pwd(Dp) represent multiple viable instances of the
database. The attributes of an incomplete relation R ∈ R
may contain deterministic attributes, but include a subset
that are probabilistic attributes Ap. The values of Ap may
be present, missing, or uncertain.

In CASTLE, the marginal probabilities of the token la-
bels and the joint probabilities of pairs of labels which are
updated over time as the crowd continues to reduce the un-
certainty and constrained inference is performed. These
marginal and joint probabilities are used to compute quanti-
ties like Mutual Information and Token Entropy in the selec-
tion process, which we describe in the next section. While
we focus primarily on the question selection process in this
paper, we plan to cover a more general probabilistic data
model (Wang et al. 2008) in greater detail in future work.

4 Question Selection
The problem of question selection is similar to that found
in active learning where select examples are chosen from

Algorithm 1: QuestionSelect
input : Set of all tokens T
output: Ranked set C of maximum information clusters

1 Initialize selected token set S;
2 Initialize cluster set C;
//Filtering;

3 foreach t ∈ T do
4 i← t.docID;
5 if S(i) = NULL then
6 S(i) = t;
7 else if S(i).MI < t.MI then
8 S(i) = t;

//Clustering;
9 Load all tokens in S into queue Q;

10 foreach t ∈ Q do
11 foreach cluster c ∈ C do
12 if c.text = t.text &

c.label = t.label &
c.prevLabel = t.prevLabel &
c.postLabel = t.postLabel then

13 Add t to cluster c;
14 c.totalInfoGain← c.totalInfoGain

+t.totalInfoGain;

15 if t not added to a cluster then
16 Initialize new cluster c;
17 c.text← t.text;
18 c.label← t.label;
19 c.prevLabel← t.prevLabel;
20 c.postLabel← t.postLabel;
21 Add c to cluster set C;
22 c.totalInfoGain← t.totalInfoGain

//Ranking;
23 SORT clusters c ∈ C by c.totalInfoGain;

a pool of unlabeled data to be annotated based on some
querying strategy. While active learning has been ap-
plied to the sequential learning domain (Cheng et al. 2008;
Settles and Craven 2008), the financial and temporal cost of
labeling an entire sequence (document) is not amenable to
AMT’s microtask framework. Additionally, we found docu-
ments to contain sparse labeling errors and annotation of an
entire document represents unneeded redundancy.

This necessitates tasks where examples can be partially
labeled over specific tokens. Since these examples cannot be
used to re-train the supervised learning algorithm without a
complete annotation, feedback is no longer used to improve
the model, but reduce the posterior uncertainty in the results.
By re-running inference with selected tokens constrained to
their annotated values, we can drastically improve accuracy
in a cost effective way that does not require the labeling of
every token.

To properly select tokens, we need a way of properly as-
sessing their information value. For a token xi with labels
yi, let φ(xi) be a function that maps each token to its infor-

53

(a) (b)

Figure 3: Clustering for the token ”Modeling” shown over five example citations with each line type denoting a different cluster.
Example clusters are shown using (a) token trigrams and (b) label trigrams for clustering. Note that clustering by labels permits
the 3rd and 5th citations to both be labeled as Title while clustering by tokens produces an incorrect clustering in this scenario.

mation content according to some strategy. A standard tech-
nique in active learning is to choose examples with the high-
est entropy, or for a sequence, the highest average marginal
entropy of the individual nodes (Settles and Craven 2008).
This token entropy (TE) is defined as

φTE(xi) = −
L∑

l=1

P (yi = l)logP (yi = l), (3)

where the sum is over the range of labels L and P (yi = l)
is the marginal probability that token xi is given label l.

Token entropy quantifies the uncertainty in the prediction
result for each individual token. While this method works
well in practice for sequence models, the dependence prop-
erties shared between tokens increase the complexity of the
selection process. Indeed, labels are not chosen greedily
by their highest marginal probabilities, but using the dy-
namic programming Viterbi algorithm where suboptimal lo-
cal choices can lead to a correct global solution.

In short, marginal probabilities and their corresponding
entropy are not telling us the whole story. We develop two
new techniques for maximizing the information value of to-
kens sent to the crowd for labeling. First, we exploit mu-
tual information to select those tokens whose result will
have the greatest significance on its neighbors within a doc-
ument. Additionally, we use density estimation to select
tokens with the greatest redundancy across multiple docu-
ments. These techniques have been previously studied in
the active learning domain (Xu, Akella, and Zhang 2007;
Zhao and Ji 2010) particularly for document retrieval, but
to our knowledge have not been applied to a partial labeling

scheme over a probabilistic sequence model.
Algorithm 1 shows the psuedo-code for our entire selec-

tion method. The filtering step assumes each token already
has a mutual information score associated with it. We it-
erate through all tokens, keeping only the maximum MI to-
kens for each document. The clustering step iterates through
filtered tokens, adding those with similar properties to the
same cluster and creating new clusters as necessary. The fi-
nal cluster set is then sorted where the top-k may be drawn.

