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Abstract

Recent work has introduced CASCADE, an algorithm for
creating a globally-consistent taxonomy by crowdsourcing
microwork from many individuals, each of whom may see
only a tiny fraction of the data (Chilton et al. 2013). While
CASCADE needs only unskilled labor and produces tax-
onomies whose quality approaches that of human experts,
it uses significantly more labor than experts. This paper
presents DELUGE, an improved workflow that produces tax-
onomies with comparable quality using significantly less
crowd labor. Specifically, our method for crowdsourcing
multi-label classification optimizes CASCADE’s most costly
step (categorization) using less than 10% of the labor required
by the original approach. DELUGE’s savings come from the
use of decision theory and machine learning, which allow it
to pose microtasks that aim to maximize information gain.

Introduction
The presence of large amounts of data is both a boon and
bane of modern times. Large datasets enable many novel
applications, for example, supervised machine learning and
data mining. On the other hand, organizing these datasets
for easy access and better understanding requires significant
human effort. One such organization practice involves con-
structing a taxonomy, a hierarchy of categories where each
edge denotes an isA relationship (e.g., president isA person).
Instances of each category (items) are associated with the
corresponding node in the taxonomy, for example, the en-
tity Barack Obama is an instance of the president category.
WordNet (Miller 1991) and the Linnaean taxonomy are in-
fluential examples.

Taxonomizing large datasets and maintaining a taxonomy
over time raise significant challenges, since they are a drain
on the ontologist(s) responsible for these tasks. A promising
answer to this challenge was recently proposed: a distributed
crowdsourcing workflow, called CASCADE (Chilton et al.
2013). CASCADE provides a sequence of steps for gener-
ating a taxonomy from scratch and for taxonomizing a new
item by posing simple questions to unskilled workers on a
labor market, such as Amazon Mechanical Turk. Unfortu-
nately, the CASCADE workflow was not optimized. While
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the overall cost of a CASCADE-produced taxonomy is com-
parable to one produced by an expert, CASCADE requires
about six times as much labor. This suggests that one might
be able to refine the workflow, making taxonomy creation
both inexpensive and low latency.

Toward this end, we propose DELUGE, a decision-
theoretic refinement of CASCADE. DELUGE adopts the
high-level skeleton of CASCADE’s workflow, but optimizes
its most expensive step: assignment of category labels to
data items. This step is an example of a multi-label clas-
sification problem, an important class of problems which
has not previously been optimized in a crowdsourcing set-
ting. Where CASCADE generates a large number of human
tasks for each item-label pair, DELUGE saves by ordering
the tasks intelligently using a learned model of label and co-
occurrence probabilities.

In summary, our paper presents the following primary
contributions:

• We present an efficient solution to the novel problem
of crowdsourcing multi-label classification. We describe
several alternative methods, culminating in a decision-
theoretic approach with two components: (1) a probabilis-
tic model that estimates the true value of item-label rela-
tionships by allowing workers to be probabilistically ac-
curate, and (2) a controller that chooses, for each item,
which questions provide the maximum value of informa-
tion toward a joint categorization.

• We provide theoretical guarantees for the optimality of
our control strategy, as well as an efficient method for se-
lecting batches of labels that makes our approach imme-
diately usable in an online labor market environment.

• We conduct live experiments on Mechanical Turk show-
ing that our best combination of policies requires less than
10% of the labor used by CASCADE for categorization.

Beyond reducing the cost of crowdsourcing multi-label
classification and taxonomy creation, our work on DELUGE
shows that artificial intelligence and decision-theoretic tech-
niques can be applied to more complex workflows than the
simple consensus task-based workflows (Dai et al. 2013;
Kamar, Hacker, and Horvitz 2012; Wauthier and Jordan
2011) previously tackled.
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Procedure BuildTaxonomy (Items):
ItemLabelMatrix := []
While TaxonomyNeedsImproving?(ItemLabelMatrix) Do

Labels := ElucidateLabels(the subset of Items with no label)
For each Item in Items Do

ItemLabelMatrix := Categorize(Item, Labels, ItemLabelMatrix)
Taxonomy = GlobalStructureInference(ItemLabelMatrix)

Return Taxonomy

Figure 1: The general taxonomy creation algorithm. CASCADE and DELUGE differ in their termination conditions and their
implementations of ElucidateLabels and Categorize.

Figure 2: Sample interface for the Categorize worker
task primitive used in our Mechanical Turk experiment.