Filtering by Mutual Information
Mutual information (MI) is an information theoretic mea-
sure of the mutual dependence shared by two random vari-
ables (RVs). Specifically, for two RVs X and Y , the mutual
information is defined in terms of entropy as

I(X ;Y) = H(X) +H(Y)−H(X ,Y). (4)

It represents the difference between the joint entropy
H(X ,Y) and the individual entropies H(X) and H(Y). In-
tuitively, MI describes the reduction of uncertainty of one
RV given knowledge of another. Random variables that are
highly correlated will have small joint entropies whereas
they are equivalent to the sum of individual entropies if the
variables are independent.

If we plan to run the inference algorithm over a partially
labeled set, we need to determine precisely which variables
will give the most information for the remaining ones in the
sequence. This entails calculating the mutual information
of every node against all others. The query strategy then
becomes

54

φMI(xi) = H(xi) +H(x1, . . . ,xn\xi)

−H(x1, . . . ,xn), (5)

where H(x1, . . . ,xn\xi) is the entropy of all nodes except
for xi. This strategy is computationally expensive to per-
form on every node in every sequence. Instead we invoke a
correlation of the data processing inequality, which loosely
states that information processed along a Markov chain can-
not increase, ie. for a chain X → Y → Z,

I(X;Y) > I(X;Z) (6)

We approximate 5 by utilizing its most informative neigh-
bors, those just to the left and right in the chain. The choice
becomes selecting those tokens xi likely to have the most
impact on its most immediate neighbors xi−1 and xi+1,

φMIapprx(xi) =I(xi−1;xi) + I(xi;xi+1)

=H(xi−1) + 2H(xi) +H(xi+1)

−H(xi−1,xi)−H(xi,xi+1). (7)

The entropies in 7 can be efficiently computed using the
forward-backward algorithm (Rabiner 1989) to compute the
marginal and joint probabilities, then calculating the entropy
in the standard fashion.

Mutual information can be useful in determining the im-
pact a node’s observation has on other nodes within an in-
dividual sequence, but tells us nothing about the distribu-
tion of tokens across all documents. If we want to optimize
our selection strategy, especially for a batched selection pro-
cess, we should additionally incorporate the frequency of a
token’s appearance along with its uncertainty.

Clustering by Information Density
A major efficiency drawback to many active learning
schemes is that they are myopic. An instance is selected
for labeling, the model is re-trained, and the process is it-
eratively repeated. This fails to harness the parallelizability
of the crowd ecosystem. It is much more effective to select
tokens in batch and query the crowd at once rather than in
a sequential manner. One factor that can compromise effec-
tiveness is if there are similar token instances in the batch,
as querying the label of two similar instances is equivalent
to querying either of them and applying the label to both.

We propose a scheme to cluster those tokens that should
be labeled similarly and address two key issues. The final
batch must be diverse and contain only one token from each
cluster. It must also be dense and comprise the largest clus-
ters whose labeling will have the greatest effect.

In order to cluster tokens appropriately, we must define a
meaningful similarity measure between them. A naive ap-
proach would cluster strictly those tokens which are equiva-
lent out of context. This is less than desirable in a text seg-
mentation problem where location of the token in the docu-
ment matters. Context is also important in other IE problems
such as named entity recognition (NER) where homonyms
with different meanings and subsequent labelings would be
incorrectly grouped together.

Thus we are led to consider a token trigram clustering
model, where tokens with similar neighbors are clustered
together. Let xi be a token at position i in some document.
Together with its left and right neighbors we form the tri-
gram (xi−1,xi,xi+1). Despite being clustered as a trigram,
the selection process only selects the single middle token to
query the crowd. We take the intuitive assumption that mid-
dle tokens xi belonging to the same trigram are highly likely
to share the same context and ought to be labeled the same.
For each trigram cluster in the corpus, only a single ”rep-
resentative token” is chosen (the one with the highest mu-
tual information or token entropy) and its crowd-annotation
applied to all the middle tokens in the cluster. Figure 2(a)
shows an example token trigram clustering.

In certain domains such as bibliographic citation IE,
many-token phrases such as common proceedings names
and conference locations appear throughout multiple docu-
ments. Common trigrams when compared across all tokens,
however, are relatively infrequent. The token trigram model
produces very few classification errors, but non-singleton
clusters are very sparse.

There’s more to the notion of context than just duplicate
words appearing together. Words used in a similar ”sense”
and likely to share the same label may use many different
words which contextually mean the same thing. The are
many ways to label how a word is used that form the fun-
damental backbone of NLP annotation tags, such as part-of-
speech (POS), entity tags, segmentation tags, dependency
parses, etc.

A token xi has a set of associated labels li,j, where i again
denotes label position and j some numerical representation
of the classifier type. For example, li,0 might be the POS tag
associated with xi while li,1 might be a segmentation tag. A
label trigram clustering model consists of tokens that share
some specified set of label trigrams. One possible cluster
would be (xi, (li−1,1, li,1, li+1,1)), which groups individual
tokens labeled with the same segmentation tag and sharing
left and right neighbors labeled the same. One requirement
for all label trigram clusters is that that the individual tokens
xi should still be the same. Figure 2(b) illustrates an exam-
ple of label trigram clustering.

While these labels are themselves the uncertain output of
machine learning classifers, our experiments show contex-
tually similar tokens are also similarly mislabeled and still
cluster appropriately. Overall, the label trigram model in-
creases the recall and amount of clustering, but at the ex-
pense of a slightly increased rate of classification error com-
pared to the token trigram model.

Both trigram models correspond to a mapping of tokens
to a lower dimensional space where tokens sharing the same
trigram properties are mapped to the same point. Selecting
the largest token clusters is equivalent to selecting the ”high-
est density” instances according to the data distribution, a
technique that has shown positive yield in traditional active
learning (Guo and Greiner 2007).

Ranking by Total Information Gain
Given a limited budget of questions, clusters should be or-
dered to facilitate selection of the top-k. We experimented

55

Figure 4: Sample Amazon Mechanical Turk HIT interface. The question asks for the true label of the bolded token ’2007’,
which is ambiguous because ’2007’ could refer to the Date field or be part of the Source title. In this example it’s the latter.

with three different ranking schemes: ranking by mutual in-
formation score of a cluster’s representative token, ranking
by cluster size, and ranking by total information gain. We
define the total information gain of a cluster to be the sum
of all mutual information scores of all tokens that belong to
a cluster. Total information gain represents a melding of the
both cluster size and MI score and outperformed the base-
lines. For the remainder of this paper, ranking is by total
information gain.

5 HIT Management
The HIT Management component interacts with the Ama-
zon Mechanical Turk API for processing, submitting, and
retrieving HIT tasks. Tokens selected for crowd annotation
are mapped into multiple choice questions, an example of
which is given in Figure 4. As Turkers complete the tasks,
answers are retrieved and immediately sent back to the Ex-
traction & Labeling component where constrained inference
is performed. The management component has settings for
the price of each HIT, length of time for which answers are
allowed, and number of Turkers assigned to each HIT.

Quality control is an important issue in AMT tasks. To
reduce the likelihood of malicious or poor workers, we re-
quired an unpaid qualification test be submitted for any addi-
tional work may be completed. This test both trains workers
and weeds out those unable to complete the task effectively.
As an additional measure of quality control, the HIT Man-
agement component assigns a redundant number of HITs
for each question and takes a majority vote of all Turkers
assigned or however many were completed within the pre-
scribed time limit. While we stick to multiple choice ques-
tions in this paper, as a future work this component will
eventually be expected to handle multiple question types
each with their own interfaces and settings. We also ex-
pect to handle more complex quality control measures, such

as the currently popular Dawid & Skene method (Ipeirotis,
Provost, and Wang 2010).

6 Experiments
In this section we demonstrate the effectiveness of applying
mutual information and density trigram models for selection
on the task of automatic bibliographic segmentation.

Setup and Data Set
We extracted 14,000 entries from the DBLP1 database. We
produced a set of 7,000 labeled citations for training and
7,000 unlabled for testing by extracting fields from the
database and concatenating them into full citations. Order
of fields was occasionally mixed in keeping with real-life
inconsistency of citation structure.

We tested the efficacy of our system using a set of ”end-to-
end” experiments. That is, we started with a set of unlabeled
data and proceeded through each of the system components:
initial labeling by a trained CRF2, selection and clustering
using the methods defined earlier, submission to AMT, and
finally retrieval and constrained inference.