Basic Taxonomy Algorithm
Both CASCADE and our refinement, DELUGE, take as input
a set of items to be categorized, such as photographs or text
snippets. Their output is a tree whose interior nodes are each
labeled with a text string label (category); see Figure 5 for
an example.

Our taxonomy creation algorithms use a mixture of algo-
rithmic steps and three task schemata, which are submitted
to human workers in the labor market. From a functional
perspective, these tasks may be defined as follows:

• Generate (t items)→ t labels:
Displays t items and asks a worker to suggest a label for
each item.

• SelectBest (1 item, c labels)→ 1 label:
Presents a worker with a single item and c different labels
and asks her to pick the best one.

• Categorize (1 item, s labels)→ bit vector of size s:
Shows a worker a single item and s labels and asks him to
indicate which labels apply to the item. (See Figure 2 for
our interface corresponding to an instance of this task.)

Since humans are the bottleneck in this approach to tax-
onomy creation, we seek to minimize the number of tasks
requested from the labor market. At the highest level, both
CASCADE and DELUGE start by using Generate tasks to
brainstorm a set of candidate category labels. They then use
SelectBest tasks to filter out poor labels. Afterwards,
Categorize tasks identify appropriate labels for all items.

A final, purely algorithmic step, called global structure
inference, builds a hierarchy from this data by inducing a
parent-child relationship between two labels when most of
the items in one label are also in the other. Labels with
too few items are eliminated, and labels with too great an
overlap are merged. In this paper, we make no changes to

CASCADE’s approach to this final step; see (Chilton et al.
2013) for details.

Figure 1 summarizes this high-level algorithm, but does
not specify exactly how the set of category labels should be
elucidated, nor does it state how to categorize each item effi-
ciently using a fixed set of labels. We discuss these issues in
the next two subsections. As we shall see, CASCADE takes
a relatively simple approach to these questions, but more so-
phisticated techniques can greatly decrease the amount of
human labor required.

Elucidating Category Labels
Noting that there would likely be wasteful duplication if one
asked humans (via a Generate task) to brainstorm can-
didate labels for every one of the items, CASCADE’s im-
plementation of ElucidateLabels starts by considering
only the first few (m = 32) items, termed the initial item
set. CASCADE partitions this initial item set into groups of
t = 8 and creates a Generate task for each, which is sent
to k = 5 workers. After all dkm/te tasks are completed,
CASCADE is left with km candidate labels, not necessarily
distinct.

CASCADE’s next step is to prune the candidate labels. At
this point, each of the m initial items will have up to k dis-
tinct suggested labels. For each item, CASCADE submits k
SelectBest tasks requesting a human to choose which
of the labels seems most appropriate. Any labels with two
or more votes are retained; after this step, p ≤ 2m distinct
labels remain (assuming k = 5).

In the next section, we use a combinatorial balls-and-urns
model to describe an alternative, decision-theoretic method
for controlling label elucidation.

Categorizing Items Once Labels are Known
Once labels have been elucidated, CASCADE enters its most
costly phase, which incurs O(np) worker tasks, where n =
|Items| and p = |Labels|. Intuitively, the idea is to iter-
ate through the items and labels, asking k different workers
whether a label applies to an item. Chilton et al. observed
that workers sometimes lack the context to make these de-
cisions, so they proposed categorizing in two sequential
phases, which they term adaptive context filtering. The first
phase iterates through items and labels as described above;
every label which receives at least two (out of five) votes
progresses to the next phase. In the second phase, workers
are only shown labels which made the first round cut, and a
label is considered to fit an item if at least four of the five
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workers deem it so. Thus, both phases together use between
dknp/se and 2dknp/se worker tasks.

In two sections, we present several improved algorithms
for this categorization process, which we have noted is a
multi-label classification problem. The first approach gen-
erates precisely the same labeling with strictly fewer worker
tasks. The second uses substantially fewer workers, with lit-
tle or no loss in classification accuracy. The final approaches
incrementally build probabilistic models of label occurrence
and co-occurrence, which they use to optimize the order in
which they pose questions to workers.

Pólya’s Urn for Label Elucidation
CASCADE’s label elucidation step asks workers to brain-
storm relevant labels to be added to the taxonomy.
CASCADE performs this step on a set of m items, where
m � n, the total number of items to be categorized. The
key insight behind elucidating labels for a small number of
items is that labels generated for a random subset of items
can be globally relevant, and that workers are likely to repeat
labels across items. An important control question for opti-
mizing this step involves the choice of m. CASCADE sets
m = 32 in an ad hoc manner, but ideally we would like to
estimate the quality of a set of category labels as it grows
in order to determine when elucidating more labels would
likely be wasteful.

DELUGE proposes modeling the brainstorming process
using a Pólya urn model (Johnson and Kotz 1977), also
known as a Chinese Restaurant Process. A very general
framework, Pólya urn models are particularly suited for
modeling discrete, multi-label distributions where the num-
ber of labels is unknown a priori, as is the case for our cate-
gory labels. The metaphor for this generative model is that of
an urn containing colored balls, where colors correspond to
labels. In each iteration, a ball is drawn uniformly from the
urn and then placed back in the urn along with a new ball.
If the drawn ball is black (a specially-designated color), the
new ball is a previously unseen color; otherwise, the new
ball is the same color as the drawn ball.

As balls are drawn from the urn, the number of colors in
the urn increases but the probability of obtaining a new color
decreases. Moreover, colors that are drawn frequently have a
higher probability of being drawn than other colors. This be-
havior can be seen from the probabilities that govern draws
from the urn. Suppose that there are nc balls of color c, N
non-black balls, and α black balls. Then, the probability of
drawing a ball of color c is nc/(N + α) and the probability
of drawing a previously unseen color is α/(N+α). A Pólya
urn model is parameterized by α; larger values of α imply
higher probability of brainstorming new category labels.

A useful quantity to estimate for determining a stopping
condition is the expected number of new labels that would
be generated by a fixed number of future worker tasks.
Theorem 1 Let our Pólya urn contain N colored balls and
α black balls. Let the random variable Xd be the number of
new colors present in the urn after d future draws. Then,

E[Xd] =
d−1∑
i=0

α

N + α+ i
.

Recall that CASCADE asks k workers to brainstorm labels
for each item. Thus, if we have generated labels form items,
with n − m = r items remaining, we have N = km and
d = kr. Terminating the label elucidation phase at this point
will result in an expected

∑kr−1
i=0

α
km+α+i missed labels.

The expected fractional increase in the total number of la-
bels is this quantity divided by the number of distinct labels
seen after the first m items.

Our model provides a principled stopping condition for
this phase: terminate when the expected fractional increase
in the number of labels is below a desired threshold. In or-
der to operationalize this policy, we compute the maximum-
likelihood estimate of α using gradient ascent on the log-
likelihood of generating the observed data.

Note that this model assumes that all labels are indepen-
dent and that workers are equally likely to generate new la-
bels for any particular item. These assumptions are inaccu-
rate due to the underlying label co-occurrence probabilities,
as well as potential differences in the number of accessible
labels for each item. However, the approximations are rea-
sonable for the Generate phase, since we will likely not
have enough data to learn parameters for a more complex
model in any case. Our model lets us estimate the approx-
imate impact of stopping, which can be used to identify an
appropriate termination point for this phase.

Improved Categorization Control Algorithms
CASCADE, like many crowdsourcing workflows, imple-
ments voting on binary outcomes by requesting a fixed num-
ber of votes k and setting a threshold number of votes T
(majority voting is the special case where T = k/2). Once
the requested number of votes is returned, this procedure re-
turns a positive outcome if and only if the number of posi-
tive votes is at least T . The amount of work required by this
procedure can be quite large, especially when attempting to
scale workflows. In the Adaptive Context Filtering step of
its workflow, CASCADE asks k workers to vote on each item
and label combination. Supposing there are n items and p
labels, this step requires asking for O(knp) votes.

A Lossless Improvement to Threshold Voting
The first observation we make is that given a threshold num-
ber of votes T , asking for all k votes is often unnecessary.
Once one has received T positive votes, or k − T + 1 neg-
ative votes, one need not ask for further votes since the an-
swer using k total votes is fully determined to be positive
in the former case and negative in the latter case. We call
this stopping condition lossless stopping; it can be seen as a
generalization of the “Ask two people to vote and only ask a
third if the first two disagree” policy in TurKit (Little et al.
2009).