From a total testing set of 36,321 tokens, the top 500 using
a combination of different methods were selected and sent
to the crowd as multiple choice questions. Individual HITs
were batched to contain 10 questions for which we awarded
$.10 per Turker. Five Turkers passing a qualification test
were assigned to each question for quality control and we set
a limit of 3 days to allow enough time for completion by all
assigned Turkers. Our quality control methods proved effec-
tive with Turkers providing answers to questions with 97%
accuracy. The next section shows our results when those
answers are integrated back into the database.

1http://kdl.cs.umass.edu/data/dblp/dblp-info.html
2http://crf.sourceforge.net/

56

(a) (b)

(c) (d)

Figure 5: A comparison of different selection methods using (a) no clustering, (b) no context clustering, (c) same token trigram
clustering, and (d) same label trigram clustering.

End-to-end Results

The purpose of CASTLE’s human component is to provide
evidence that constrained inference can use to improve the
extraction results. We gauged performance on the individ-
ual token accuracy before obtaining evidence and after. The
token accuracy is the number of individual tokens correctly
labeled compared to the total in the corpus. Initially, the
CRF labeled 84.6% of the tokens correctly.

Figures 5(a) - 5(d) show the ability of the constrained in-
ference process to improve the extraction results for vari-
ous combinations of selection and clustering methods. Each
point on the x-axis corresponds to selecting that number of
questions to obtain evidence for, ordered by clusters with
the largest total token entropy or mutual information. Where
random selection was done, clusters were ordered by clus-
ter size. For each of the 500 answers received, all tokens
belonging to the same cluster were given the annotation of

the ”representative”. This resulted in large gains for some of
the biggest clusters with one answer in particular addressing
390 individual tokens in the best case. This is the cause for
the large jumps early on as the biggest clusters provide the
biggest accuracy gains.

Both token entropy and mutual information filtering and
ranking methods show sufficiently large gains over a random
baseline, with mutual information showing the strongest im-
provement in accuracy. Use of any the clustering methods
(no context, token trigram, or label trigram) lead to large
gains in accuracy compared to a lack of clustering. The com-
bination of filtering and clustering producing the strongest
results is mutual information combined with label trigram
clustering as seen in Figure 5(d). After only 50 questions,
corresponding to correcting only .001% (50/36,000) of to-
tal tokens in the database, we achieved a reduction in error of
just under 20% (84.6% to 87.5%). While returns begin to di-

57

minish, the overall reduction in error is as large as 25%. The
total cost for this large error reduction was only $25. While
we truncated our experiments at 500 questions, in principle
one could continue asking questions and see even larger, if
less efficient, gains.

7 Related Work
There have been a number of previous attempts at combin-
ing humans and machines into a unified data management
system, but to our knowledge none that have done it proba-
bilistically. CrowdDB (Franklin et al. 2011) utilizes humans
to process queries that are either missing from the database
or computationally prohibitive to calculate. The crowd is
invoked only if an incoming query contains one of the in-
complete values. In contrast, CASTLE operates on batches
over a complete, but uncertain database, improving accu-
racy well in advance of queries. Qurk (Marcus et al. 2011)
crowdsources workflow operations of the database, such as
filtering, aggregating, sorting, and joining, but makes no at-
tempt to optimize the workload between both humans and
machines. AskIt! (Boim et al. 2012) provides a similar goal
of ”selecting questions” to minimize uncertainty given some
budget, however their approach is purely for quality control.
CrowdER (Wang et al. 2012) uses a hybrid human-machine
system to perform entity resolution. The machine does an
initial course pass over the data and the most likely matching
pairs are verified through crowdsourcing. The primary ap-
proach of that work is HIT interface optimization as opposed
to the specific question selection and answer integration of
ours. DBLife (DeRose et al. 2007) invites mass collabora-
tion to improve a database seeded by machine learning, but
selection is done by humans as needed without any means
of automatically identifying likely errors.

8 Conclusion
In this paper we introduced CASTLE, a crowd-assisted
SML-based IE system that is able to obtain additional ev-
idence from a crowdsourced workforce to improve the ac-
curacy of its automated results. There has been previous
research into automating crowdsourcing for additional ev-
idence retrieval in SML models, but CASTLE is the first
to incorporate it into a cohesive system with a probabilis-
tic data model as its backbone. Question selection strate-
gies including highest mutual information and largest infor-
mation density through trigram clustering produce questions
with the benefit orders of magnitude greater than random se-
lection. We believe CASTLE represents an important step
in efficiently combining the benefits of human and machine
computation into a singular system.