One-away Approximation for Threshold Voting
One can further reduce the number of votes required with a
simple heuristic method, which we call the one-away heuris-
tic, that we hypothesize will result in only a small amount
of error compared to the original threshold voting method.
(Note that lossless stopping results in no error, compared to
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the original.) The one-away heuristic returns true early if we
observe max{T −1, 0} positive votes and no negative votes,
or returns false early if we observe max{k − T, 1} negative
votes and no positive votes. The intuition behind this heuris-
tic is that although the lossless stopping condition may not
have been met, we have observed strong evidence for return-
ing an outcome and no evidence in support of the alternative
outcome.

A Simple Probabilistic Model
A more powerful way to approach the problem is from the
Bayesian perspective. Suppose we have already labeled a
large number of items, I ∈ I, and hence know for each I
if label L holds, denoted ⊕(I, L) = 1, or does not, denoted
⊕(I, L) = 0. Now, when given a new item I ′ we know noth-
ing about, we can use the previously observed data to calcu-
late the maximum likelihood prior probability of any label
P (⊕(I ′, L)) =

∑
I∈I ⊕(I, L)/|I|.

In order to update our posterior for ⊕(I ′, L) after ob-
serving a worker’s vote, we must model noisy workers. Our
worker model uses two parameters to represent how accu-
rately workers are able to detect true positives and true neg-
atives. As in (Raykar et al. 2010), we term these parameters
worker sensitivity and specificity, respectively. We observe
that worker specificity is much higher than worker sensitiv-
ity due to the sparsity of labels in our dataset, and that rep-
resenting worker accuracy with two parameters instead of a
single shared parameter greatly improves the discriminative
ability of our probabilistic models.

If a worker with sensitivity ptp and specificity ptn an-
swers that a label holds, we can update our posterior
by simply multiplying the prior by the likelihood ratio
(ptp + (1− ptn)) / ((1− ptp) + ptn). In this model, the
agent always knows the most probable value for ⊕(I, L),
and if a utility model associates different costs for false pos-
itive and false negative classifications, it can easily trade off
between these errors.

We term this baseline probabilistic model the independent
model, since it naively assumes that labels are independent,
as shown in the graphical model in Figure 3a. If we denote
the set of labels by L, the independent model has a total
of |L| + 2 parameters: one for each label corresponding to
the prior probability of that label, and two for a noisy worker
model that we assume here is shared among all workers. The
marginal label probabilities are

P (L | v) ∝ P (L)P (vL | L),
where L ∈ L is a Boolean random variable corresponding
to an outcome ⊕(I, L) for an item and vL ⊆ v is the vector
of observed votes associated with that outcome.

One subtlety concerns the treatment of past data. Since
the agent has no access to gold data, it does not know the
true labels, ⊕(I, L), even when it has seen the assessments
of many workers. We use expectation maximization (EM) to
estimate the values of these latent labels together with the
parameters of our model. We perform a Bayesian estimate
of our parameters to avoid problems when categorization is
just starting, by assuming weak symmetric Beta priors and
computing a maximum a posteriori estimate.

(a) Independent (b) MLNB

Figure 3: Generative probabilistic models for multi-label
classification. The I , L, and V plates correspond to items,
labels, and votes, respectively. The MLNB model in (b) is
the model for predicting label Li; there are |L| such models.

Modeling Label Co-occurrence
The assumption of label independence made by the previous
model is a substantial approximation. For example, an item
which has been categorized as “person” is more likely to be
a member of the actor category than to be a member of the
location category. This observation is especially pertinent to
taxonomies with deep hierarchical structure, but is true for
any set of overlapping labels.

It is natural, therefore, to learn a joint model of label prob-
abilities. In this model, when a worker responds that an item
is in a given category, the posterior for all other categories
can be updated. This update will also affect the choice of
which label has the highest value of information by the con-
trol strategy we will define.

There are many ways to represent a complex joint distri-
bution. As a baseline approach, we explore a simple model,
which we term the multi-label naive Bayes (MLNB) model.
For each label in this model, we construct a star graph with
directed edges from that label to all other labels; the graph-
ical model in Figure 3b shows the star graph for label Li.
Using notation we defined for the independent model, the
marginal label probabilities for the MLNB model are
P (L | v) ∝

P (L)P (vL | L)
∏

L′∈L\{L}

∑
L′

P (L′ | L)P (vL′ | L′).

Calculating marginal probabilities for all labels requires
O(|L|2) computations per item and involves summing out
the latent label variables represented as child nodes in the
graphical model. This approximation models pairwise co-
occurrences between labels directly but ignores the higher
order interactions.

In order to estimate parameters for the MLNB model in
an efficient manner, we reuse parameters and label predic-
tions obtained by running EM for the independent model.
We approximate the additional 2(|L2| − |L|) conditional la-
bel probabilities P (L′ | L) using these predictions as the
expected fraction of items with labels L and L′ out of those
with label L. Knowing that a small fraction of labels applies
to any particular item, we use Laplace smoothing to bias
these estimates against positive co-occurrence.

We have also explored a more sophisticated probabilistic
graphical model that combines our generative independent
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model with a pairwise Markov network over the label vari-
ables for an item. We found that this model, which requires
approximate inference methods, is too slow to be useful in a
live crowdsourcing setting and does not produce significant
gains over the MLNB model; we do not describe it further
in this paper.

Choosing Which Questions to Ask
One may also consider different control strategies for choos-
ing the next question(s) to dispatch to a worker. CASCADE
employed a simple round-robin strategy, but we advocate
using a greedy search that asks about the label(s) where a
worker’s vote(s) would provide the greatest value of infor-
mation.

More formally, each time DELUGE asks a worker for new
votes, its goal is to select a set of votes that will result in
the greatest expected decrease in the uncertainty of our la-
bel predictions. Information theory provides us with a useful
criterion for measuring the amount of uncertainty in the dis-
tribution of label predictions, the joint entropy

H(L) = −
∑

l∈domL

P (l) logP (l).

The domain of L consists of all possible assignments to the
variables in L, and l denotes one of those assignments. Let
A ⊂ V , where V denotes the unbounded set of possible fu-
ture votes. The expected uncertainty of the distribution of
label predictions after receiving the votes in A is the condi-
tional entropy

H(L | A) = −
∑

l∈domL
a∈domA

P (l,a) logP (l | a).

We are interested in maximizing the difference of these two
quantities, known as the expected information gain, or the
mutual information I(L;A) = H(L)−H(L | A).

Unfortunately, calculating the optimal set, A, that maxi-
mizes information gain is intractable due to the combinato-
rial nature of the problem. However, we are able to select a
near-optimal set by exploiting the combinatorial concept of
submodularity. Nemhauser, Wolsey, and Fisher (1978) show
that the greedy algorithm for optimizing a submodular func-
tion provides a solution that is guaranteed to be within a
constant factor of (1 − 1/e) ≈ 63% of optimal. While in-
formation gain is not, in general, submodular, it does satisfy
this property under our modeling assumption that workers’
errors are not correlated, i.e., that votes in V are indepen-
dent given the true values of L (Krause and Guestrin 2005).
Krause and Guestrin provide a greedy algorithm for select-
ing a near-optimal subset of variables under this assumption,
and prove that one cannot achieve a tighter bound unless
P = NP.

This greedy algorithm accumulates a set of future votesA
by adding votes V ∈ V one at a time with a greedy heuristic.
While we are interested in the set of votes that maximizes the
information gain for L, the greedy heuristic selects a vote
V by ranking them according to the quantity H(V | A) −
H(V | L). In general, these conditional entropies require
that we represent the full joint distribution over L, which is

intractable for even a small number of labels. Fortunately,
we can refine this heuristic using an additional conditional
independence assumption of our models, which simplifies
H(V | L) to the local conditional entropy H(V | LV ),
where LV ∈ L is the label corresponding to vote V .
Theorem 2 Let each vote V ∈ V be independent of all
other votes given the label LV , and letA be the set of future
votes accumulated by the greedy algorithm thus far. Also let
VL denote an arbitrary future vote for some label L. Then,
the set A constructed by successively adding future vote V ∗
by the strategy

V ∗ ∈ argmax
L∈L

H(VL | A)−H(VL | L)

is within (1− 1/e) of optimal.
The proof follows from applying Krause and Guestrin’s re-
sult to our model. Note that when the greedy algorithm se-
lects the first vote, A is initially empty and thus H(V | A)
is simply H(V ).

This theorem yields a surprising result: selecting a near-
optimal single question to ask a worker requires only the
local entropies H(V ) and H(V | LV ). DELUGE leverages
this greedy strategy, along with the MLNB model of label
co-occurrence, to optimize the categorization process.