9 Acknowledgements
This work was partially supported by DARPA under
FA8750-12-2-0348-2 (DEFT/CUBISM). We also thank Jeff
Depree for his assistance in the database implementation and
Sunny Khatri for work done on the CRF.

References
Boim, R.; Greenshpan, O.; Milo, T.; Novgorodov, S.; Poly-
zotis, N.; and Tan, W. C. 2012. Asking the right questions

in crowd data sourcing. In Kementsietsidis, A., and Salles,
M. A. V., eds., ICDE, 1261–1264. IEEE Computer Society.
Cheng, H.; Zhang, R.; Peng, Y.; Mao, J.; and Tan, P.-N.
2008. Maximum margin active learning for sequence la-
beling with different length. In Perner, P., ed., ICDM, vol-
ume 5077 of Lecture Notes in Computer Science, 345–359.
Springer.
Dalvi, N., and Suciu, D. 2007. Management of probabilistic
data: foundations and challenges. In PODS ’07: Proceed-
ings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, 1–12. New
York, NY, USA: ACM Press.
DeRose, P.; Shen, W.; Chen, F.; Lee, Y.; Burdick, D.; Doan,
A.; and Ramakrishnan, R. 2007. Dblife: A community
info. mgmt platform for the database research community
(demo). In CIDR, 169–172.
Forney, G. D. 1973. The viterbi algorithm. Proceedings of
the IEEE 61(3):268–278.
Franklin, M. J.; Kossmann, D.; Kraska, T.; Ramesh, S.; and
Xin, R. 2011. Crowddb: answering queries with crowd-
sourcing. In Sellis et al. (2011), 61–72.
Guo, Y., and Greiner, R. 2007. Optimistic active-learning
using mutual information. In Veloso, M. M., ed., IJCAI,
823–829.
Ipeirotis, P. G.; Provost, F.; and Wang, J. 2010. Quality man-
agement on amazon mechanical turk. In Proceedings of the
ACM SIGKDD Workshop on Human Computation, HCOMP
’10, 64–67. New York, NY, USA: ACM.
Kristjansson, T.; Culotta, A.; Viola, P.; and McCallum, A.
2004. Interactive information extraction with constrained
conditional random fields. In Proceedings of the 19th na-
tional conference on Artifical intelligence, AAAI’04, 412–
418. AAAI Press.
Lafferty, J. D.; McCallum, A.; and Pereira, F. C. N. 2001.
Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In ICML, 282–289.
Marcus, A.; Wu, E.; Karger, D. R.; Madden, S.; and Miller,
R. C. 2011. Demonstration of qurk: a query processor for
humanoperators. In Sellis et al. (2011), 1315–1318.
Quinn, A.; Bederson, B.; Yeh, T.; and Lin, J. 2010. Crowd-
Flow: Integrating Machine Learning with Mechanical Turk
for Speed-Cost-Quality Flexibility. Technical report, Uni-
versity of Maryland.
Rabiner, L. 1989. A tutorial on hidden markov models and
selected applications in speech recognition. Proceedings of
the IEEE 77(2):257–286.
Sellis, T. K.; Miller, R. J.; Kementsietsidis, A.; and Vele-
grakis, Y., eds. 2011. Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD
2011, Athens, Greece, June 12-16, 2011. ACM.
Settles, B., and Craven, M. 2008. An analysis of active
learning strategies for sequence labeling tasks. In EMNLP,
1070–1079. ACL.
Sutton, C., and Mccallum, A. 2006. Introduction to Condi-
tional Random Fields for Relational Learning. MIT Press.

58

Wang, D. Z.; Michelakis, E.; Garofalakis, M.; and Heller-
stein, J. M. 2008. Bayesstore: managing large, uncertain
data repositories with probabilistic graphical models. Proc.
VLDB Endow. 1(1):340–351.
Wang, J.; Kraska, T.; Franklin, M. J.; and Feng, J.
2012. Crowder: Crowdsourcing entity resolution. PVLDB
5(11):1483–1494.
Xu, Z.; Akella, R.; and Zhang, Y. 2007. Incorporating diver-

sity and density in active learning for relevance feedback. In
Amati, G.; Carpineto, C.; and Romano, G., eds., ECIR, vol-
ume 4425 of Lecture Notes in Computer Science, 246–257.
Springer.
Zhao, Y., and Ji, Q. 2010. Non-myopic active learning with
mutual information. In Automation and Logistics (ICAL),
2010 IEEE International Conference on, 511–514.

59