Experiments
In our experiments, our goal is to compare the various strate-
gies from the categorization control section. We first com-
pare the simple improvements to threshold voting by ana-
lyzing the cost savings for each strategy (lossless, one-away)
and threshold setting T = {2, 3, 4}, along with the quality
of the taxonomy produced. Next, we evaluate the probabilis-
tic models on their predictive performance and compare that
against the original strategy from CASCADE.

Dataset
In order to better analyze the effect of different categoriza-
tion algorithms, we controlled for variation in label elucida-
tion policies and adopted a fixed set of candidate category la-
bels from the literature. Specifically, we took a subset of the
fine-grained entity tags described in (Ling and Weld 2012)
by eliminating low probability tags and all those for orga-
nizations, events, and facilities; this process yielded a man-
ageable set of 33 labels. We then over-generated items for
each of these labels, and constructed a random subset of 100
items.

Our worker vote collection process involved emulating a
run of the Categorize procedure from CASCADE, called
on these 100 items and 33 categories. We had a total of
k = 15 workers from Mechanical Turk vote on batches of
seven labels per Human Intelligence Task (HIT). The inter-
face for our HITs, shown in Figure 2, uses form validation
to ensure that a worker either selects at least one label, or
deliberately indicates that none of the displayed labels apply
to the item in question. Each HIT cost $0.04 and the total
amount paid to workers was $300. The purpose of gathering
this data was to allow us to compare different control strate-
gies, controlling for worker error, since each control strategy
would be seeing the same worker responses.
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Method T F-score Votes % savings
Lossless 2 0.83 130 21
One-away 2 0.82 96 42
Lossless 3 0.84 102 38
One-away 3 0.83 69 58
Lossless 4 0.75 72 56
One-away 4 0.70 38 77

Table 1: Comparison of threshold voting methods. Mean F-
score and number of votes per item.

Figure 4: F-score vs. cost for threshold voting improvements

Threshold Approaches
In the first experiment, we compared the threshold vot-
ing modifications to the naive version of threshold voting
implemented in CASCADE. Since CASCADE uses various
threshold settings in the adaptive context filtering, we tested
with thresholds of T = {2, 3, 4} out of 5 total votes. Ta-
ble 1 shows the number of votes per item used by loss-
less stopping and the one-away heuristic, and the fraction of
votes saved compared to the original approach in CASCADE,
which used 33 × 5 = 165 votes per item. Note that lossless
stopping, which returns exactly the same predictions as the
threshold voting procedure from CASCADE, is able to save
up to 56% of the votes when T = 4.

In order to better understand the impact of the one-away
heuristic on classification performance, in Figure 4 we plot
F-score performance vs. the number of votes used for loss-
less stopping and the one-away heuristic. For threshold val-
ues T = {2, 3}, the one-away strategy significantly lowers
the already reduced cost associated with lossless stopping
without introducing a statistically significant decrease in F-
score. The decrease in F-score for T = 4 is statistically sig-
nificant (p < 0.01 using a two-tailed paired t-test), but can
be attributed to poor recall. The one-away heuristic at this
threshold setting returns false if the first vote is negative,
which is suboptimal since worker sensitivity is significantly
lower than worker specificity.

In addition to classification performance, we are also in-
terested in how our improvement methods impact the quality
of the final output taxonomy. Visual inspection for errors in
the output taxonomies did not reveal a decrease in quality
when using the one-away heuristic. Figure 5 shows a high-
quality taxonomy produced by the one-away heuristic with

Figure 5: The one-away policy with threshold T = 3 used
only 42% of the labor required by CASCADE, yet produced
an excellent taxonomy (excerpt shown).

threshold T = 3.

Inference-based Approaches
We hypothesized that scaling multi-label classification and
taxonomy creation to a large number of items requires a
probabilistic approach. To empirically determine the effec-
tiveness of our approaches, we compared the performance
of various inference and control strategies using the votes
gathered from Mechanical Turk.

In our experiments, we tested three inference methods
(MLNB, Independent, and Majority) and two control strate-
gies (greedy and round-robin). MLNB and Independent in-
ference methods were described in the previous section, and
Majority performs simple majority vote estimation that de-
faults to a negative answer and breaks ties in favor of a pos-
itive answer (we found that these simple modifications im-
proved results for our dataset). The greedy control strategy
uses the heuristic from Theorem 2 to select labels that maxi-
mize information gain, while the round-robin strategy fills in
votes layer by layer (e.g., it asks once about each label before
asking twice about any label). Majority with round-robin is
our reconstruction of the original CASCADE approach.

In order to test how our models will perform when scal-
ing in the number of items, we evaluate the performance of
our models using leave-one-out cross-validation for the 100
items. We estimate model parameters using 99 items and five
worker votes for each item-label pair in the training set.

Figure 6 shows the results of this experiment. MLNB
and Independent show a clear improvement over the sim-
ple round-robin method, and MLNB in particular reaches
high levels of performance very quickly. The improvement
of MLNB over Independent is highly statistically significant
at the 0.05 significance level (using a two-tailed paired t-test)
for the first 47 votes, lending credence to our hypothesis that
co-occurrence information aids classification. Furthermore,
points where Independent crosses slightly above MLNB are
not statistically significant. We note that the probabilistic
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Figure 6: Performance vs. number of votes (Mechanical
Turk data). CASCADE does not fall on the Majority line, as
it uses a different threshold (T = 4).

models sometimes request votes in excess of the votes col-
lected for an item-label pair, in which case we simply use
the next-best label; this behavior does not happen frequently
enough to impact our statistically significant results.

So, which control strategy is best? On this dataset,
CASCADE’s voting policy (accept a label if four out of five
workers think it applies) required 165 worker tasks per item
and yielded an F-score of 75% when compared to gold-
truth data. In contrast, our one-away strategy with threshold
T = 3 had an F-score of 83% and used only 42% as much
labor. Our probabilistic approaches are anytime and can be
stopped after any number of worker tasks. MLNB with a
greedy control strategy produced an F-score around 76% af-
ter only 16 tasks per item, which is less than 10% as much
labor as CASCADE required to achieve similar performance.

Batching Tasks
In order to be practically useful in a crowdsourcing setting,
our control strategies need to be able to group tasks together
so that a worker can answer multiple questions about an item
at once; see Figure 2 for an example. Theorem 2 provides a
method for choosing batches of labels, by accumulating a
set of votes using the greedy heuristic. An alternative simple
control strategy, which we term k-best, simply selects the
top k labels ranked by the greedy heuristic before any votes
have been accumulated.

In our experiments, we found that k-best offers the best
trade-off between classification performance and computa-
tional complexity. Figure 7 shows that for k = 7 (the same
number used by CASCADE and our own live experiment),
MLNB with k-best control results in a small decrease in per-
formance compared to MLNB with single label selection.
This difference is statistically significant (at the 0.05 signif-
icance level using a two-tailed paired t-test) only until about
35 votes per item, and the batched version of MLNB still
outperforms Independent with single label selection.

The accumulative greedy method failed to produce signif-
icant performance gains over k-best. Moreover, computing
the greedy heuristic for k > 1 is computationally inten-
sive, requiring approximation of conditional entropies for

Figure 7: Performance vs. number of votes for selecting
batches of k = 7 (Mechanical Turk data, MLNB with single
label selection shown for comparison).

the MLNB model. One possible reason the accumulative
method fails to improve performance is that labels within a
batch must be distinct in our setting (it is not beneficial to ask
the same worker the same question more than once). Given
this restriction, k-best is an effective heuristic that incurs no
additional cost compared to selection of single labels.

Simulation Study
An intelligent control procedure must be robust to noise due
to worker quality. In order to assess the behavior of our
techniques on more complex classification problems where
the workers may be more error-prone, we simulated work-
ers with 60% sensitivity and 80% specificity. We perform
this experiment using the gold-truth item-label answers in a
purely simulation setting. The overall higher performance of
our results in Figure 8 despite less accurate workers (aver-
age sensitivity and specificity for workers in our dataset was
76% and 98%, respectively) can be attributed to discrepan-
cies between the gold-truth answers supplied by the authors
and the collective decisions made by workers on Mechanical
Turk. Figure 8 shows the same statistically significant order-
ing of the models as we saw with real worker votes, suggest-
ing that our results generalize to a wide array of multi-label
classification tasks.

Related Work
Our research fits into the broad theme of using AI techniques
for optimization of crowdsourced tasks (Weld, Mausam, and
Dai 2011). A large body of work has optimized simple tasks
such as classification with noisy workers (Dai et al. 2013;
Kamar, Hacker, and Horvitz 2012; Raykar et al. 2010;
Sheng, Provost, and Ipeirotis 2008; Wauthier and Jordan
2011; Welinder et al. 2010; Whitehill et al. 2009). Relatively
less research has gone into optimizing more complex work-
flows such as CASCADE’s that have a much richer space of
possible outcomes. A notable exception is the optimization
of iterative improvement workflows using decision-theoretic
control (Dai et al. 2013).

Closely related work on optimizing the categorization
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Figure 8: Performance vs. number of votes for a more diffi-
cult simulated task (sensitivity = 0.6, specificity = 0.8).

of items within a taxonomy takes a graph-theoretic ap-
proach (Parameswaran et al. 2011), but does not consider a
probabilistic framework for modeling noisy workers, a crit-
ical component of crowdsourcing systems. Moreover, that
approach assumes labels are organized in a taxonomy that
is known a priori, and does not model label co-occurrence,
which our experiments show dramatically improves labeling
efficiency and accuracy.

Other related research investigates selecting the next best
question from a set of known questions. Often, the goal is
to use active learning to improve the accuracy of a classifier,
by selecting questions based on label uncertainty or model
uncertainty (Sheng, Provost, and Ipeirotis 2008; Wauthier
and Jordan 2011). Our approach to multi-label classification
seeks to ask questions that optimize the value of information
within a graphical model (Krause and Guestrin 2005), rather
than to optimize performance on an external task.

Our approach to label elucidation is related to work on
collaborative and social tagging. (Golder and Huberman
2006) uses a Pólya urn model to explain why relative tag
proportions tend to stabilize over time for bookmarks on the
Delicious website. (Chi and Mytkowicz 2008) investigates
tagging on Delicious as well, using information-theoretic
measures to model the developing vocabulary of tags and
the effectiveness of the set of tags for document retrieval.
In a crowd labor setting, (Lin, Mausam, and Weld 2012b)
uses a Chinese Restaurant Process model to optimize free
response question answering.

Other instances of the use of AI within crowdsourcing in-
clude assigning tasks to workers (Donmez, Carbonell, and
Schneider 2010; Tran-Thanh et al. 2012), solving consen-
sus tasks using worker responses and a machine learning
model (Kamar, Hacker, and Horvitz 2012), selecting work-
ers based on skill (Shahaf and Horvitz 2010), and choos-
ing between multiple workflows for the same task (Lin,
Mausam, and Weld 2012a).

Conclusions
Machine learning and decision-theoretic techniques offer
the potential for dramatically reducing the amount of hu-

man labor required in crowdsourced applications. However,
to date, most work has focused on optimizing relatively sim-
ple workflows, such as consensus task and iterative improve-
ment workflows. Taxonomy generation is an important task,
which requires a complex workflow to create a globally con-
sistent interpretation of a large dataset from workers who
typically have only a narrow view of a small data subset.
Since previous work on crowdsourcing taxonomy creation,
CASCADE, was both promising yet labor intensive, it is a
natural target for decision-theoretic optimization.

This paper presents DELUGE, a refinement of the
CASCADE algorithm with novel approaches to the subprob-
lems of label elucidation and multi-label classification. For
the former, we introduce a combinatorial Pólya urn model
that allows us to calculate the relative cost of stopping the
label generation phase early. For the problem of classifying
items with a fixed set of labels, we present four models: loss-
less, one-away, a simple probabilistic model, and the MLNB
model of label co-occurrence. The latter two models support
a greedy control strategy that chooses the most informative
label to ask a human to evaluate, within a constant factor
of the optimal next label. We also provide a batching strat-
egy, making our approach to multi-label classification both
highly general and practically useful.

Using a new dataset of fine-grained entities, we performed
live experiments on Mechanical Turk to evaluate the rela-
tive effectiveness of the approaches to multi-label classifica-
tion. While CASCADE’s voting policy required 165 worker
tasks per item, our approaches achieve superior performance
using much less labor. In particular, DELUGE uses MLNB
with a greedy control strategy to exceed CASCADE’s perfor-
mance after only 16 tasks per item, or less than 10% as much
labor.

We envision extending this work in a number of ways.
Our probabilistic models do not distinguish between indi-
vidual workers, since we focus on comparing different rep-
resentations of the underlying distribution on labels. How-
ever, learning individual noisy worker models would likely
improve results for these models. Another line of inquiry in-
volves exploration of the design implications of this work.
For example, our anytime probabilistic approaches could be
used to pose questions with a dynamic interface that updates
as a worker provides responses. Finally, we hope that our
work inspires other researchers to tackle the design and opti-
mization of workflows for more complex problem domains.
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